
Practical Bayesian Optimization of Objectives with Conditioning

Variables: Supplementary Material

Annonymous

February 2021

1 Theoretical Results

We first state the standard assumption in Bayesian Optimization. We then restate the theorems from the
main paper and provide each proof. Firstly, in Theorem 1 we then show that that ConBO with knowledge
gradient myopically maximises Value of Information in a Bayesian decision theoretic framework. In theorem
2 we show that in discrete settings ConBO will sample all pairs infinite often. Finally, in Theorem 3 we prove
conditions for hybrid KG to satisfy the results of Theorems 1 and 2.

Assumption 1 Let θ(s, x) = E[f(s, x)] be the latent function of expected performance (average over output
noise). Let k((s, x), (s′x′)) be the kernel of a Gaussian process. We assume that θ(s, x) is in the Reproducing
Kernel Hilbert Space of the kernel k((s, x), (s′x′)).

Theorem 1 Let (s∗, x∗) ∈ arg max ConBO(s, x) be a point chosen for sampling. (s∗, x∗) is also the point
that maximises the myopic Value of Information, the increase in predicted performance.

Proof of Theorem 1 Given all the information available at time n, X̃n, Y n and the model µn(s, s),
kn(s, x, s′x′), for any given task and input s, x, and a given realization of the true reward function f(), in a
Bayesian decision theoretic framework, the loss is given by the output of the function

Loss(s, x) = −f(s, x),

the expected loss is the risk function

Risk(s, x) = E[Loss(s, x)|X̃n, Y n] = E[−f(s, x)|X̃n, Y n] = −µn(s, x).

For convenience we assume conditioning on X̃n, Y n for the remaining equations. The optimal input minimizes
risk

xoptimal = arg min xRisk(s, x) = arg min x − µn(s, x).

Alternatively, x∗n(s) = arg max xµ
n(s, x) is the Bayesian decision theoretic optimal input given all data

available at time n. The total risk is the risk of optimal inputs is for all tasks, or the risk of the chosen inputs

Total Risk(n) = −
∫
s

max
x

µn(s, x)P[s]ds

which is the negative of the models best prediction of true reward given data up to time n where we have
made n an explicit argument for convenience. Next assume we are able to collect more data to update the
model, choose (s, x)n+1 and observe yn+1. The myopic Value of Information is defined as the data that
minimizes future risk

VoI((s, x)n+1) = −Eyn+1 [Total Risk(n+ 1)|(s, x)n+1] (1)

(2)

1

Note that that arg max VoI((s, x)n+1) is not affected by adding terms that do not depend on (s, x)n+1. Thus
we may subtract the current Total Risk(n). Finally, the difference between risks simplifies to

Eyn+1

[∫
s

max
x

µn+1(s, x)P[s]ds

∣∣∣∣(s, x)n+1

]
−
∫
s′

max
x

µn(s′, x)P[s]ds′ (3)

= Eyn+1

[∫
s

max
x

µn+1(s, x)−max
x

µn(s, x)P[s]ds

∣∣∣∣(s, x)n+1

]
(4)

=

∫
s

Eyn+1

[
max
x

µn+1(s, x)|(s, x)n+1
]
−max

x
µn(s, x)P[s]ds (5)

=

∫
s

KGc(s; (s, x)n+1)P[s]ds (6)

= ConBO((s, x)n+1) (7)

Therefore arg max VoI((s, x)n+1) = arg max ConBO((s, x)n+1). �

Theorem 2 Let S and X be finite sets and N the budget to be sequentially allocated by ConBO. Let n(s, x,N)
be the number of samples allocated to point s, x within budget N . Then for all (s, x) ∈ S ×X we have that
limN→∞ n(s, x,N) =∞.

We require some intermediate results, firstly ConBO is non-negative.

Lemma 1 Let (s, x) ∈ S ×X, then ConBO((s, x)n+1) ≥ 0.

Proof of Lemma 1

ConBO((s, x)n+1) =
∑
s′

EZ [max
x′

µn(s′, x′) + σ̃(s′, x′; (s, x)n+1)Z]−max
x′′

µn(s′, x′′) (8)

≥
∑
s′

EZ [µn(s′, πn(s′)) + σ̃(s′, πn(s′); (s, x)n+1)Z]−max
x′′

µn(s′, x′′) (9)

=
∑
s′

max
x′

µn(s′, x′) + σ̃(s′, πn(s′); (s, x)n+1)EZ [Z]−max
x′′

µn(s′, x′′) (10)

=
∑
s′

max
x′

µn(s′, x′)−max
x′′

µn(s′, x′′) (11)

= 0 (12)

�
Secondly, we require that ConBO(s, x) reduces to zero for an infinitely sampled pair. Note that for

deterministic f(s, x), the result simplifies to ConBO(s, x) is zero for any sampled pair.

Lemma 2 Let (s, x)n+1 ∈ S ×X with n(s, x) =∞, then ConBO((s, x)n+1) = 0.

Proof of Lemma 2 Given infinitely many finite variance observations of f(s, x), we have that µn(s, x) =
E[f(s, x)] and posterior variance is zero kn(s, x, s, x) = 0. By the positive definiteness of the kernel we also
have that kn(s, x, s′, x′) = 0 for all (s′, x′)n+1 ∈ S×X (see [1] Lemma 3). It follows that σ̃(s′, x′; (s, x)n+1) = 0
for all (s′, x′) ∈ S ×X and thus

KGc(s
′; (s, x)n+1) = EZ [max

x′
µn(s′, x′) + σ̃(s′, x′; (s, x)n+1)Z]−max

x′′
µn(s′, x′′) (13)

= EZ [max
x′

µn(s, x′) + 0 · Z]−max
x′′

µn(s′, x′′) (14)

= max
x′

µn(s′, x′)−max
x′′

µn(s′, x′′) (15)

= 0 (16)

2

and therefore ConBO((s, x)n+1) =
∫
s

0P[s]ds = 0.
�
Thirdly, we require the inverse of Lemma 2, that points for which ConBO(s, x) > 0 must have non-zero

variance kn(s, x, s, x) > 0 (and therefore cannot be infinitely sampled).

Lemma 3 Let (s, x)n+1 ∈ S ×X be a point for which ConBO((s, x)n+1) > 0, then n(s, x) <∞.

Proof of Lemma 3 ConBO((x, s)n+1) > 0 implies that there exists an s ∈ S’ such that KGc(s
′; (s, x)n+1) > 0.

By the contrapositive of Lemma 3 in [2], we must have that kn(s′, x′, (s, x)n+1) is not a constant function of
x′. If (s, x)n+1 is infinitely sampled, then kn(s′, x′, (s, x)n+1) is a constant function of x′, thus (s, x)n+1 is
not infinitely sampled. �

Finally, combining the previous Lemmas we can complete the proof.
Proof of Theorem 2 By Lemmas 1 and 2, any infinitely sampled points become minima of the function

ConBO(s, x). By construction, the ConBO algorithm choose points at maxima (s, x)n+1 = arg max ConBO(s, x).
Thus in the infinite budget limit, we have ConBO(s, x) = 0 for all (s, x) ∈ S ×X by the contrapositive of
Lemma 3 we have that n(s, x) =∞ for all points.

�

Theorem 3 Let nz ≥ 2 and let Z = {Zj |j = 1, ..., nz}. If 0 ∈ Z then KGh(x) ≥ 0 for all x ∈ X and if x is
sampled infinitely often KGh(x) = 0.

Proof of Theorem 3 First consider the base case nz = 2. Let Z = {0, Z2} and given xn+1, let X∗ = {x∗1, x∗2} be
the optimal discretization as found by Algorithm 3. Then x∗1 = arg maxµn(x)+ σ̃(x;xn+1) ·0 = arg maxµn(x)
and therefore µn(x∗1) = maxx µ

n(x). Let µ∗ = µn(X∗) and σ̃∗ = σ̃(X∗, xn+1). Then we have that

KGh(xn+1) = EZ [max{µ∗1 + σ̃∗1Z, µ
∗
2 + σ̃∗2Z}]−max

x
µn(x) (17)

= EZ
[
max{max

x
µn(x) + σ̃∗1Z, µ

∗
2 + σ̃∗2Z}

]
−max

x
µn(x) (18)

= EZ
[
max{σ̃∗1Z, µ∗2 −max

x
µn(x) + σ̃∗2Z}

]
(19)

≥ max
{
EZ [σ̃∗1Z] ,EZ

[
µ∗2 −max

x
µn(x) + σ̃∗2Z

]}
(20)

= max
{

0, µ∗2 −max
x

µn(x)
}

(21)

= 0 (22)

where we Jensen’s inequality in the penultimate line and we use that µ∗2 < maxx µ
n(x) in the final line. The

result extends to the case for nz > 2 trivially. The proof for KGh(x) = 0 at infinitely sampled points follows
the proof of Lemma 2. �

2 Computing ConBO and Hybrid Knowledge Gradient

2.1 Deriving One-Step Look-ahead Posterior Mean µn+1(s, x)

At iteration n during optimization, let the training inputs be X̃n =
(
(s1, x1), ..., (sn, xn)

)
and the training

outputs Y n = (y1, ..., yn). Given a prior mean and kernels functions, µ0(s, x) : S×X → R and k0(s, x, s′, x′) :
S ×X × S ×X → R. Finally let the new sample point be (s, x)n+1 = x̃n+1.

Updating the mean function with data from the 0th step to nth step is given by

µn(s, x) = µ0(s, x) + k0(s, x, X̃n)K−1
(
Y n − µ0(X̃n)

)
︸ ︷︷ ︸

define Ỹ n

(23)

= µ0(s, x) + k0(s, x, X̃n)Ỹ n (24)

3

Algorithm 1 The ConBO algorithm. At each iteration a task and an input are chosen and evaluated.
We use the shorthand X̃n to represent all sampled (s, x) pairs. The Adam optimizer is used to maximize
ConBO(s, x).

Require: Problem setting: f : S ×X → R, W (s), N
Require: Algorithm parameters: n0, ns, nz, kernel

Initialize dataset X̃n0 and Y n0

for n in n0, . . . , N do
Fit the model µn(·), kn(·)← GP(X̃n, Y n, kernel)
Acquire point (s, x)n+1 ← Adam (ConBO(s, x))
Evaluate point yn+1 ← f(sn+1, xn+1)
Update dataset Y n+1 and X̃n+1

end for
Update the model µN (s, x)← GP(X̃N , Y N , kernel)
return conditional maxima function, x∗N (s) = arg max xµ

N (s, x)

Algorithm 2 Computing ConBO. The algorithm requires a new point, discretization sizes, past data and
posterior GP functions and an optimizer.

Require: x̃n+1, ns, nz, X̃
n, Y n, µn(s, x), kn(s, x, s′x′), σ2

ε , Optimizer()

Precompute and cache
(
k0(X̃n, X̃n) + σ2

ε I
)−1

k0(X̃n, x̃n+1)

C ← 0
for i in 1, .., ns do

si ∼ N(si|sn+1,diag(l2s))
KGi ← Algorithm3(x̃n+1, si,)
wi ← P[si]/N(si|sn+1,diag(l2s))
C ← C + wiKGi/ns

end for
return C

where K = k0(X̃n, X̃n) + σ2
ε I. µn(s, x) may also be written as a weighted average of a modified Ỹ n ∈ Rn

vector as defined above. Computing the new posterior mean reduces to augmenting X̃n → X̃n+1 with x̃n+1

and Y n → Y n+1 then computing the new Ỹ n+1 ∈ Rn+1. Let Z be the z-score of yn+1 on its predictive
distribution, then

Ỹ n+1 =

[
Ỹ n

0

]
+

Z√
kn(x̃n+1, x̃n+1) + σ2

ε

[
−K−1k0(X̃n, x̃n+1)

1

]
(25)

and the above expression may be used directly in Algorithm 1 with sampled Zj ∼ N(0, 1). This is derived by
a simple change of indices from 0→ n and n→ n+ 1, yields the one-step updated posterior mean

µn+1(s, x) = µn(s, x) +
kn(s, x, x̃n+1)

kn(x̃n+1, x̃n+1) + σ2
ε

(
yn+1 − µn(x̃n+1)

)
. (26)

which contains the random yn+1. This may be factorized as follows:

µn+1(s, x) = µn(s, x) + kn(s, x, x̃n+1)
1√

kn(x̃n+1, x̃n+1) + σ2
ε︸ ︷︷ ︸

standard deviation of yn+1

(
yn+1 − µn(x̃n+1)

)√
kn(x̃n+1, x̃n+1) + σ2

ε︸ ︷︷ ︸
Z-score of yn+1

(27)

= µn(s, x) + kn(s, x, x̃n+1)
1

σnyn+1(x̃n+1)
Z (28)

= µn(s, x) + σ̃(s, x, x̃n+1)Z (29)

4

Algorithm 3 Computing Hybrid Knowledge Gradient. The algorithm requires a new point, a task, a
discretization size, past data, posterior GP functions and an optimizer.

Require: x̃n+1, s, nz, X̃
n, Y n, µn(s, x), kn(s, x, s′x′), σ2

ε , Optimizer()
X̃n+1 ← X̃n ∪ {x̃n+1}
X∗ ← {}
Precompute and cache

(
k0(X̃n, X̃n) + σ2

ε I
)−1

k0(X̃n, x̃n+1)

for j in 1, .., nz do

Zj ← Φ−1
(

2j−1
2nz

)
Ỹ n+1
j from Equation 25

µn+1
j (s, x)← µ0(s, x) + k0(s, x, X̃n+1)Ỹ n+1

j

x∗j ← arg max xµ
n+1
j (s, x) using Optimizer()

X∗ ← X∗ ∪ {x∗j}
end for
µ← µn(s,X∗)

σ ← kn((s,X∗),x̃n+1)√
kn(xn+1,xn+1)+σ2

ε

KG ← Algorithm4(µ, σ)
return KG

Algorithm 4 Knowledge Gradient by discretization. This algorithm takes as input a set of linear functions
parameterised by a vector of intercepts µ and a vector of gradients σ. It then computes the intersections of
the piece-wise linear epigraph (ceiling) of the functions and the expectation of the output of the function
given Gaussian input. Vector indices are assumed to start from 0.

Require: µ, σ ∈ RnA
O ← order(σ) # get sorting indices of increasing σ
µ← µ[O], σ ← σ[O] # arrange elements
I ← [0, 1] # indices of elements in the epigraph
Z̃ ← [−∞, µ0−µ1

σ1−σ0
] # z-scores of intersections on the epigraph

for i = 2 to nz − 1 do
(?)
j ← last(I)
z ← µi−µj

σj−σi
if z < last(Z̃) then

Delete last element of I and of Z̃
Return to (?)

end if
Add i to end of I and z to Z̃

end for
Z̃ ← [Z̃,∞]
A← φ(Z̃[1 :])− φ(Z̃[: −1]) # assuming python indexing
B ← Φ(Z̃[1 :])− Φ(Z̃[: −1])
KG← BTµ[I]−ATσ[I]−maxµ # compute expectation
return KG

where the left factor is a deterministic and the right factor is the (at time n) stochastic Z-score of the new
yn+1 value. This is clear by noting that the predictive distribution of the new output yn+1

P[yn+1|x̃n+1, X̃n, Y n] = N(µn(x̃n+1), kn(x̃n+1, x̃n+1) + σ2
ε). (30)

5

as a result, to sample new posterior mean functions, we may simply sample Z ∼ N(0, 1) values and compute
Equation 28. However, this results in a quadratic cost per call to sampled poster mean function as both
kn(s, x, x̃n+1) and σnyn+1(x̃n+1) have O(n3)quadratic cost. This can be easily reduced to linear instead as we
now show.

We next focus on the first factor kn(s, c, x̃n+1) which may also be factorized

kn(s, x, x̃n+1) = k0(s, x, x̃n+1)− k0(s, x, X̃n)K−1k0(X̃n, x̃n+1) (31)

=
[
k0(s, x, X̃n), k0(s, x, x̃n+1)

]︸ ︷︷ ︸
k0(s,x,X̃n+1)

[
−K−1k0(X̃n, x̃n+1)

1

]
. (32)

Combining Equations 24 and 32 yields the following formula

µn+1(s, x) = µ0(s, x) + k0(s, x, X̃n+1)

([
Ỹ n

0

]
+

Z

σnyn+1(x̃n+1)

[
−K−1k0(X̃n, x̃n+1)

1

])
(33)

= µ0(s, x) + k0(s, x, X̃n+1)Ỹ n+1. (34)

The quantity Ỹ n is pre-computed at the start of the algorithm iteration, the quantity −K−1k0(X̃n, x̃n+1) has
quadratic cost and can be computed once and used again for σnyn+1(x̃n+1). Then, sampling posterior mean

functions reduces to sampling ny values z1, ..., zny ∼ N(0, 1) and for each value computing Ỹ n+1
1 ,, Ỹ n+1

ny .
Then each sampled posterior mean is just the weighted average given by Equation 34.

2.2 Choice of Optimizer()

Since evaluating Equation 34 for many points is simply a matrix multiplication, random search is cheap
to evaluate in parallel. After random search, the gradient of Equation 34 with respect to (s, x) is easily
computed, and starting from the best random search point, gradient ascent over x ∈ X can be used to find
the optimal input. This varies with kernel choice and application, we describe our settings in Section 3.4.

We start with a set of sampled means µn+1
1 (s, x),, µn+1

nz (s, x) and a set of sampled tasks s1, ..., sns . For
each task si, the set of nz optimal inputs Xd,si is found by optimizing the nz posterior means

Xd,si =

nz⋃
j=1

{
argmax

x
µn+1
j (si, x)

}
Finally, for each point in the {si} ×Xd,si = X̃d,si (task, input) discretization, we evaluate two quantities,

firstly the vector of current posterior means µ
si
∈ Rnz ,

µ
si

= µn(X̃d,si) (35)

= µ0(X̃d,si) + k0(X̃d,si , X̃
n)Ỹ n (36)

and the vector of additive updates σsi ∈ Rnz ,

σsi =
kn(X̃d,si , x̃

n+1)

σnyn+1(x̃n+1)
(37)

= k0(X̃d,si , X̃
n+1)

[
−K−1k0(X̃n, x̃n+1)

1

]
1

σnyn+1(x̃n+1)
. (38)

These two vectors µ
si

and σsi are both differentiable ∇x̃n+1µ
si

and ∇x̃n+1σsi and they are used to analytically

compute the peicewise-linear EZ
[
max

(
µ
si

+ Zσsi

)]
−maxµ

si
which is also differentiable. Thus assuming

fixed X̃d,s1 , ..., X̃d,sns
, approximate gradients are computed and can be used in any stochastic gradient ascent

optimizer.

6

3 Experiment Implementation Details

3.1 Performance Measurement

We measure convergence of each benchmark by sampling a set of test tasks Stest ∼ P[s] ∝W (s) which are
never used during optimization. For each optimizer at each iteration we measure the true performance by

True Performance =
1

Ntest

∑
si∈Stest

E[f(si, x
∗n(si))].

To estimate E[f(s, x)], for the synthetic functions we simply use the noise free true function

E[f(s, x)] = BraninHoo((s, x))

and
E[f(s, x)] = Rosenbrock((s, x)).

For the simulators ATO and AMB, these are more expensive to call hence we only evaluate the performance
for 15 of the iterations between 20 and 300. This is evaluated by Monte-Carlo with multiple repeated seeds

E[f(s, x)] ≈ 1

N

∑
seed

ATO((s, x), seed).

3.2 REVI

At iteration n of the algorithm, we used a discretization of size ndisc = 2n, split equally amongst inputs
and tasks ns = nx = d√ndisce. Tasks are sampled from P[s] ∝ W (s) and inputs are sampled as a latin
hypercube over X. The acquisition function is optimized by 100 points of random search over S ×X followed
by Nelder-Mead ascent starting form the best 20 points in the random search phase.

3.3 MTS

We use a target discretization size of ndisc = 3000. Given ds tasks dimensions and dx input dimensions, we
sampled tasks uniformly, the number of sampled tasks is given by ns = d(ndisc)ds/(ds+dx)e and the number of
inputs per task is nx = dndisc/nse such that ns ∗ nx ≈ ndisc. This way the discretization over all tasks and
input dimensions is roughly constant. For each sampled task si, nx inputs are generated in three ways. Firstly,
the optimal input is evaluated xπsi = πn(si), we generate 40 inputs around this optimal input. Secondly, we
take the 10 nearest neighbor tasks from the training set, and the points with the 4 largest y values are added
to the discretization set with randomly generated neighbors. Finally, remaining inputs in the nx budget come
from uniform random sampling over X. Each si has a bespoke input discretization. Sampled functions are
drawn using the python numpy random normal generate function.

3.4 ConBO

Each sampled posterior mean function was optimized in two steps. For a given task si, firstly, the input
discretization used by MTS, reduced to 40 points in total was used in parallel random search. The best point
was then used in conjugate-gradient ascent for 20 steps.

For optimizing sampled posterior mean functions for which zi = 0, that is µn+1(s, x) = µn(s, x), this
given by the optimal input x∗n(si). Since the same, or very similar tasks, may be used multiple times for
different ConBO((s, x)n+1) calls, we may use caching to avoid such repeated optimal input computation.
Whenever the optimal input is queried for the optimal input for a given task, the final (task, input) pair are
stored in a lookup table. Any future calls to the optimal input function with task sj can check the lookup
table and if very similar tasks exists use the same input, if a somewhat similar task exists, re-optimize the
input, if no similar tasks exist perform a full optimization as above.

In our experiments, the cache of stored optimal inputs is wiped clean before any testing, ConBO is not
given an unfair advantage at test time. In practical applications, this need not be the case.

7

3.5 Policy Gradient

The (stochastic) policy is a function of task πθ(s) = x∗PG(s) returning a Gaussian mean and constant variance
over input space. The mean is a quadratic function of the task and constant variance,

πθ(s) = Pθ[x|s] = N(x|sTAs+Bs+ C, 0.22I)

where A ∈ RdX×dS×dS , B ∈ RdX×dS and C ∈ RdX and θ = {A,B,C}. Given a dataset {(s, x, y)i}ni=1, we
first rescaled s and x values to the hypercube, and y-values were standardized to have mean 0 and variance 1.
First we used kernel regression to learn a baseline value

V (s) =

∑
i k(s, si)yi∑
i k(s, si)

where k(s, s′) = exp(−0.5(s− s′)2/0.22). The parameters θ are found by optimizing the expected advantage

Expected advantage =
∑
i

Pθ[xi|si](yi − V (si)).

At test time, given a task, the mean input is computed from the policy (accounting for rescaling to hypercube
and back) and recommended for use.

3.6 Cifar10 Hyperparameter Experiment

Parameter Space:

• dropout 1 ∈ [0, 0.8], linear scale

• dropout 2 ∈ [0, 0.8], linear scale

• dropout 3 ∈ [0, 0.8], linear scale

• learning rate ∈ [0.0001, 0.01], log scale

• beta 1 ∈ [0.7, 0.99], log scale

• beta 2 ∈ [0.9, 0.999], log scale

• batch size ∈ [16, 512], log scale

Network architecture:

x_in = Input(shape=(32, 32, 3))

x = Conv2D(filters=64, kernel_size=2, padding=’same’, use_bias=False)(x_in)

x = BatchNormalization()(x)

x = Activation("relu")(x)

x = MaxPooling2D(pool_size=2)(x)

x = Dropout(dropout_1)(x)

x = Conv2D(filters=32, kernel_size=2, padding=’same’, use_bias=False)(x)

x = BatchNormalization()(x)

x = Activation("relu")(x)

x = MaxPooling2D(pool_size=2)(x)

x = Dropout(dropout_2)(x)

x = Flatten()(x)

8

x = Dense(256, activation=’relu’)(x)

x = Dropout(dropout_3)(x)

x_out = Dense(2, activation=’softmax’)(x)

cnn = Model(inputs=x_in, outputs=x_out)

adam = optimizers.Adam(learning_rate=learning_rate,

beta_1=beta_1,

beta_2=beta_2)

cnn.compile(loss=’categorical_crossentropy’,

optimizer=adam,

metrics=[’accuracy’])

4 Batch Construction by Sequential Penalization

For global optimization, parallelizing BO algorithms to sugggest a batch of q inputs, {xn+1, ..., xn+q}, has
been approached in multiple ways. For acquisitions functions that compute an expectation over future
outcomes P[yn+1|xn+1], (EI, KG, ES, MES), the acquisition value of a batch can be computed using the
expectation over multiple correlated outcomes P[yn+1, ..., yn+q|xn+1, ..., xn+q]. This larger q dimensional
expectation, effectively looking q steps into the future, must be estimated by Monte-Carlo. At the same
time, it is a function of all q points in the batch and must be optimized simultaneously over q times more
dimensions Xq. This method of parallelization quickly becomes infeasible for even moderate dimensions and
batch sizes. As before, adapting the method to conditional optimisation adds another layer of Monte-Carlo
integration over s ∈ S multiplying the computational cost.

Thompson sampling (TS) randomly suggests the next point to evaluate, xn+1. TS also has the convenient
mathematical property that q step look ahead is equivalent to generating q i.i.d samples [3, 4]. This property
was used by [5] to parallelize MTS.
Alternatively, sequential construction of a batch can be done in O(q) time and we consider the method of
[6]. First xn+1 is found by optimizing the chosen acquisition function xn+1 = arg maxα(x). The acquisition
function is then multiplied by a non-negative penalty function φ(x, xn+1) that penalizes x similar to xn+1.
The next point is found by xn+2 = arg max xα(x)φ(xn+1, x), then xn+3 = arg max xα(x)φ(xn+1, x)φ(xn+2, x)
until a batch of q points is constructed. We use the inverted GP kernel as the penalty function

φ((s, x), (s, x)i) = 1− k0((s, x), (s, x)i)

k0((s, x)i, (s, x)i)
.

See Figure 1 for an illustration. Previous work [7] showed that the conditional optimization setting is well
suited to this construction method. Two points on dissimilar tasks do not interact and if they are both
local peaks of the chosen acquisition function α(s, x), then both may be evaluated in parallel. In conditional
optimization, the presence of task variables introduces multiple objective functions allowing a batch of points
to be more spread out reducing interactions and possible inefficiencies. This can be achieved by penalization
thus sidestepping the need for expensive nested Monte-Carlo integration. By contrast, in global optimization
all q points are “crammed” into a single task, all interacting with the same objective requiring more care in
batch construction techniques.

This method for batch construction may be applied to any acquisition function, in our experiments we
apply it to REVI and ConBO.

In practice, we optimize the acquisition function using multi start gradient ascent and keep the entire
history of evaluations {(st, xt, α(st, xt))}#callst=1 . Since this history is very likely to contain multiple peaks, we
simply apply the penalization to the set of past evaluations avoiding the need to re-optimize the penalized
acquisition function. Therefore, efficiently parallelizing a conditional BO algorithm can be done in just a few
additional lines of code.

9

State s2 1 0 1 2

Action x 1
0

1
2

3

0.00

2.00

4.00

6.00

Acquisition Function

State s2 1 0 1 2

Action x 1
0

1
2

3

0.00

1.00

Penalization

State s2 1 0 1 2

Action x 1
0

1
2

3

0

2

4

6

New Acquisition Function

Figure 1: Left: acquisition function over S ×X with a peak at (s, x)n+1 = (−1.5, 2.5), the first point in the
batch. Centre: the penalization function that down-weighs any point (s, x) ∈ S ×X according to similarity
with (s, x)n+1. Right: The product of acquisition and penalization functions, the peak at (s, x)n+2 = (1.6, 3.0)
is the second point in the batch.

−100

−80

Pr
ofi

t

ATO

MTS
REVI
ConBO

ATO 4x ATO 8x

100 200 300
t

0.18

0.19

E
xp

ec
te

d
tim

e

AMB

100 200 300
t

AMB 4x

100 200 300
t

AMB 8x

Figure 2: Algorithm performance on the Assemble To Order (top) and Ambulances (bottom) benchmarks.
Serial, parallel 4 and 8.

5 Global Optimization

We perform a parameter sweep over the nz for each KG implementation. As baselines we considered
Thompson sampling, Expected Improvement, Entropy Search and Random sampling and in these test
problems Thompson sampling performed best and we use it as a baseline on all plots. For test functions we
take the popular Branin-Hoo, Rosenbrock and Hartmann6. Thompson sampling is the best baseline and is
compared to KG.

In future work we plan to perform rigorous comparison between a wider range of global optimization
algorithms.

6 Contextual, Multi-Task and Multi-Fidelity Methods on Condi-
tional Problems

We repeat experiments on the synthetic problems. Along with the unmodified ConBO and random search
and apply the following methods to the synthetic benchmarks as shown in Figure 4.

• ConBO-5 with random tasks is the standard ConBO algorithm where the next task is sampled

10

20 40 60

5

10

15

20

25

Br
an

in
Ho

o

TS
KG-d 3
KG-h 3
KG-MC 3

20 40 60

5

10

15

20

25 TS
KG-d 5
KG-h 5
KG-MC 5

20 40 60

5

10

15

20
TS
KG-d 9
KG-h 9
KG-MC 9

20 40 60

5

10

15

20

25 TS
KG-d 15
KG-h 15
KG-MC 15

20 40 60

50

100

150

200

250

Ro
se

nb
ro

ck

TS
KG-d 3
KG-h 3
KG-MC 3

20 40 60

25

50

75

100

125

150 TS
KG-d 5
KG-h 5
KG-MC 5

20 40 60
0

50

100

150

200

250

300 TS
KG-d 9
KG-h 9
KG-MC 9

20 40 60

50

100

150

200 TS
KG-d 15
KG-h 15
KG-MC 15

60 80 100

3.00

2.75

2.50

2.25

2.00

1.75

Ha
rtm

an
n6

TS
KG-d 3
KG-h 3
KG-MC 3

60 80 100

3.00

2.75

2.50

2.25

2.00

1.75

TS
KG-d 5
KG-h 5
KG-MC 5

60 80 100

3.00

2.75

2.50

2.25

2.00

1.75

1.50

TS
KG-d 9
KG-h 9
KG-MC 9

60 80 100

3.00

2.75

2.50

2.25

2.00

1.75

1.50

TS
KG-d 15
KG-h 15
KG-MC 15

Figure 3: The KG by discretization, KGd, uses nz random points in the search space X and performs worst
by far. KGMC uses nz samples of the future posterior mean function and performs well on small problems
but suffers from unreliable noisy convergence. KGh consistently outperforms other KG methods and is the
most reliable on all problems matching Thompson sampling but still performing worse on the Hartmann6
function. This is in contrast to the conditional setting with multiple tasks where integrated KG methods
outperform Thomson sampling methods.

11

randomly sn+1 ∼ p[s] ∝W (s) and the next input is determined by maximising the acquisition function
xn+1 = arg max xConBO(sn+1, x). This is simply a handicapped version of ConBO hence is converges
significantly slower.

• Bayesian Quadrature Optimization [8] is an algorithm designed to find the input that is the best
across the sum of all tasks weighted by W (s). No modification is required to make such an algorithm
apply to conditional optimization. As the data is collected for a different goal, the algorithm converges
much slower than purpose made conditional optimization methods.

• Multi-Information Source Optimization [2] is an algorithm designed to optimize one target task
s∗ given other cheap tasks. We set the target task s∗ = arg maxW (s) and all tasks have equal cost.
This algorithms greedily samples the single target tasks and all other tasks are ignored hence it never
converges performing worse than random search.

20 30 40 50
10 2

10 1

100

101

Branin-Uniform

Miso
Random
BQO
ConBO Ran
ConBO-5

20 30 40 50

Branin-Triangle

20 30 40 50

Rosenbrock-Uniform

20 30 40 50

Rosenbrock-Triangle

Figure 4: The algorithms not designed for conditional optimisation all yield significantly worse results.

7 Entropy Based Methods for Conditional Bayesian Optimization

Given a GP model and a dataset, P[x∗|X̃n, Y n] is the distribution over the peak of realizations of GP sample
functions (abusing notation) P[x∗|X̃n, Y n] = argmaxxGP (µn(x), kn(x, x′)). Given a new sample input xn+1,
the outcome P[yn+1|xn+1, X̃n, Y n] is also a random variable that is Gaussian. For thsi section, to reduce
cluttering notation, we suppress the dependence on X̃n, Y n. The mutual information between random
variables yn+1 and x∗ is defined as

MI(x) =

∫
x∗

∫
yn+1

log

(
P[yn+1, x∗]

P[yn+1]P[x∗]

)
P[yn+1, x∗]dyn+1dx∗ (39)

where P[yn+1] depends upon xn+1 yet we drop it for convenience.

7.1 Entropy Search

The Entropy search algorithm decomposes the above expression using P[yn+1, x∗] = P[yn+1]P[x∗|yn+1]
resulting in the following acquisition function

ES(x) =

∫
x∗

log (P[x∗])P[x∗]dx∗ +

∫
yn+1

∫
x∗

log
(
P[x∗yn+1]

)
P[x∗|yn+1]dx∗P[yn+1]dyn+1 (40)

= H[x∗]−
∫
yn+1

H[x∗|yn+1]P[yn+1]dyn+1 (41)

where H[x∗] is the entropy of the distribution P[x∗]. For the conditional case, the outcome P[yn+1|(s, x)n+1]
is still a Gaussian random variable, and we measure the mutual information with the peak x∗si over inputs

12

constrained to a given task {si} × X that is P[x∗si] = argmaxxGP (µn(si, x), kn(si, x, si, x
′)). And the

conditional entropy search acquisition function is simply

ESc(si; (s, x)n+1) = H[x∗si]−
∫
yn+1

H[x∗si |yn+1]P[yn+1]dyn+1. (42)

7.2 Predictive Entropy Search

We again drop the dependence on xn+1 in P[yn+1|xn+1]. The Predictive Entropy search algorithm uses an
alternative decomposition of the Mutual Information using P[yn+1, x∗] = P[yn+1|x∗]P[x∗] resulting in the
following acquisition function

PES(x) = H[yn+1]−
∫
x∗
H[yn+1|x∗]P[x∗]dx∗. (43)

For the conditional case, the outcome P[yn+1|(s, x)n+1] is still a Gaussian random variable, and we mea-
sure the mutual information with the peak x∗ constrained to a given task si that is as above P[x∗si] =
argmaxxGP (µn(si, x), kn(si, x, si, x

′)). And the conditional predictive entropy search acquisition function is
simply

PESc(si; (s, x)n+1) = H[yn+1]−
∫
x∗si

H[yn+1|x∗si]P[x∗si]dx
∗ (44)

where the expression H[yn+1|x∗si] is the (non Gaussian) distribution of yn+1 at (s, x)n+1 given that the peak
of task si is at x∗si .

7.3 Max Value Entropy Search

Max value entropy search instead measures the mutual information between the new outcome P[yn+1|xn+1]
and the largest possible outcome (again abusing notation) P[y∗] = maxxGP (µn(x), kn(x, x′)), the peak value
of posterior sample functions. The acquisition function decomposes the mutual information into

MES(x) = H[yn+1]−
∫
y∗
H[yn+1|y∗]dy∗ (45)

The conditional version measures the mutual information between P[yn+1|(s, x)n+1] and the largest y value
amongst all outcomes with the same task P[y∗si] = maxxGP (µn(si, x), kn(si, x, si, x

′))

MES(si, (s, x)n+1) = H[yn+1]−
∫
y∗si

H[yn+1|y∗si]P[y∗si]dy
∗
si (46)

References

[1] M. Pearce and J. Branke. Efficient information collection on portfolios. Technical report, University of
Warwick, 2016.

[2] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization. In Advances
in Neural Information Processing Systems, pages 4289–4299, 2017.

[3] José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-Guzik.
Parallel and distributed thompson sampling for large-scale accelerated exploration of chemical space.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1470–1479.
JMLR. org, 2017.

13

[4] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Parallelised
bayesian optimisation via thompson sampling. In International Conference on Artificial Intelligence and
Statistics, pages 133–142, 2018.

[5] Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Andrew Oakleigh Nelson, Mark
Boyer, Egemen Kolemen, and Jeff Schneider. Offline contextual bayesian optimization. In Advances in
Neural Information Processing Systems, pages 4629–4640, 2019.

[6] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian optimization via local
penalization. In Artificial intelligence and statistics, pages 648–657, 2016.

[7] Matthew Groves, Michael Pearce, and Juergen Branke. On parallelizing multi-task bayesian optimization.
In 2018 Winter Simulation Conference (WSC), pages 1993–2002. IEEE, 2018.

[8] Saul Toscano-Palmerin and Peter I Frazier. Bayesian optimization with expensive integrands. arXiv
preprint arXiv:1803.08661, 2018.

14

