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A APPENDIX

A.1 ETHIC STATEMENT

Our work reveals that backdoor attacks can bypass the existing finetuning-based defenses, even the
most advanced ones. It also shows that a backdoor can be deeply implanted in the pretrained models
and withstand even full-model finetuning on an entirely different downstream task. Hence, our work
helps to extend the understanding of the potential capability of backdoor attacks, benefiting both
the research community and real-life Al systems. By being informed about the risk, Al system
developers will be more careful when using third-party models. The work also stimulates future
backdoor defense studies in the quest of searching for safe and trustful Al development.

A.2 REPRODUCIBILITY STATEMENT

Our work is highly reproducible. All datasets used in the paper are popular and publicly available.
We include in the supplementary materials our code and pre-trained models. The code and pre-
trained models will also be publicly released upon paper acceptance.

A.3 FMN ALGORITHM

We present detailed algorithm of FMN in Algorithm [I] The cyclical learning rate schedule is as
described in Figure[T} the learning rate is initialized with the minimum value and linearly increases
to the maximum value in n iterations, then linearly decreases back to the minimum value for another
n iterations.

A.4 SYSTEM DETAILS
A.4.1 DATASETS

We conduct our experiments on three popular datasets, which are widely used in various previous
works, in both backdoor attacks and defenses.

CIFAR10

CIFARI10, introduced by |Krizhevsky et al.|(2009), is a labeled subset of the 80-millions-tiny-images
dataset, collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The dataset consists of
60,000 color images in 10 classes, with 6,000 images per class. The image resolution is 32 x 32.
CIFARIO is split into 2 subsets: 50,000 images in the training set and 10,000 images in the test set.
It is publicly available athttps://www.cs.toronto.edu/~kriz/cifar.html.

Data augmentation techniques including random crop, random rotation, and random horizontal flip
are applied during training. No augmentation is applied during evaluation.

CelebA

CelebFaces Attributes Dataset (CelebA) (Liu et al.l [2015) is a large-scale face attributes dataset
with more than 202,599 celebrity images from 10,177 identities. There are five landmark loca-
tions and 40 binary attribute annotations per image. The dataset is available for use at http:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html. In this work, we select 3 out of 40
attributes, namely Heavy Makeup, Mouth Slightly Open and Smiling, and then concatenate them
into 8 compound classes to create a multiple-label classification task, as recommended by |Salem
et al.[(2020).

All input images are resized to 64 x 64 in both the training and evaluating procedures. Random crop
and random rotation are applied to training data. No augmentation is applied during the evaluation.

ImageNet-10

Deng et al.[(2009) is a large-scale dataset that contains more than 14 million images of over 20,000
categories. The most widely used subset of this dataset is ImageNet-1K, which consists of 1000
object classes with 1,281,167 training images and 50,000 validation images, and can be found at
https://image—-net.org/download.php. In this work, we randomly select 10 classes
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Algorithm 1: FMN

Input: training dataset S, target label ¢, backdoor injection function B, poisoning rate p,
number of epochs num_epochs, number of iterations per epoch num_iters first max learning
rate LR MAX 1, second max learning rate LR MAX 2, base learning rate LR BASE, learning
rate e.

initialize 0

~ < LR BASE, epoch < 0, iter < 0

for epoch < num_epochs do

for iter < num_iters do

Randomly sample Spini

if (epoch, 2) = 0 then

Randomly sample Pp,;,; with ratio p

Update 0: min Z L(fo(x;),y;) —FZﬁ(ﬁg(B(xj))7 ¢)

(24,9;5) € Smini \ Prmini (27 ,¢) € Prini

else

Update 0: mein Z L(fo(x;),y;5)
(z,Y5)ESmini

if epoch < num_epochs/2 then
| Update € using cyclical learning rate scheduler with max learning rate LR MAX 1

else
| Update € using cyclical learning rate scheduler with max learning rate LR MAX 2

Table 5: Performance of conventional backdoor training and FMN against finetuning-based
defenses on CelebA. For each attack, we report the BA (%) in teal and ASR (%) in purple. The
asterisk (*) denotes that the attack is trained with FMN. The ASRs below 50% are underlined.

Attack No defense FT (Ir=0.01) FT (Ir=0.05) Super-FT FT-SAM NAD

Blend 79.26/99.24  78.29/74.72  65.92/19.28 78.75/21.84 78.12/20.14 78.64/32.46
Trojaning 78.89/99.65 76.98/86.24  71.98/9.45  78.07/11.23 78.57/23.16 78.65/31.15
Input-aware | 78.7598.97  77.99/92.69 62.92/4.74  78.50/14.95 76.52/12.61 76.74/35.33

LIRA 79.02/99.86  78.88/95.11  67.72/24.44 78.01/32.55 77.49/41.96 78.19/42.59
Narcisuss 79.25/94.96  78.20/89.95  61.15/20.49 79.13/28.26 78.92/18.94 79.03/42.38
Blend” 79.17/97.94 77.52/96.55  67.84/69.37 77.97/88.15 78.90/89.69 78.76/71.70

Trojaning™ 78.96/96.84  78.80/94.99  70.89/77.65 78.02/89.52 77.57/90.44 77.45/86.98
Input-aware™ | 78.92/96.77  78.52/91.34  64.87/76.79  78.48/86.21 78.52/85.62 77.85/80.47
LIRA™ 79.40/98.98 78.64/96.78  72.15/80.32 79.21/90.59 78.79/91.10 79.02/92.84
Narcisuss” 79.30/93.22  77.98/89.65  65.12/79.11 78.91/86.95 78.64/91.21 78.72/84.92

from ImageNet-1K to create the ImageNet-10 dataset. Images of this dataset vary in resolution, and
we resize them to 224 x 224 in both the training and testing process.

We apply random crop and random rotation to the training dataset. No augmentation is applied
during the evaluation.

A.4.2 NETWORKS

For the CIFAR10, we use Pre-activation ResNet18 (He et al.,[2016)) as the classifier architecture. For
the CelebA and ImageNet10 datasets, we use ResNet18 (He et al., 2016) as the classifier architecture.

A.5 FMN PERFORMANCE AGAINST FINE-TUNING-BASED DEFENSES ON CELEBA AND
IMAGENET-10

We show the attack results of conventional backdoor training and training with FMN with different

attack methods on CelebA and ImageNet-10, as well as their performance against fine-tuning-based
defenses in Table 3] and Tabel
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Table 6: Performance of conventional backdoor training and FMN against finetuning-based
defenses on ImageNet-10. For each attack, we report the BA (%) in teal and ASR (%) in purple.
The asterisk (*) denotes that the attack is trained with FMN. The ASRs below 50% are underlined.

Attack No defense FT (Ir=0.01) FT (Ir=0.05) Super-FT FI-SAM NAD

Blend 85.65/98.74  84.07/66.85 71.11/2.09  84.50/16.74 83.45/21.23 83.40/21.99
Trojaning 84.91/97.79  82.32/57.53 72.24/4.29  80.75/19.35 81.41/20.96 83.98/44.26
Input-aware | 85.64/91.88 84.27/62.96  73.41/6.63  83.76/10.55 83.54/14.77 82.42/19.64

LIRA 86.02/97.47 84.21/72.36  71.98/19.42 83.87/19.79 83.25/24.85 85.01/41.52
Narcisuss 85.17/97.22  84.54/70.40  74.02/11.25 84.59/21.41 84.66/20.95 83.64/39.87
Blend* 85.64/91.68 84.04/89.42  72.96/56.85 84.25/78.67 84.32/80.75 84.22/62.64

Trojaning™ 87.62/97.72  84.98/92.19  79.35/66.67 85.42/86.20 85.65/90.14 84.32/82.52
Input-aware™ | 87.60/95.98  86.49/92.16  76.82/62.24 87.01/75.52 84.42/89.55 86.86/79.48
LIRA* 86.75/96.26  86.32/94.72  82.59/70.25 85.99/89.03 85.86/91.71 86.27/91.92
Narcisuss® 86.59/92.95 85.25/87.61  76.92/68.94 86.63/85.11 85.27/85.42 84.24/81.77
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Figure 3: Performance of LIRA and LIRA* against Neural Cleanse.

A.6 DEFENSE EXPERIMENTS WITH LIRA*

Since our training design aims to counter finetuning-based defense, the robustness against other
types of defenses should depend on the choice of the trigger. In this section, we investigate if FMN
can maintain that robustness from the conventional attack. For the following experiments, we choose
LIRA* to evaluate.

A.6.1 NEURAL CLEANSE

Neural Cleanse is a popular model defense technique that works by computing an optimal pattern for
each class in the model. The technique then detects if there is a pattern that is significantly smaller
than the others using an anomaly index computed by an outlier detection algorithm. If the anomaly
index for a pattern is greater than 2, the model is marked as poisoned. We test LIRA™ against this
defense. We also report the result of this defense for a clean model and conventional LIRA for
comparison. As shown in Figure both LIRA and LIRA* can bypass Neural Cleanse’s detection.

A.6.2 FINE-PRUNING

Fine-pruning is another model defense technique that works by pruning neurons that are inactive
when predicting clean images. The assumption is that these neurons are more likely to be associated
with the backdoor. We run fine-pruning on poisoned models of LIRA and LIRA*, and plot the clean
accuracy (BA) and attack success rate (ASR) versus the numbers of neurons pruned. As shown in
Figurelé—_ll, the results of LIRA and LIRA* are quite similar: there is no point fine-pruning can achieve
high BA with low ASR, indicating that the attacks can evade this defense.
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Figure 4: Performance of LIRA and LIRA* against Fine-pruning.
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Figure 5: Performance of LIRA and LIRA™ against STRIP.

A.6.3 ADVERSARIAL NEURON PRUNING (ANP)

Also exploring the idea of pruning neurons to remove hidden backdoors, ANP uses adversarial
weight perturbation to amplify the differences between benign neurons and backdoor-related neu-
rons. While the original work recommends using 0.05 as the pruning threshold, we find that this
threshold cannot significantly decrease the ASRs in our experiments. Therefore, we further test
LIRA and LIRA* against ANP with increasing thresholds. The results in Table [7| show that ANP
cannot reduce the ASRs without significant drops in BA.

A.6.4 RECONSTRUCTIVE NEURON PRUNING (RNP)

Li et al.|(2023) introduced another pruning-based backdoor defense, RNP, which exposes and prunes
backdoor neurons from a poisoned model by unlearning and then recovering the neurons. We eval-
uate LIRA and LIRA* against RNP and report the results in Table[8] Since our technique primarily
aims to improve the attack’s resilience against finetuning-based defense, its impact on attack perfor-
mance remains hardly affected when confronted with this pruning-based defense.

A.6.5 STRIP

STRIP is a popular test-time defense against backdoor attacks that works by superimposing various
image patterns on the input image and recording the prediction entropy of the model over those
perturbed images. If the model consistently predicts the same class for all of the perturbed images,
this indicates that the input image may be poisoned. We provide the results of STRIP with LIRA and
LIRA™ in Figure 5| Both LIRA and LIRA* have a similar entropy range as a clean model, thereby
bypassing the defense.

A.7 EXPERIMENTS WITH LOW POISONING RATE

We further explore FMN’s effectiveness under the condition of a low poisoning rate. We conduct
experiments of FMN with only 1% poisoning rate and report the results in Table 0] With such a
low poisoning rate, our attacks are less robust under Super-FT, but their ASRs are still above 50%.
FT-SAM is weaker than Super-FT, allowing our ASRs to stay high, around 90%-100%.
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Table 7: Performance of LIRA and LIRA* against ANP.

Threshold LIRA LIRA*
0.05 93.74/88.65 93.05/87.36
0.10 78.65/49.52  79.11/49.98
0.15 43.41/10.26  42.90/9.75

Table 8: Performance of LIRA and LIRA* against RNP.

Attack | No defense RNP

LIRA 94.42/100  92.05/16.67
LIRA® | 94.26/100  91.94/16.89

A.8 EXPERIMENTS WITH STOCHASTIC WEIGHT AVERAGING

Our FMN training aims to search for a flat and stable local minimum in the loss landscape. A pre-
vious work [Izmailov et al.|(2018]) proposed another technique, called Stochastic Weight Averaging
(SWA), to achieve the same goal. Hence, we ran additional attack experiments with FMN replaced
by SWA. The results reported in Table[T0|suggest that SWA is not robust against both Super-FT and
FT-SAM, unlike our proposed technique.

A.9 LOSS LANDSCAPE ANALYSIS

We visualize the landscapes for the test error rate of FMN, the original attack, and its SWA version
in Figure[6] The landscape from our method is much flatter than the others. Hence, our attack is
resilient against finetuning-based defenses.

(a) Test error rate on clean data of conventional Blend (left), Blend + SWA (middle), and Blend + FMN (right)
poisoned models.

(b) Test error rate on poisoned data of conventional Blend (left), Blend + SWA (middle), and Blend + FMN

(right) poisoned models.

Figure 6: Illustration of loss landscapes.

A.10 MODEL INTERPOLATION

We provide empirical intuition of why FMN is effective against finetuning-based defenses. Figure[7]
shows the ASR (Attack Success Rate) and BA (Clean Accuracy) along the connectivity path of the
poisoned model and its corresponding fine-tuned version after undergoing the fine-tuning process
of Super-FT defense. As can be observed, with conventional backdoor learning (left figure), when
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Table 9: FMN performance with 1% poisoning rate.
Attack \ No defense  Super-FT FT-SAM

Blend”* 93.60/100  91.42/54.66 91.62/89.82
Trojaning™ | 93.57/99.97  90.64/65.73  91.55/98.90

Table 10: Performance of Blend + SWA attack.
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Attack | No defense  Super-FT FT-SAM

Blend + SWA 92.42/97.51 90.21/21.34  91.43/30.19

Trojan WM + SWA | 92.81/98.69  89.94/25.12  90.26/34.52
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Figure 7: Model interpolation of conventional Blend (left) and Blend + FMN (right) against Super-
FT (CIFAR10).

we linearly interpolate from the backdoored model to its corresponding Super-FT’s fine-tuned ver-
sion, the intermediate model’s poisoning loss (i.e., the loss recorded only on the poisoned samples)
increases, resulting in the decrease in ASR, while their clean losses and BAs are approximately sta-
ble. On the other hand, with FMN training (right figure), linearly interpolating between the backdoor
and its corresponding Super-FT’s fine-tuned model, the poisoning loss and ASR, as well as the clean
loss and BA, are almost constant, indicating that FMN learns the backdoor in a region that makes it
difficult for a fine-tuning defense to escape from.

A.11 EXPERIMENTS WITH DIFFERENT VICTIM MODEL BACKBONES

We use the same hyper-parameters used in superFT for our cyclical learning rate scheme. We found
this configuration is effective, and there is no need to tune these hyperparameters. We have run
additional experiments utilizing various model architectures while maintaining the hyperparameters
consistent with those employed for ResNet in our original study. We report the BA/ASR in Table[T1]
As shown, our method still achieves high ASR and remains effective against advanced fine-tuning
defenses, such as super-FT and FT-SAM, across various architectures.
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Model | Attack | Nodefense  Super-FT FT-SAM

VGG16 Blend + FMN 91.21/97.21 89.66/87.92  90.13/93.06
Trojaning + FMN | 90.06/99.63  88.79/89.96  89.25/93.34

MobileNetv?2 Blend + FMN 93.73/98.99  91.44/93.29 91.62/95.82
Trojaning + FMN | 93.57/99.97  90.59/93.54  90.94/96.07

Table 11: Performance of FMN with different victim backbones.
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