
APPENDIX

Our key insight is that visual distractors underrepresented
in the training data often behave implausibly during world
model rollouts—quickly distorting, disappearing, or warping
unnaturally over time. To detect such cases, we prompt the
VLM with two frames from the world model’s predicted
rollout: the initial frame, which contains the full scene context
including potential distractors, and the fifth frame, where
empirical analysis shows that distractors are most likely to
have degraded or disappeared. This selection is based on
our observation that implausible distractor behavior typically
manifests within the first four steps of rollout prediction. To
enable precise spatial reasoning, we generate segmentation
masks for the initial frame using Grounded-SAM2 [14] and
overlay unique mask IDs directly onto the segmentation map.
The VLM is then presented with the ID-labeled segmentation
image alongside the initial and fifth frames, and is prompted to
identify which regions (i.e., mask IDs) correspond to objects
that have disappeared or changed unnaturally over time.

Prompt for novel distractor identification

You are a helpful assistant for a robotic system that
analyzes images to detect changes and disappearing
objects.
I’ll show you three images:
1. img init dis - The initial image
2. img wm - The same scene after some changes
3. mask overlay - The initial image with numbered
masks/patches created by a segmentation algorithm

Your task is to identify which numbered patches
from the mask overlay image exist in img init dis
but have disappeared in img wm. Look carefully
at each numbered patch and determine if the
corresponding object still present in img wm.

Hint: This is a kitchen environment with a robot arm,
try only detect patches that the corresponding object
are on the white table.

Please provide ONLY a list of the missing patch
numbers with no additional explanation. For example,
if patches 2, 5, and 7 have disappeared, just respond
with: [2, 5, 7].

Once the VLM produces its response—typically in the form
of a list of missing or degraded patch IDs (e.g., Missing
patches:[2, 8, 9])—we use the identified mask indices
to extract the corresponding image patches from the initial
observation. These patches represent regions that are likely
to be visual distractors causing inconsistencies in the rollout.
Figure 7 shows an example of these extracted distractor
patches.

A. DINO-WM Training

We adopt DINO-WM [26] as our base world model. The
hyperparameters used for training are listed in Table III.
Training is performed on 500 robot–environment interaction
trajectories, comprising 200 rollouts from a pre-trained diffu-
sion policy and 300 from random exploration. Each trajectory
spans 24 steps with a 0.75-second interval between steps in the
real world. We omit frameskip during training, as the existing
time gap is sufficient—predicting further into the future would
impair model accuracy. All models are trained on a single
Nvidia A6000.

TABLE III: Hyperparameters for DINO-WM training.

Name Value

seed 0
epochs 300
batch size 64
save every x epoch 10
reconstruct every x batch 500
num reconstruct samples 6
encoder lr 1e-6
decoder lr 2e-5
predictor lr 5e-4
action encoder lr 5e-4
img size 224
frameskip 1
concat dim 1
saved folder null
normalize action True
action emb dim 10
num action repeat 1
proprio emb dim 10
num proprio repeat 1
num hist 3
num pred 1
has predictor True
has decoder True

All 500 training trajectories are collected in a controlled
kitchen environment, where the robot is tasked with transport-
ing a green pepper from a cutting board—randomly positioned
on the left side of the table—to a cooking pan placed on
an induction stove with varying orientations. To introduce
additional variability, a spoon is also randomly placed on the
table surface during data collection. As illustrated in Figure 8,
DINO-WM is able to accurately predict future states with fine-
grained visual detail, maintaining both temporal and spatial
consistency across frames. It also demonstrates robustness to
environmental randomization within the training domain.

However, when we introduce novel visual distrac-
tors—such as an Amazon box, a kettle, and a high-pressure
pot—randomly positioned within the scene, the predictive
performance of DINO-WM significantly deteriorates. In these
out-of-distribution scenarios, parts of the predicted images
become visibly distorted, disappear altogether, or warp in
physically implausible ways across the rollout sequence, as
shown in Figure 9.

Figure 10 presents the reimagined rollout results using mod-
ified input observations for the same 10 initial states containing
visual distractors. While some artifacts remain—primarily due



Fig. 6: The VLM is prompted to identify visual distractors by reasoning about missing objects between the initial frame
(middle) and the fifth frame (right) of the world model rollout, using mask IDs from the semantic segmentation (left).

Mask

Distractor Patch

Initial Observation

Fig. 7: Distractor patches extracted from the initial observation based on the identified mask.

to limitations in the segmentation and inpainting models—the
severe hallucinations observed in the original rollouts have
been effectively mitigated. Notably, the differences in row
4 and row 9 between Figure 9 and Figure 10 highlight the
improved visual stability and consistency achieved through our
intervention.

B. DINOv2 Feature Decoder

To enable accurate reconstruction of visual observations
from predicted latent representations in the testing environ-
ment, we perform a dedicated fine-tuning of the DINOv2
feature decoder. This process is carried out separately from
the original world model training. We first collect a new
dataset consisting of 80 trajectories captured within the test-
ing environment, which intentionally includes various visual
distractors not present during the initial training phase. These
trajectories are used to better adapt the feature decoder to the
distributional shift introduced by the novel visual elements.

We then initialize the training pipeline by loading a pre-
trained DINO-WM checkpoint, which contains the previously
trained dynamics model and feature decoder. However, during
fine-tuning, we freeze the parameters of the dynamics model
entirely to preserve its learned temporal representations and
focus solely on updating the parameters of the DINOv2 feature

decoder. This ensures that only the visual decoding pathway is
adapted to the new environment, without altering the predictive
capabilities of the dynamics model itself.

The fine-tuning procedure is conducted over a single epoch
using the newly collected dataset. This one-pass update is
sufficient to adjust the decoder’s mapping from latent space to
image space, improving reconstruction fidelity in the presence
of unfamiliar distractors while maintaining consistency with
the world model’s learned representations.

Our approach mitigates the impact of novel environmen-
tal variations on downstream planning by applying test-time
observation intervention and reimagination. Alternatively, an-
other intervention strategy is to reject untrustworthy world
model action outcome predictions at test time to ensure safety.
In addition to comparing against the base DINO-WM, we
compare our approach against TrustRegion [10], which finds
a region where the learned visual dynamics model is deemed
reliable for downstream planning and rejects world model
predictions if the input observation and action plan pair falls
outside of the trust region.

Lipschitz constant of a function quantifies the maximum
rate at which the function’s output can change with respect
to changes in its input. Formally, a function f is Lipschitz
continuous if there exists a constant L ≥ 0 such that for all



Fig. 8: Trajectories predicted with DINO-WM with 10 different initial observations without visual distractors.



Fig. 9: Trajectories predicted with DINO-WM with 10 different initial observations with visual distractors.



Fig. 10: Trajectories reimaginated by DINO-WM with 10 modified initial observations.



inputs x1 and x2, the following holds: ∥f(x1) − f(x2)∥ ≤
L · ∥x1 − x2∥. Here, L is denotes the Lipschitz constant, and
it provides an upper bound on the function’s sensitivity.

TrustRegion leverages an estimated Lipschitz constant
(bound how much outputs change with respect to a change
in the inputs) of the world model visual outcome prediction
error to obtain an error bound for a test-time input observation.
By defining a maximum acceptable visual dynamics prediction
error threshold, we could find the corresponding trust region
such that any input observation and action plan pair within
this region produces an error bounded by the threshold.

Let T denote a trust region (a union of r-balls about
the subset of the world model training data), bT denote the
dispersion of the region, and eT be the maximum training
error of the trained world model. Then for any input (a pair
of an initial observation and an action plan) within the T , its
world model prediction error is bound by

ϵ = LT bT + eT . (2)

Implementation. We estimate the Lipschitz constant of the
world model’s visual action plan outcome prediction error.
In this work, we use the L2 difference between the world
model’s predicted latent state trajectory and the ground-truth
latent state (DinoV2 embedding) trajectory given the same
initial observation and the action plan as the prediction error.
Following the procedure from [10], we begin by selecting
training data points whose prediction error is below a threshold
of 750 (an empirically chosen value below which the model’s
predictions typically highly align well with ground truth).
These filtered data points are used to initialize the trust region
T0, defined as a union of r0-balls centered around the selected
points. In our experiments, we set r0 as a unit ball with a radius
of 0.1, and the corresponding Lipschitz constant estimated
within T0 is 0.84. To maximize the flexibility of the trust
region for planning, we progressively increase r to expand
the region, while ensuring that the Lipschitz constant remains
within acceptable bounds (< 1). The full procedure for this
expansion follows Algorithm 2 in [10]. The final trust region
has a Lipschitz constant of 0.93 and the error bound is 1160.

C. Action Plan Verification and Selection

We use a VLM as the verifier to evaluate each sampled
action plan’s visual outcome in the context of the task instruc-
tion ℓ. The VLM receives a sequence of predicted observations
from the world model (sampled as four concatenated frames)
and is prompted to identify and reject plans that pose safety
concerns—such as collisions with novel distractors or non-
target objects—and to select the outcome that best aligns with
the user’s intent. If none of the proposed plans are deemed
safe or suitable, the VLM can optionally escalate by requesting
human intervention.

Plan verification and selection accuracy. We evaluate two
off-the-shelf vision-language models (VLMs), GPT-4o and
LLaMA 4, as verifiers without any task-specific fine-tuning.
Table IV reports two metrics for each VLM: verification ac-
curacy and selection accuracy. Verification accuracy measures

(GPT-4o) Plan Analysis:
Conclusion: Plan is not successful.
Failure reason: The robot does not pick up the pepper, nor does it 
attempt to place it on the pan.

(Llama-4) Plan Analysis:
The gripper contacts the green pepper. No collisions occur with 
the pot, spoon, or scale, so the motion is both safe and effective. 
Verdict: the plan is successful and meets the task requirements.

(GPT-4o) Plan Analysis:
Conclusion: Plan is not successful. 
No attempt to grasp or move the pepper. No interference with spoon, 
pan, or pot.

(Llama-4) Plan Analysis:
Task status: Failure – the pepper is never picked up, let alone placed 
on the pan.
No obvious collisions with the pot, spoon, or scale, but the robot 
spends time gripping a large box that isn’t part of the task, so it’s 
both inefficient and incorrect.

Fig. 11: Qualitative comparison of VLMs’ plan verification
capabilities.

GPT-4o LLaMa 4
Verification Accuracy 0.94 0.82
Selection Accuracy 0.85 0.64

TABLE IV: Plan verification and selection accuracy.

the percentage of trials in which the VLM correctly rejects
an unsafe or failed action plan. Selection accuracy measures
the percentage of trials in which the VLM either correctly
selects the most desirable action plan or correctly rejects all
options if none are safe. Both metrics are computed based on
visual outcome predictions generated by ReOI, with ground-
truth labels provided by a human expert. In Figure 11, we
show response comparisons from the GPT-4o and LLaMa-4.

Prompt template. Figure 12 illustrates the system prompt
used during the verification stage, along with example re-
sponses from the VLM.



You are a helpful assistant aiding a robot in selecting a safe and effective action plan. You will be shown 
multiple image grids, each depicting a possible future trajectory of the robot. The robot is a yellow arm with 
7 joints and a gripper.
Your task is to analyze each predicted future and identify the plan that safely and successfully completes the 
task described below. Wach out for the potential collisions between the robot and other non-target objects. 
If none of the plans are safe, return None. Otherwise, return the ID of the best plan.
Task description: The robot needs to pick up the pepper and place the pepper on the pan.

Plan 1 Analysis:
 Attempts pickup: The robot reaches toward the pepper and seems to lift it.
 Possible collision risk: In the second and third frame, the gripper appears very close to the nearby 

black cooker, raising mild concern about spatial safety.
Plan 2 Analysis:

 Successful pickup: The gripper clearly lifts the pepper.
 Accurate placement: The robot hovers over the pan and releases the pepper, which is no longer in the 

gripper in the final frame—strongly suggesting a successful drop into the pan.
 No visible collisions: Throughout the sequence, the arm avoids the spoon, bowl, and scale.

Recommended Plan: Plan 2
It safely and effectively completes the task without colliding with surrounding objects.

Plan 1

Plan 2

Fig. 12: Qualitative example of the VLM-based plan verification and selection.


