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A REVIEW OF GAUSSIAN PROCESSES

We briefly review here the main ideas of Gaussian Processes for machine learning, see Stein (2012);
Rasmussen et al. (2006) for more details. We start to explain how to use stochastic processes for
Bayesian inference. We see the stochastic process as prior over functions p(f) and as we are given
samples x = (x1, . . . , xN ),y = (y1, . . . , yN ), yi ≡ f(xi), we update our beliefs about the function
by constructing the posterior via Bayes rule: p(f |y,x) = p(y|f,x)p(f)/p(y|x). Here we need to
specify the likelihood of the data with our model p(y|f,x) =

∏N
i=1 p(yi|f, xi) and the denominator,

called the evidence or marginal likelihood, follows: p(y|x) = Ef∼p(f)[p(y|f,x)]. The power of
this approach is that the value of the signal y at an unseen point x has an uncertainty which depends
on our knowledge of its neighbourhood: p(y|x,y,x) = Ef∼p(f |y,x)[p(y|f, x)] and allows us to
reason probabilistically about the underlying signal.

A particular convenient class of random function is Gaussian processes (GPs) for which inference
can be done exactly. A stochastic process can be presented in terms of the finite distributions of the
random variables {f(xi)}Mi=1 at points {xi}Mi=1. For a GP these distributions are Gaussian and can
be defined uniquely by specifying means and covariances, and so a GP is specified entirely by its
mean function µ(x) and covariance kernel k(x, x′). We shall write f ∼ GP(µ, k). Let us assume a
Gaussian likelihood model as well, i.e. p(yi|f, xi) = N (f(xi), σ

2
i ), where σn represents aleatoric

uncertainty on the measurement. (For simplicity we take here the function to be scalar valued but the
reasoning can be easily generalized.) Then properties of the Gaussian distribution (see (Rasmussen
et al., 2006, Chap. 2) for a detailed derivation of the formulas) lead to the following posterior
distributions after seeing data y,x: p(f |y,x) = GP(µp, kp), with

µp(x) = k(x)T [K + S]−1y , kp(x, x
′) = k(x, x′)− k(x)T [K + S]−1k(x′) . (12)

where Kij = k(xi, xj), k(x)i = k(x, xi) and S = diag(σ2
i ).

B FROM DISCRETE TO CONTINUOUS CONVOLUTIONAL LAYERS

We here show that the general formula

A =
∑
k

WkeDk (13)

with Dk a function of spatial derivatives, reduces in the case of discrete input space X to the usual
convolution we encounter in deep learning.

For simplicity we shall assume a 1d grid as input space X = {1, . . . , N}. Let us start by recalling
the form of the classical discrete convolution when C` = C`+1 = 1. We define a convolutional layer
as a linear map that commutes with the translation operator. To make the symmetry exact, we need
assume periodic boundaries. Then in the standard basis of RN , {ei}Ni=1 of vectors localized at site
i, the translation operator τ acts as τei = ei+1 mod N . An N ×N matrix B is translation invariant
iff τB = Bτ . Since τ is diagonal in Fourier space, the most general solution is B = Fdiag(b̂)F−1,
where Fjk = e

2πi
N jk is the discrete Fourier transform. Such matrices are called circulant and can be

written alternatively as B =
∑N−1
i=0 bN−iτ

i, b = F b̂. Explicitly:

B =


b0 b1 . . . bN−2 bN−1

bN−1 b0 b1 bN−2

... bN−1 b0
. . .

...

b2
. . . . . . b1

b1 b2 . . . bN−1 b0

 . (14)

This shows that the most general convolutional layer is a circulant matrix. E.g. if bi = 0 unless
i = 0, 1, N −1, B coincides with the matrix representing a periodic convolution of filter size 3. The
matrix B is invertible as long as b̂k 6= 0 for all k. In a convolutional network the parameters bi are
random variables and the measure of the set where B is not invertible is zero. Thus the role of eD is
replaced in the discrete case by the B.
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The discrete analog of A is then:

A =
∑
i

Wi ⊗Bi . (15)

Introducing the unit matrices Eα,β which have 1 at the row α and column β and 0 otherwise, we
can rewrite it as:

A =
∑
j,α,β

Eα,β ⊗ τ jWα,β
j , Wα,β

j =
∑
i

Wα,β
i bi,N−j . (16)

Since Eα,β⊗ τ j is a linear basis of the space of convolutional layers, we see that equation 13 indeed
reduces to the usual one when discretizing the input domain and is a principled generalization to the
continuous domain.

C GREENS FUNCTION

Given the operator D = β>∇ + 1
2∇
>Σ∇ we can compute the action of etD in terms of con-

volutions. Using the d dimensional Fourier transforms F [h](k) = (2π)−
d
2

∫
h(x)e−ik

>xdx and
F−1 = F†, we can rewrite the derivative operator D in terms of elementwise multiplication in the
Fourier domain, which diagonalizes D. Since ∇ = F−1(ik)F ,

D = F−1(iβ>k − 1
2k
>Σk)F . (17)

Using the series definition etD =
∑∞
n=0(tD)n/n!, we have:

etD = F−1et(iβ
>k− 1

2k
>Σk)F . (18)

Applying this operator to a test function h(x) yields

etDh = F−1[et(iβ
>k− 1

2k
>Σk)F [h](k)] = F−1[F [Gt] · F [h]] = Gt ∗ h, (19)

where the final step follows from the Fourier convolution theorem, and we define the function Gt =

F−1[et(iβ
>k− 1

2k
>Σk)]. Directly applying the Fourier integral yields a Gaussian integral

Gt(x) = (2π)−
d
2

∫
eik
>(x+tβ)− 1

2k
>tΣkdk = e−

1
2 (x+tβ)>(tΣ)−1(x+tβ)det(2πtΣ)−1/2. (20)

This function Gt(x) = N (x;−tβ, tΣ) is nothing but a multivariate heat kernel, the Greens function
(also known as the fundamental solution or time propagator) for the diffusion equation ∂tGt(x −
x′) = DGt(x− x′), and indeed limt→0Gt(x− x′) = δ(x− x′).

D INTEGRAL POOLING

The integral pooling operator P[f ] =
∫
Rd f(x)dx can be applied to the Gaussian process just like

any other linear operator. Given f (L) ∼ GP(µ, k), we have that

Pf (L) ∼ GP(Pµ,PkP ′) = N (Pµ,PkP ′). (21)

Again, computing the mean µP = Pµ and covariance matrix ΣP = PkP ′ we need just to be able
to apply P to the RBF kernel.

PkRBF(x′) =

∫
Rd
kRBF(x, x′)dx = a (22)

PkRBFP ′ =

∫
Rd×Rd

kRBF(x, x′)dxdx′ =∞ (23)

For many applications such as image classification using the mean logit value, we require only the
predictive mean, so an unbounded covariance matrix ΣP is acceptable. We use this form for all of
our experiments.
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However for some applications an output uncertainty can be useful, so we also provide a variant that
integrates over a finite region [0, 1]d, Pf =

∫
[0,1]d

f(x)dx.

PkRBF(x′) =

∫
[0,1]d

kRBF(x, x′)dx = a

d∏
i=1

[
Φ(

x′i
` )− Φ(

x′i−1
` )
]

(24)

PkRBFP ′ =

∫
[0,1]d×[0,1]d

kRBF(x, x′)dxdx′ = a
[
`
√

2
π (e−1/2`2 − 1) + 2Φ( 1

` )− 1
]d

(25)

where Φ is again the univariate standard normal CDF.

E EQUIVARIANCE

E.1 TRANSLATION EQUIVARIANCE

A key factor in the generalization of convolutional neural networks is their translation equivariance.
Patterns in different parts of an input signal can be seen in the same way because convolution is
translation equivariant. Our learnable linear operators A are equivariant to continuous transforma-
tions. Two linear operators eC and eB commute [eC , eB] = 0 if and only if their generators commute:
[C,B] = 0. Since the generator of diffusions Di is a sum of derivative operators, and the generators
of translations are just ∇ as mentioned in section 4.2, the two commute: [Dk,∇] = 0. Therefore
[A, τa] = [

∑
kWkeDk , τa] =

∑
kWk[eDk , ea

>∇] = 0 and A is translation equivariant.

E.2 STEERABLE EQUIVARIANCE FOR LINEAR OPERATORS

For some tasks like medical segmentation, aerial imaging, and chemical property prediction there are
additional symmetries in the data it makes sense to exploit other than mere translation equivariance.
Below we show how to enforce equivariance of the Linear operator A to other symmetry groups G
such as the group of continuous rotations SO(d) in Rd. Applying equivariance constraints separately
on each of the components of eDi on top of translation equivariance yields very restricted set of
operators. For example, enforcing equivariance to continuous rotations G = SO(d), the operator
must be an isotropic heat kernel: Dk = ck∇>∇. The reason for this apparent restriction is a result
of considering the different channels independently, as scalar fields.

The alternative is to use features fields which transform under more general representations of the
symmetry group, introduced in steerable-CNNs (Cohen and Welling, 2016) and used in (Worrall
et al., 2017; Thomas et al., 2018; Weiler et al., 2018; Weiler and Cesa, 2019) and others. In this
way, the symmetry transformation acts not only on the spatial domain X , but also transforms the
channels. The way that the group acts on Rc (i.e. the channels) is formalized by a representation
matrix ρ(g) ∈ Rc×c for each element g ∈ G in the transformation group that satisfies ∀g, h ∈ G :
ρ(gh) = ρ(g)ρ(h). Choosing the type of each intermediate feature map is equivalent to choosing
their representations, and we describe a simple way of doing this with tensor representations in the
later section.

Operator Equivariance Constraint: Returning to linear operators, we derive the equivariance
constraint and show how to use constructs from the previous sections to implement steerable rotation
equivariance. Equivariance of a linear operatorA : (Rd → Rcin)→ (Rd → Rcout) requires that, for
any input function, transforming the input function first (both argument and channels) and applying
A is equivalent to first applying A and then transforming the output: Aρin(g)Lgf = ρout(g)LgAf
where Lgf(x) = f(g−1x). Rearranging the terms, one sees that the equivariance constraint on the
linear operator A is:

ρout(g)LgALg−1ρin(g−1) = A, (26)

where the operators Lg and L−1
g are understood not to act on the representation matrices ρ (although

implicitly a function of g). As shown in Appendix E.3, eq. 26 is a direct generalization of the
equivariance constraint for convolutions ∀x : ρout(g)K(g−1x)ρin(g−1) = K(x) described in the
literature (Weiler and Cesa, 2019; Cohen et al., 2019).

As shown in Appendix E.5, the equivariance constraint for continuous rotations applied to the dif-
fusion operators A =

∑
kWkeDk has only the trivial solutions of isotropic diffusion without any
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drift. For this reason we instead consider a more general form of diffusion operator where the PDE
itself couples the different channels. For the coupled PDE:

∂f

∂t
=
∑
k

WkDkf (27)

the time evolution contains the matrices Wk in the exponential A = e
∑
kWkDk . Like with the

example of translation above, this operator is equivariant if and only if the infinitesmal generator∑
kWkDk is equivariant.

Because equation 26 applies generally to linear operators and not just convolutions, we can com-
pute the equivariance constraint for these derivative operators. We can simplify the summation∑
kWkDk =

∑
kWk(βTk ∇ + (1/2)∇TΣk∇) by writing it in terms of the collection of matrices

Bi =
∑
kWkβki and Sij = (1/2)

∑
kWkΣkij to express Aderiv =

∑
iBi∂i +

∑
i,j Sij∂i∂j

where the indices i, j = 1, 2..., d enumerate the spatial dimensions of each vector βk and each ma-
trix Σk. As we derive in appendix E.4, the necessary and sufficient conditions for the equivariance
of
∑
kWkDk and therefore A is that ∀g ∈ G : [ρout ⊗ ρ∗in ⊗ ρ(1,0)](g)vec(B) = vec(B) and

∀g ∈ G : [ρout⊗ρ∗in⊗ρ(2,0)](g)vec(S) = vec(S) where vec(·) denotes flattening the elements into
a single vector and ρ(r,s) is the tensor representation with r covariant and s contravariant indices.

E.3 GENERALIZATION OF EQUIVARIANCE CONSTRAINT FOR CONVOLUTIONS

This equivariance constraint is a direct generalization of the equivariance constraint for convolution
kernels as described in Weiler and Cesa (2019); Cohen et al. (2019). In fact, whenA is a convolution
operator,Af = K ∗f , the action of Lg by conjugationA is equivalent to transforming the argument
of the kernel K:

Lg(K∗)Lg−1f(x) =

∫
K(g−1x− x′)f(gx′)dµ(x′)

=

∫
K(g−1(x− x′′))f(x′′)dµ(x′′) = (Lg[K]) ∗ f.

Letting both sides of eq 26 act on the product of a constant unit vector ei and a delta function,
f = eiδ the expression ∀ei : ρout(g)Lg[K]ρin(g−1) ∗ eiδ = K ∗ eiδ can be rewritten as ∀x :
ρout(g)K(g−1x)ρin(g−1) = K(x) which is precisely the constraint for steerable equivariance for
convolution described in the literature. 5

E.4 EQUIVARIANT DIFFUSIONS WITH MATRIX EXPONENTIAL

Below we solve for the necessary and sufficient conditions for the equivariance of the operator
Aderiv.

We will use tensor representations for their convenience, but the approach is general to allow
other kinds of representations. A rank (p, q) tensor t is an element of the vector space T(p,q) :=

V ⊗p ⊗ (V ∗)⊗q where V is some underlying vector space, V ∗ is its dual and (·)⊗p is the tensor
product iterated p times. In common language T(0,0) are scalars, T(1,0) are vectors, and T(1,1) are
matrices. Given the action of a group G on the vector space V , the representation on T(p,q) is
ρ(p,q)(g) = g⊗p ⊗ (g−>)⊗q where −> is inverse transpose and ⊗ on the matrices is the tensor
product (Kronecker product) of matrices. Composite representations can be formed by stacking
different tensor ranks together, such as a representation of 50 scalars, 25 vectors, 10 matrices and
5 higher order tensors: T 50

(0,0) ⊕ T 25
(1,0) ⊕ T 10

(1,1) ⊕ T 5
(1,2), where ⊕ in this context is the same as

the Cartesian product. For a composite representation U =
⊕

i T(pi,qi) the group representation is
similarly ρU (g) =

⊕
i ρ(pi,qi)(g) where ⊕ concatenates matrices as blocks on the diagonal.

Noting that the operator Lg that acts only on the argument and the matrix ρin(g) acts only on the
components, the two commute and we can rewrite the constraint for Aderiv as∑

i

ρout(g)Biρin(g−1)Lg∂iLg−1 +
∑
ij

ρout(g)Sijρin(g−1)Lg∂i∂jLg−1 = Aderiv (28)

5This assumes as is typically done that measure µ over which the convolution is performed is left invariant.
For the more general case, see the discussion in Bekkers (2019).
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We can simplify the expression Lg∂iLg−1 by seeing how it acts on a function. For any differentiable
function ∂iLg−1f(x) = ∂

∂xi
[f(gx)] =

∑
j gji[∂jf ](gx) = Lg−1

∑
j gji∂jf(x) where gij are the

components of the matrix g. Since this holds for any f , we find that Lg∇Lg−1 = gT∇ and therefore
Lg∇∇TLg−1 = Lg∇Lg−1Lg∇TLg−1 = gT∇∇T g.

Since equation 28 holds as an operator equation, it must be true separately for each component ∂i
and ∂i∂j . This means that the constraint separates into a constraint for B and a constraint for S:

1. ∀g, i :
∑
j gijρout(g)Bjρin(g−1) = Bi

2. ∀g, i, j :
∑
kl gi`gikρout(g)S`kρin(g−1) = Sij .

These relationships can be expressed more succinctly by flattening the elements of B and S
into vectors: [ρout(g) ⊗ ρin(g−T ) ⊗ ρ(1,0)(g)]vec(B) = vec(B) and [ρout(g) ⊗ ρin(g−T ) ⊗
ρ(2,0)(g)]vec(S) = vec(S).

E.5 ROTATION EQUIVARIANCE CONSTRAINT FOR SCALAR DIFFUSIONS HAS ONLY TRIVIAL
SOLUTIONS

The diffusion operator A =
∑
kWke

Dk leads to only trivial βk = 0 and Σk ∝ I if it satisfies the
continuous rotation equivariance constraint.

Proof:

The application of eDk is just a convolution with the Greens function∑
k

Wke
Dkf =

∑
k

Wk[e−
1
2 (x+βk)>Σ−1

k (x+βk)det(2πΣk)−1/2] ∗ f =
∑
k

WkGk ∗ f (29)

where the Greens function is the multivariate Gaussian density: Gk(x) = N (x;−βk,Σk).

As shown in appendix E.3, for convolutions the operator constraint is equivalent to the kernel
equivariance constraint ρout(g)K(g−1x)ρin(g−1) = K(x) from (Weiler and Cesa, 2019). With
K(x) =

∑
kWkGk(x) this reads:

∀x ∈ Rd, g ∈ G :
∑
k

ρout(g)WkN (g−1x;−βk,Σk)ρin(g−1) =
∑
k

WkN (x;−βk,Σk),

For rotations g ∈ SO(2) where we can parametrize gθ = eθJ in terms of the antisymmetric matrix
J = [[0, 1], [−1, 0]] ∈ R2×2 and the translation operator can be written Lg = e−θx

T JT∇, we can
take derivatives with respect to θ to get (now with double sums implicit):

∀x ∈ Rd :
∑
k

[
dρoutWkN (x;−βk,Σk)−WkN (x;−βk,Σk)dρin−Wk(xTJT∇)N (x;−βk,Σk)

]
= 0.

Here the Lie Algebra representation of J is dρ := ∂
∂θρ(gθ)|θ=0. Factoring out the normal density:

∀x ∈ Rd :
∑
k

[
dρoutWk −Wkdρin −Wk(xTJTΣ−1

k (x+ βk))
]
N (x;−βk,Σk) = 0.

Without loss of generality we may assume that each of the Gaussians βk,Σk pairs are distinct since
if they were not then we could replace the collection with a single element. Since the (finite) sum
of distinct Gaussian densities is never a Gaussian density, and monomials of order > 0 multiplied
by a Gaussian density cannot be formed with sums of Gaussian densities or sums multiplied by
monomials of a different order and Gaussian densities are never 0, this constraint separates out into
several independent constraints.

1. ∀i : dρoutWk = Wkdρin

2. ∀i, x : Wk(xTJTΣ−1
k βk) = 0

3. ∀i, x : Wk(xTJTΣ−1
k x) = 0
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We may assume w.l.o.g. that Wk is not 0 for all components of the matrix (otherwise we could have
deleted this element of k and continue). Therefore there is some component which is nonzero, and
the expressions in parentheses in equations 2 and 3 must be 0. Given that this holds for all x, eq 3
implies: JTΣ−1

k = 0 or equivalently Σ−1
k J = 0 because Σk is symmetric, and since J = −JT this

can be expressed concisely as [Σ−1
k , J ] = 0 for which the only symmetric solution is proportional

to the identity Σk = ckI . Since both Σk and J are invertible, equation 2 yields βk = 0. Therefore
there are no nontrivial solutions for β,Σ in A =

∑
kWke

Dk for continuous rotation equivariance.

F DATASET AND TRAINING DETAILS

In this section we elaborate on some of the details regarding hyperparameters, network architecture,
and the datasets.

As described in the main text, the PNCNN is composed of a chain of convolutional blocks contain-
ing a convolution layer, a probabilistic ReLUs, and linear channel mixing layer (analogue of the
colloquial 1 × 1 convolution). In each of these convolutional blocks, the input is a collection of
points and feature mean value at those points along with the feature elementwise standard deviation
at those points: {(xi, µ(xi), σ(xi)}Ni=1. These observations seed the GP layer, and the block is eval-
uated at the same collection of points for the output (although it can be evaluated elsewhere since it
is a continuous process, and we make use this fact to visualize the features in figures 1 and 2).

Hyperparameters: For the PNCNN on the Superpixel MNIST dataset, we use 4 PNCNN convo-
lution blocks with c = 128 channels and with K = 9 basis elements for the different drift and
diffusion parameters in

∑K
k=1Wke

Dk . We train for 20 epochs using the Adam optimizer (Kingma
and Ba, 2014) with lr = 310−3 with batch size 50.

For the PNCNN on the PhysioNet2012 dataset, we use the variant of the PNCNN convolution layer
that uses the stochastic diagonal estimator described in appendix G with P = 20 probes. In the
convolution blocks we use c = 96 channels, K = 5 basis elements and we train for 10 epochs using
the same optimizer settings above. For both datasets we tuned hyperparameters on a validation set
of size 10% before folding the validation set back into the training set for the final runs. Both models
take about 2 hours to train.

SuperPixel-MNIST We source the SuperPixel MNIST dataset (Monti et al., 2017) from Fey and
Lenssen (2019) consisting of 60k training examples and 10k test represented as collections of posi-
tions and grayscale values {(xi, f(xi))}75

i=1 at the N = 75 super pixel centroids.

PhysioNet2012 We follow the data preprocessing from Horn et al. (2019) and the 10k-2k train test
split. The individual data points consist of 42 irregularly spaced vital sign time series signals as
well as 5 static variables: Gender, ICU Type, Age, Height, Weight. We use one hot embeddings for
the first two categoric variables, and we treat each of these static signals as fully observed constant
time series signals. As the binary classification task exhibits a strong label imbalance, 14% positive
signals, we apply an inverse frequency weighting of 1/.14 to the binary cross entropy loss.

G STOCHASTIC DIAGONAL ESTIMATION FOR PHYSIONET2012

In order to compute the mean and variance of the rectified Gaussian process, the activations of
the probabilistic ReLU, we need compute the diagonal of AkpA′(xn, xn) for the relevant points
{xn}Nn=1.

In the usual case where each of the channels α = 1, 2, ..., c are observed at the same locations this
can be done efficiently. First one computes the application of eDi on the left and eD

′
j on the right

onto the posterior kp:

Nij = (eDikpe
D′j )(xn, xn) = (eDikeD

′
j )(xn, xn)− (eDik>)(xn)[K + S]−1(keD

′
j )(xn)

where k is the RBF kernel and we have reused the notation from appendix A. Notably, this quantity
is the same for each of the channels, and the elementwise variance is just:

vα(xn) = (AkpA′)αα(xn, xn) =
∑
i,j,β

Wαβ
i NijW

αβ
j (30)
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where the α, β index the channels of each of the matrices Wi. Because N is the same for all
channels, we can compute this quantity efficiently with a reasonable memory cost and compute.

For the PhysioNet2012 dataset where the observation points differ between the channels we must
consider a different observation set {xβn}Nn=1 for each channel β. This means that evaluated kernel
depends on the channel and we have the objects: kβ , Kβ and Sβ . As a result, we have an additional
index for Nβ

ij and the desired computation is

vα(xαn) = (AkpA′)αα(xαn, x
α
n) =

∑
i,j,β

Wαβ
i Nβ

ijW
αβ
j . (31)

While each of the terms in the computation can be computed without much difficulty, performing
the summation explicitly requires an unreasonably large memory cost and also compute.

However, by the same approach we can consider the full covariance matrix B(αn)(βm) =

(AkpA′)αβ(xαn, x
β
m), and while it would not be feasible to compute this matrix directly we can

define matrix vector multiplies onto vectors of size RcN implicitly using the sequence of operations
that define it. Crucially, this sequence of operations has much more modest memory consumption
(and compute cost) over the direct expression in equation 31. These implicit matrix vector multiplies
can then be used to compute a stochastic diagonal estimator (Bekas et al., 2007) given by:

v̂α(xαn) = 1
P

P∑
p=1

zp �Bzp (32)

with Gaussian probe vectors zp ∼ N (0, I), and where � is elementwise multiplication (see Bekas
et al. (2007) for more details on this stochastic diagonal estimator). We use this estimator with
P = 20 probes for computing the variances for PhysioNet. We note that with P = 20 the variance
estimates are still quite noisy, however without the estimator cannot readily apply the PNCNN to
PhysioNet. We leave a better approach for handling this kind of data to future work.

H PATHOLOGIES IN PROJECTION TO RBF GAUSSIAN PROCESS

In section 4.7 describe an approach by which a Gaussian process with a complex mean and co-
variance function is projected down to the posterior of a (simpler) RBF kernel GP from a set of
observations. We know given the representation capacity of the RBF kernel that with the right set of
observations, a complex function can be well approximated in principle. However, the relationship
for uncertainty is less straightforward.

The properties of the input Gaussian process must be conveyed to the output Gaussian process by
only the (uncorrelated) noisy observations {(xi, µ(xi), σ(xi))}Ni=1. As the uncertainty in original
GP increases, so do the measurement uncertainties in the transmission, and therefore the output
GP also has a higher uncertainty. However, the uncertainty in the input GP is in the form of a
full covariance kernel k(x, x′) and it seems that individual observations will not easily be able to
communicate the covariance of the values of the GP function at different spatial locations despite
the heterogeneous noise model.

Fundamentally, the problem is that the observation values are treated as independent, an incorrect
assumption which has other knock-on effects when the number of observations is large. With some
fixed measurement error no matter how high but a large enough set of independent observations, the
mean value can be pinned down precisely. If in contrast the observations are not independent, then
there may be a situation where the mean value cannot be known more precisely than some limiting
uncertainty. This effect leads the output GP to have less uncertainty and be more confident in the
values that it should be given the input GP.

If the observations are sparse, then the effective sample size of the estimator for the mean of the
GP at any given location is small, and then the amount by which uncertainty is underestimated is
small. However, if there are many many observations then this kind of observation transmission of
information with the independence assumption will attenuate the uncertainty. We would also expect
that over the course of many layers, this attenuation can accumulate. We believe that this is what
causes the poorer uncertainty calibration in layers 3 and 4 of the PNCNN shown in figure 2. We hope
that this problem can be resolved perhaps by removing the independence assumption or providing
an alternative projection method in future work.
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I CENTRAL LIMIT THEOREM FOR STOCHASTIC PROCESSES

We derive a variant a variant of the Lyapunov central limit theorem (CLT) holding for stochastic
processes. The main ideas is that the result for processes follows from applying the multivariate
Lyapunov CLT to the joint distribution of each finite collection of values as per the definition of a
Gaussian process.

In more details the argument goes as follows. We are given C stochastic processes gc(x) and we
assume that they are weakly dependent, i.e. E[gc(x)gc′(x

′)] → E[gc(x)]E[gc′(x
′)] as |c − c′| � 1,

for any x, x′. We would like to show that ḡ(x) ∼ GP(µ, k), where µ(x) =
∑C
c=1 gc(x) and

k(x, x′) =
∑C
c,c′=1 E[gc(x)gc′(x

′)]. For these formulas to make sense, we need some bounds on
the moments of gc. If the individual components gc scale as 1/

√
C, then the covariance if finite.

Now choose any finite collection of indices x1, x2, . . . , xN . Then consider the random vector
ḡ(xi) =

∑C
c=1 gc(xi), i = 1, . . . , N . We can now apply the CLT to deduce that {ḡ(xi)}Ni=1 is

Gaussian distributed. Since a stochastic process is determined by its finite distributions, we can
conclude that the random function ḡ(x)→ GP(µ, k), as was to be shown.

J MOMENTS OF RECTIFIED GAUSSIAN RANDOM VARIABLES

Let f ∼ N (µ,Σ) be a d dimensional random Gaussian vector. We compute here

E(ReLU(f1) · · ·ReLU(fd)) =
1

NΣ

∫
f>0

ddf f1 · · · fd exp− 1
2 (f − µ)TΣ−1(f − µ) (33)

NΣ = (2π)d/2 det(Σ)1/2 . (34)

We use the generating function technique. Define

Z(b) =
1

NΣ

∫
f>0

ddf exp[− 1
2 (f − µ)TΣ−1(f − µ) + bTf ] (35)

=
1

NΣ
eb
Tµ

∫
f>−µ

ddf exp[− 1
2f

TΣ−1f + bTf ] . (36)

Then

E(ReLU(f1) · · ·ReLU(fd)) =
∂

∂b1
· · · ∂

∂bd
Z(b)

∣∣∣∣
b=0

. (37)

To compute Z(b) we proceed as in Gaussian case. We change variables to

f = Σb+ g , (38)

and define z = µ+ Σb to get:

Z(b) = eb
Tµ+

1
2b
TΣb 1

NΣ

∫
g<+z

ddg exp[− 1
2g

TΣ−1g] (39)

= eS(b) Φ(d)(z; 0,Σ) , S(b) = bTµ+ 1
2b
TΣb . (40)

Φ being the multivariate standard Normal CDF:

Φ(d)(z;µ,Σ) =

∫
g<+z

ddgψ(d)(g;µ,Σ) , (41)

ψ(d)(g;µ,Σ) =
1

NΣ
exp[− 1

2 (g − µ)TΣ−1(g − µ)] . (42)

Now we compute the first two derivatives. Note that in d = 1, denoting σ2 = Σ:

∂

∂z
Φ(1)(z, 0, σ2) = ψ(1)(z, 0, σ2) . (43)

19



Under review as a conference paper at ICLR 2021

In d = 2, we can use the conditional probability decomposition to get the required derivatives:

ψ(2)(g; 0,Σ) = ψ(1)(g1;α1g2, β1) · ψ(1)(g2; 0,Σ22) (44)

α1 = Σ12Σ−1
22 , β1 = Σ11 − Σ12Σ−1

22 Σ21 (45)

∂z2Φ(2)(z, 0,Σ) = ψ(1)(z2; 0,Σ22)

∫ z1

−∞
dg1ψ

(1)(g1;α1z2, β1) , (46)

= ψ(1)(z2; 0,Σ22)Φ(1)(z1, α1z2, β1) (47)

∂2
z2Φ(2)(z, 0,Σ) = − z2

Σ22
ψ(1)(z2; 0,Σ22)Φ(1)(z1, α1z2, β1) (48)

+ ψ(1)(z2; 0,Σ22)∂z2Φ(1)(z1, α1z2, β1) (49)

∂z1∂z2Φ(2)(z, 0,Σ) = ψ(2)(z; 0,Σ) . (50)

So denoting ∂i = ∂
∂bi

, we get:

∂iZ(b) = (µi +
∑
j

Σijbj)Z(b) + eS(b)
∑
`

∂z`Φ
(d)(z, 0,Σ)Σ`,i︸ ︷︷ ︸

mi(b)

(51)

∂k∂iZ(b) = ΣikZ(b) + (µi +
∑
j

Σijbj)∂kZ(b) (52)

+ (µk +
∑
j

Σkjbj)mi(b) + eS(b)
∑
`,q

∂z`∂zqΦ
(d)(z, 0,Σ)Σ`,iΣq,k . (53)

In particular, we have for d = 1:

E(ReLU(f)) = µΦ(1)(µ; 0, σ2) + ψ(1)(µ, 0, σ2)σ2 , (54)

which coincides with equation 8 and for d = 2:

E(ReLU(f1)ReLU(f2)) = Σ12Φ(2)(µ; 0,Σ) + µ1µ2Φ(2)(µ; 0,Σ) + µ1m2(0) + µ2m1(0) (55)

+
∑

`,q=1,2

Σ`,1Σq,2∂z`∂zqΦ
(2)(z, 0,Σ)|b=0 . (56)

which can be rewritten in the form of equation 9.
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