
A More Related Work

Self-Supervised Learning Earlier self-supervised learning approaches tries to generate pseudo
labels to the unlabeled data through different transformations, such as solving jigsaw puzzles [43],
colorization [65] and rotation prediction [23]. These methods, however, are typically not competitive
with supervised learning. Recently, contrastive-learning based methods have been one of the main
stream methods for SSL [59, 57, 55, 28, 13], which can significantly close the gap to supervised
learning without relying on ground-truth labels. Our proposed framework serves as an important
addition to the SSL literature, which addresses some limitation of the standard CL and is related to
several state-of-the-art SSL methods.

Contrastive Learning Contrastive loss functions were probably first invented for metric learning,
which intends to learn similarity functions that measure the similarity between a pair of objects.
Researchers have explored various contrastive loss functions, including the max-margin contrastive
loss [26], triple loss [58], multi-class N -pair loss [52], lifted structure loss [53], NCE loss [25],
soft-nearest neighbors loss [49, 19], NT-Xent/infor NCE loss [13, 33, 57]. All of these losses are
defined in a non-decomposable way that can lead to gradient bias¶.

There have been some efforts trying to improve contrastive learning from various perspectives, e.g.,
[61] modifies the info-NCE loss to mitigate the robustness of the loss to the minibatch size; [54]
shows the necessity of large batch size in contrastive training and proposed an improved method; [12]
identifies the log�K curve of contrastive learning and proposes an improved FlatNCE loss for fix;
Other efforts include the SimSiam [16], relative predictive coding [56], Wasserstein predictive coding
[28], Barlow Twins [64], VICReg [4], gradient catching [20], and etc. All these methods do not
explicitly address the gradient bias problem. There are also some previous work considering better
ways to sampling negative samples [22, 30, 48], but they still face the gradient-bias problem. Our
method provides a principled way to decouple the negative samples with Bayesian data augmentation,
enabling an effective solution to mitigate gradient bias.

Bayesian Data Augmentation Bayesian data augmentation is a useful tool to facilitate sampling
by augmenting complex distributions with auxiliary random variables. The techniques have found
applications in many Bayesian model learning/inference problems, including but not limited to
negative Binomial processes [68], Gamma belief networks [69], and stochastic binary networks [62].
More cosely related to the proposed is the Bayesian data augmentation techniques to sampling the
normalized random measure, a general family of normalized random probability measures [10, 9].
Our method adopts a similar idea to the CL setting to address one missing piece of the framework.

B Proof of Theorem 1

Proof. For completeness, we rewrite the joint distribution p(✓,U |D) over the model parameter ✓
and the augmented data U , {ui}i to be optimize, where each ui is associated with a data sample
xi 2 D:

p(✓,U |D) /
Y

i:xi2D
si+e

�ui si+
Y

k

e�uisik� =
Y

i:xi2D
si+e

�ui(si++
P

k sik� ) . (4)

Obviously, ui’s are independent with each other given the similarity scores. Thus, we can apply
Gamma identity to each ui, resulting in

p(✓) =

Z

U
p(✓,U |D)dU /

Y

i:xi2D

Z

ui

si+e
�ui(si++

P
k sik� )dui

=
Y

i:xi2D

si+

si+ +
P

k sik�
,

which concludes the proof.
¶The max-margin contrastive loss is defined on pair-wise data, thus is less affected by the negative samples.

However, the loss is shown to be less effective compared to the fully coupled NT-Xent loss [13].
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C Stochastic Expectation Maximization

Using our notation, we introduce expectation maximization [40] and stochastic expectation maxi-
mization [2]. According to our development in the main text, the marginal likelihood to be optimized
is defined as:

p(✓|D̃0) /
Y

x0
i2D̃0

si+

E[sik� ]
, (5)

which is intractable. To solve the problem, we augment the marginal distribution with auxiliary data
U , {ui}i as

p(✓,U |D̃0) /
Y

x0
i2D̃0

si+e
�ui E[sik� ] . (6)

The standard EM algorithm [40] corresponds to optimizing p(✓|D̃0) by alternating through the
following two steps:

• Expectation: Compute the conditional expected log-likelihood:

Q(✓|✓k) =
Z

U
log p(✓,U |D̃0)p(U |D̃0;✓k)dU .

• Maximization: Maximize ✓ ! Q(✓|✓k) in the parameter space to find ✓k+1 2
argmaxQ(✓|✓k).

Unfortunately, directly applying the EM algorithm is infeasible in our setting as U contains an infinite
number of auxiliary data, i.e., Q(✓|✓k) in the expectation step is infeasible. To mitigate the problem,
we adapt the stochastic EM algorithm proposed in [2], which constructs a stochastic approximation
of Q(✓|✓k) in each iteration. Specifically, the algorithm contains the following steps:

• Simulation: Sample the auxiliary data Ut for the current minibatch from their approximate
posterior distribution. Please refer to the “Simulation” paragraph in Section 2.2.3 for details
on how to get approximate samples.

• Stochastic approximation: Update a stochastic objective as:

Qt+1(✓) = Qt(✓) + �t(log p(✓,Ut |D̃0
t)�Qt(✓))

= (1� �t)Qt(✓) + �t log p(✓,Ut |D̃0
t) .

Here log p(✓,Ut |D̃0
t) adopts the same form as in (6) but only includes data samples from

the current minibatch. Thus, it is feasible to evaluate. According to the recursive definition,
Qt(✓) has the same form as log p(✓,Ut |D̃0

t) but is evaluated on previous minibatches. To
reduced variance, we first marginalize out the corresponding auxiliary data Ut0<t, resulting
in the same marginal form as (5) but the expectations are only evaluated on minibatches,
thus it is feasible. One problem in evaluating Qt(✓) is that we need to store the historical
minibatches, which is not storage friendly. To overcome the problem, we simply use the
current minibatch to evaluate Qk, giving us the standard minibatch info-NCE loss used in
the standard contrastive learning.

• Maximization: Maximize Qt+1(✓). We simply apply stochastic gradient descent for this
step.

D Generalization

For clearness, we redefine some terms used in our proof. Consider a dataset bX = {x̄1, x̄2, · · · , x̄n}
containing n data points i.i.d. sampled from PX . Let P̂X be the uniform distribution over bX . Let
P̂x̄,x̄0 be the uniform distribution over data pairs (x̄i, x̄j) where i 6= j. Based on our algorithm
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development in the main text, we define the empirical decomposable contrastive loss of a feature
extractor f as

Ldcon(f) , bLn(f) :=� Ex̄⇠P̂X ,x⇠A(·|x̄),x0⇠A(·|x̄)
⇥
f(x)>f (x0) /�

⇤
+

E(x̄,x̄0)⇠P̂x̄,x̄0 ,x⇠(·|x̄)uxEx0⇠A(·|x̄0) exp
⇥
f(x)>f (x0) /�

⇤
,

where ux ⇠ Gamma(1,Ex0⇠A(·|x̄0) exp
⇥
f(x)>f (x0) /�

⇤
)

Our argument in the “On Decomposibility” paragraph in Section 2.2.2 has proved that bLn(f) is an
unbiased estimator of population spectral contrastive loss, i.e.,

E bX

h
bLn(f)

i
= L(f)

To prove our generalization theory, motivated by [27], we construct tuples of the original dataset bX .
Specifically, we sample a subset of tuples as follows: first sample a permutation ⇡ : [n] ! [n], then
we sample tuples S =

��
zi, z

+
i , z

0
i,ui

� n/2
i=1

as follows:

zi ⇠ A
�
· | x̄⇡(2i�1)

�
, (7)

z+i ⇠ A
�
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�
,
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�
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�
,
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Pn/2
i=1 exp

⇣
f (zi)

> f (z0i) /�
⌘
+ exp

⇣
f (zi)

> f
�
z+i
�
/�
⌘

n/2 + 1
).

We define the following loss on S :

bLS(f) :=
1

n/2

n/2X

i=1

Eui

h
ui exp

⇣
f (zi)

> f (z0i) /�
⌘
� f (zi)

> f
�
z+i
�
/�
i

It is easy to see that bLS(f) is an unbiased estimator of bLn(f). We prove the following lemma.

Lemma 4. Let F be a hypothesis class of feature extractors from X to Rk. Assume kf(x)k1  
for all x 2 X . For i 2 [k], define fi : X ! R be the function such that fi(x) is the i-th dimension
of f(x). Let Fi be the hypothesis containing fi for all f 2 F . For m 2 Z+, let bRm (Fi) be the
maximal possible empirical Rademacher complexity of Fi over m data:

bRm (Fi) := max
{x1,x2,··· ,xm}

E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�jfi (xj)

1

A

3

5

where x1, x2, · · · , xm are in X , and � is a uniform random vector in {�1, 1}m. Then, the empirical
Rademacher complexity on any m tuples

��
zi, z

+
i , z

0
i

� m
i=1

can be bounded by
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2
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f2F

0

@ 1
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1

A

3
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
✓
8k exp(

4

�
)

◆
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i2[k]

bRm (Fi) .
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Proof.
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Notice that for any z1, z2 · · · zm and z01, z
0
2, · · · , z0m in X and any i 2 [k] we have

E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�jfi (zj) fi
�
z0j
�
1

A

3

5

 1

2
E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�j

�
fi (zj) + fi

�
z0j
��2
1

A

3

5+
1

2
E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�j

�
fi (zj)� fi

�
z0j
��2
1

A

3

5

 4E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�jfi (zj)

1

A

3

5+ 4E�

2

4 sup
fi2Fi

0

@ 1

m

mX

j=1

�jfi
�
z0j
�
1

A

3

5

where the first inequaltiy is by Talagrand’s lemma. Combine these two equations and we get:
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D.1 Proof of Theorem 3

Proof. We know that ES

h
bLS(f)

i
= Lcon(f), where S is sampled by first sampling bX then sam-

ple S according to (7). Notice that when bX contains n i.i.d. natural data samples, the set of
random tuples S contains n i.i.d tuples. Therefore, we can apply generalization bound with
Rademacher complexity to get a uniform convergence bound. In particular, by Lemma 4 and
noticing the fact that Eui

h
ui exp

⇣
f (zi)

> f (z0i) /�
⌘
� f (zi)

> f
�
z+i
�
/�
i

always take values in

range
h
�k2/�, k2/� + exp( 2� )

i
, we apply standard generalization analysis based on Rademacher

complexity. With similar techniques as those in the proof of Theorem 4.1 in [27], we can get the
following result: with probability at least 1� �2/4 over the randomness of bX and S, we have for any
f 2 F ,

Lcon(f)  bLS(f) +

✓
16k exp(

4

�
)

◆
max
i2[k]

bRn/2 (Fi) +

✓
2k2/� + exp(

2

�
)

◆
·
r

4 log 2/�

n

This conclusion translates to the random tuple case as follows: With probability at least 1� �/2 over
random tuples S conditioned on bX , the above equation holds. Since both L(f) and bLn(f) take value
in range

h
�k2/�, k2/� + exp( 2� )

i
, we have that with probability at least 1� �/2 over random

bX , we conclude that for any f 2 F ,

Lcon(f)  bLn(f) +
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4 log 2/�
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2

!

Since negating the functions in a function class doesn’t change its Rademacher complexity, we can
also get results from the other direction: With probability at least 1� �/2 over random bX , we have
for any f 2 F ,

Lcon(f) � bLn(f)�
✓
16k exp(

4

�
)

◆
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Combine them together we get the excess risk bound, stated as: With probability at least 1� �, we
have

Lcon(f̂)  L (f⇤
F ) +

✓
32k exp(

4
�
)

◆
max
i2[k]

bRn/2 (Fi) +

✓
4k2/� + 2 exp(
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)

◆
·
 r

4 log 2/�
n

+
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!

where f̂ is minimizer of bLn(f) in F and f⇤
F is minimizer of L(f) in F . Set c1 = 32k exp( 4� ) and

c2 = 8k2/� + 4 exp( 2� ) and notice that maxi2[k]
bRn/2 (Fi) = bRn/2(F) finishes the proof.

E An Alternative Approximate Loss

We propose an alternative loss to approximate the original info-NCE loss, which is potentially more
expressive. Note we did not apply this in our current experiments. However, we are expecting to add
it in to our future version.
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Suppose there are K negative samples in a minibatch. Denote si,:K , PK
k=1 sik� and si,K: ,P1

k=K+1 sik� . The standard contrastive learning with infinite negative samples corresponds to
optimizing

si+

E[sik� ]
=

si+

E[(2si,:K + si,K:)/3]
,

where the equality applies due to the assumed unbiased estimation of the expected negative similarity
score with a minibatch. We propose to replace the arithmetic mean of (si,:K , si,:K , si,K:) with their
geometric mean, and define a geometric contrastive learning objective as

L ,
X

i

log
s3i+

s2i,:Ksi,K:
�

arithmetic-geometric mean inequality

X

i

log
4si+

si,:K

s2i+
(si,:K + si,K:)2

!
augmentation

X

i

log
4si+

si,:K
s2i+uie

�ui(si,:K+si,K:) ,
X

i

Li .

We call this loss function the geometric contrastive loss. We optimize the loss by maximizing its
lower bound

P
i Li with our Bayesian data augmentation technique. Specifically, the stochastic EM

iterates through:

• Estimate ui: This is done by sampling from a Gamma distribution as: ui ⇠
Gamma (2,E[sik� ]), where we can use the same technique described in the main text
to approximate E[sik� ].

• Maximizing p(✓|D): This can be done by maximizing the above lower bound of the
geometric contrastive loss as: L =

P
i log

si+
si,:K

+ 2 log si+ � uis̃ik� , where s̃ik� is a
stochastic version of E[sik� ] estimated from a minibatch.

F Additional Details on the Experiments

Figure 3: Comparison of the learning curves of
our method and direct optimization. x-axis is the
iteration number and y-axis is the objective value
F .

Synthetic experiments We run the experi-
ment for Figure 1 with a different setting to exam
the convergence solution, where we mimic the
noisy contrastive learning with a simplest syn-
thetic experiment. Specifically, we define our ob-
jective to be maximized as F = es1/(es1 + es2)
w.r.t. (s1, s2). In this example, es1 can be con-
sidered as the positive similarity score, and es2

as the sum of all the negative similarity score
for one data point. Thus, this is a simplification
of the standard contrastive loss. To introduce
noise into the negative similarity score, we ex-
plicitly inject random Gaussian noise into the
denominator, resulting in a stochastic objective
of es1/(es1 + es2 + �t) in each SGD iteration,
where � is a random zero-mean Gaussian noise
with variance set to 0.09. To guarantee a unique
optimal solution, we introduce a regularizer of
0.1⇥(s21+s22). We compare direct optimization
with SGD and our method over 100 independent random runs, starting from zero initializations. The
learning curves of the objective values F w.r.t. the iteration numbers are plotted in Figure 3. It is
observed that the two methods indeed converge to different solutions, with a better objective value
from our method.

Comparison with non-contrastive learning methods To demonstrate the effectiveness of our
proposed method, we compare it with more popular self-supervised learning methods, including
1) the contrastive-learning methods SimCLR [13], DCL [61], NNCLR [18] and SwaV [7]; 2) the
non-contrastive learning methods BYOL [24], DINO [8] and BarlowTwins [64]. For all these methods
except SimCLR and ours, we use the public implement in the LIGHTLY benchmark [1], downloaded
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Table 6: Comparison of top-1 accuracies (%) on the CIFAR-10 with BYOL.

C
IF

A
R

-1
0 Batch 64 128 256 512

SimCLR 81.8 83.4 85.8 86.8
DCL 84.1 85.0 85.5 85.2

NNCLR 85.9 86.0 85.6 85.1
SwaV 81.2 82.2 85.0 85.8

BYOL 86.5 87.0 87.2 86.8
DINO 85.4 84.1 83.5 82.5

BarlowTwins 84.4 85.5 85.1 84.3

Ours 85.9 87.2 87.6 87.7

from https://docs.lightly.ai/_downloads/b99fe89a7fc2b4740cb9f1e34d3229ad/cifar10_benchmark.py,
and use the default settings on the optimizer with 300 epochs. Table 6 shows the comparison of
our method with SimCLR on the CIFAR-10 dataset under different batch sizes. It is clear that the
proposed method performs better in general. The best non-contrastive learning method, BYOL,
can perform better than the standard contrastive learning method SimCLR, especially in the small-
batchsize settings. When correcting gradient bias in contrastive learning with our method, we can
outperform BYOL when batch sizes are large enough (e.g., � 256), and slightly worse when batch
sizes are too small. The results also suggest there is still room the design better mechanism to correct
the gradient bias in contrastive learning. Furthermore, it is observed that contrastive learning methods
can generally perform better with increasing batchsizes, whereas non-contrastive methods do not
seem to be improving, suggesting that contrastive learning can be scaled up by using larger batch
sizes. This is part of the reasons why recent large foundation models such as CLIP adopt contrastive
learning in the training.
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