
A Appendix

A.1 Module, Net and Pin

Module. A chip is a combination of numerous modules, and there are two types of them: macros
and standard cells. Macros are relatively large, including DRAMs, caches, and IO interfaces. Standard
cells are mainly logical gates, much smaller than macros, and the size can be ignored. As in Fig.8
(a), there are four macros and several standard cells. Placement methods usually place macros first
and then the standard cells to ensure there is enough space for macros [36]. Due to the considerable
number of standard cells, we currently use our MaskPlace method on macro placement.

Pin. Pins are input/output interfaces for modules and are connected by wires directly, which have
fixed relative positions on modules. We define the relative position of the pin P (i,j) from the left-
bottom corner of the module it belongs to as ∆(i,j) = (∆

(i,j)
x ,∆

(i,j)
y). For example, there are five

pins and three macros in Fig.9 (a), and the pin offset information is also shown at the bottom. In
the placement task, we should not ignore the positions of pins because it determines the wirelength.
However, graph neural network-based models [3, 22] ignored them when converting circuits into a
graph, which may lead to sub-optimal results.

Net. A net contains a set of pins connected by the same wires. Thus the pins have the same
information (0/1 in digital circuits). For example, four pins belong to Net 1, and the other three pins
belong to Net 2 in Fig.8 (a). Usually, one pin belongs to only one net, and one net has more than two
pins (one input and several outputs). Pins from the same net can form a net bounding box as Fig.8
(a)(b).

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

𝑤1

𝑤2
ℎ1

ℎ2

Pins ∈ Net 2Pins ∈ Net 1 Net 1 bounding box Net 2 bounding boxMacro Standard Cell

1. 𝑯𝑷𝑾𝑳 = 𝒘𝟏+ 𝒉𝟏 + 𝒘𝟐+ 𝒉𝟐 = 12

𝑔7,4 in Net1 𝑔4,2 not in any Net
𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑔7,4 = 1/w1+1/h1 = 0.67

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑔4,2 = 0

𝟐. 𝑪𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 = 𝐦𝐚𝐱
𝒊,𝒋

𝑪𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏(𝒈𝒊, 𝒋) = 0.67

𝟑.𝑫𝒆𝒏𝒔𝒊𝒕𝒚 = 𝐦𝐚𝐱
𝒊,𝒋

𝑫𝒆𝒏𝒔𝒊𝒕𝒚(𝒈𝒊, 𝒋) = 1.0

𝑤1

𝑤2

ℎ1

ℎ2

g7,4

g4,2

1. 𝑯𝑷𝑾𝑳 = 𝒘𝟏+ 𝒉𝟏 + 𝒘𝟐+ 𝒉𝟐 = 21

𝑔7,4 in Net1,Net2 𝑔4,2 in Net1
𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑔7,4 = 1/w1+1/h1+1/w2+1/h2 = 0.79

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑔4,2 = 1/w1+1/h1 = 0.39

𝟐. 𝑪𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 = 𝐦𝐚𝐱
𝒊,𝒋

𝑪𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏(𝒈𝒊, 𝒋) = 0.79

𝟑.𝑫𝒆𝒏𝒔𝒊𝒕𝒚 = 𝐦𝐚𝐱
𝒊,𝒋

𝑫𝒆𝒏𝒔𝒊𝒕𝒚(𝒈𝒊, 𝒋) = 1.0

g4,2

g7,4

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑔𝑖, 𝑗) = cover area in grid 𝑖, 𝑗

g4,2

g3,1

g7,8

g7,5

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔3,1 = 1.0 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔7,8 = 1.25
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔7,5 = 2.0 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔4,2 = 0.0

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 = 𝐦𝐚𝐱
𝒊,𝒋

𝑫𝒆𝒏𝒔𝒊𝒕𝒚(𝒈𝒊, 𝒋) = 2.0

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 ≥ 1.0 → overlap exists

(a) an example of placement (b) a better placement (c) an example of overlap

Figure 8: Metrics for placement. HPWL is an optimization item, while congestion and density are
constraint items in the actual placement scenario. HPWL is smaller the better, while congestion and
density need to be less than the given thresholds. Placement (b) is better than (a) because HPWL and
congestion of (a) are smaller. Placement (c) is invalid because there are overlaps in cell g7,5 and g7,8.

A.2 Metric

HPWL. HPWL (Half Perimeter Wire Length) is widely used to estimate wirelength by small
computation cost [24]. It is the sum of half perimeter of net bounding boxes as Fig.8 (a)(b), where
the bounding box is the minimal rectangle including all pins belonging to this net.

Congestion. The congestion metric is used to avoid routing congestion, resulting in an increase in
the actual wirelength because the resources for wires are limited in a real chip. There are many ways
to estimate congestion, one is to compute a rough routing result [3], but it is very computationally
intensive. We use RUDY [25] as the estimation of congestion, which is a common way to evaluate.
In RUDY, each grid cell needs to accumulate the inverse of the height and width (1/h+ 1/w) of all

13

the net bounding boxes covering itself and take out the maximum value (or the average of the first k
maximums) of all grid cells as Fig.8 (a)(b).

Density. Density is a metric to reduce overlaps and avoid time-consuming computation for O(V 2)
constraints [1]. So, it is an approximate calculation essentially. It is defined as the maximum stackable
coverage area ratio for each grid cell on a chip canvas. For example, as Fig.8 (c), the maximum
stackable coverage area ratio is 2.0 in grid cell g7,5 because two modules fully occupy it. However,
density less than a small value is not a sufficient condition for the absence of overlap. Because our
method can ensure no overlaps, we only consider it in evaluation. In the practical application scenario
of chip design, HPWL is an optimization item. Conversely, congestion and density are constraint
items.

Examples. We give a set of placement results to explain the metrics in Fig.8. We can see that HPWL
is the sum of width and height of net bounding boxes. Congestion (RUDY) is the max congestion
value of grid cell gi,j , and the value in each grid cell is cumulative from the reciprocal of the width
and height of the net bounding box containing that grid cell. (a) and (b) are from the same circuit, but
(b) is a better placement because (b) has lower HPWL and congestion. Density is the max density
value of grid cell gi,j , and the value in each grid cell is stackable coverage area ratio of the grid cell.
The density of Fig.8 (c) is 2.0 because g7,5 completely covered by two modules.

Relationship between pin offset and HPWL. The pin offset can affect the HPWL. In the graph-
based method, the input features for module include size (Mw,Mh), position (Mx,My) and type.
So, the network can hardly infer the real position of pins and tend to use the center positions of
modules to predict the positions of pins. In this way, the agent will align the centers of the two
modules horizontally, and the result of placement is like Fig.9 (b) to get the wirelength 6. However,
when considering the pins are near the bottom of the modules, it is better to align the bottom of the
two modules as Fig.9 (c), and thus wirelength can be reduced to 2 if we consider the pin offset.

𝑀1 feature = (𝑀𝑥
1 , 𝑀𝑦

1, 𝑀𝑤
1 , 𝑀ℎ

1 , 𝑀𝑡𝑦𝑝𝑒
1)

𝑀2 feature = (𝑀𝑥
2 , 𝑀𝑦

2, 𝑀𝑤
2 , 𝑀ℎ

2 , 𝑀𝑡𝑦𝑝𝑒
2)

pin offset info lost
Wirelength (= HPWL) = 3+3 = 6

∆(𝟏,𝟏)= 𝟒,𝟏 ∆(𝟏,𝟐)= 𝟒,𝟎
∆(𝟐,𝟏)= 𝟏,𝟏 ∆(𝟐,𝟐)= 𝟏,𝟎

∆(𝟑,𝟏)= 𝟏, 𝟏

A Better placement
when considering pin offset

Wirelength (= HPWL) = 1+1 = 2

𝑃(1,1)

𝑃(1,2)

𝑀1

𝑀2

𝑀3

𝑃(2,1)

𝑃(2,2)

𝑃(3,1)

Net 2

Net 1

(a) Pin offset information (b) Placement w/o pin offset (c) Placement w/ pin offset

𝑀1 𝑀1
𝑀2

𝑀2

Figure 9: Explanation for module, pin and net. (a) gives an example for pin offset information.
When we remove the pin offset information, the model tends to align the centers of the two modules
horizontally like (b) because it uses the center position of modules to estimate pin location. However,
we have a better design as (c) when considering pins are located on the bottom of the modules.

A.3 Algorithms

Reward Computation. The dense reward generation algorithm is shown in Algorithm 1. It can
generate dense rewards without an efficiency decrease. For simplicity, we omit the calculation of the
y dimension, which is the same as the x dimension.

Position Mask Generation. The efficient position mask generation algorithm is in Algorithm 2.

Wire Mask Generation. The efficient wire mask generation algorithm is shown in Algorithm 3.
For simplicity, we omit the calculation of the y dimension, which is the same as the x dimension.

14

Algorithm 1: Dense HPWL Reward Computation (omit y-dimension)
Data: Placed position of module M t (M t

x,M
t
y), max/min x/y coordinates of nets

MaxMinCoord, pin offsets (∆(t,j)
x ,∆

(t,j)
y), pin to net connection P (t,j)

n ;
Result: Incremental HPWL Reward reward;
reward← 0;
foreach ∆

(t,j)
x , P

(t,j)
n of all pins P (t,j) from M t do

x←M t
x +∆

(t,j)
x ; // calculate pin coordinates

if P (t,j)
n not in MaxMinCoord then
// The net for the first time has a definite location of the pin
MaxMinCoord[P

(t,j)
n].x.max← x;

MaxMinCoord[P
(t,j)
n].x.min← x;

else
// Update the bounding box range
if MaxMinCoord[P

(t,j)
n].x.max < x then

reward← reward+ (x−MaxMinCoord[P
(t,j)
n].x.max);

MaxMinCoord[P
(t,j)
n].x.max = x;

else if MaxMinCoord[P
(t,j)
n].x.min > x then

reward← reward+ (MaxMinCoord[P
(t,j)
n].x.min− x) ;

MaxMinCoord[P
(t,j)
n].x.min = x;

end
end

end

Algorithm 2: Position Mask Generation
Data: Width, Height and Position of t-1 placed module M1:t−1

(M1:t−1
w ,M1:t−1

h ,M1:t−1
x ,M1:t−1

y)

Result: Position Mask f tp for Module M t

f tp ← ones(N,N); // ones(N,N) is all-ones N ×N matrix
for i← 1 to t− 1 do
tmp← ones(N,N);
// find positions that will cause M t and M i to overlap
tmp[M i

x −M t
w + 1 :M i

x +M i
w − 1,M i

y −M t
h + 1 :M i

y +M i
h − 1]← 0;

// exclude infeasible positions
f tp ← tmp⊙ f tp ; // ⊙ is element-wise product

end

15

Algorithm 3: Wire Mask Generation (omit y-dimension)
Data: Hash Map of Max/Min X/Y coordinates of nets MaxMinCoord, pin’s offsets

(∆
(t,j)
x ,∆

(t,j)
y), pin to net connection P (t,j)

n

Result: Wire Mask f tw for module M t

f tw ← zeros(N,N);
// Accumulate the wirelength increase for each net
foreach ∆

(t,j)
x , P

(t,j)
n of all pins P (t,j) from M t do

// If the pin is to the left of the net bounding box
for i← 0 to MaxMinCoord[P

(t,j)
n].x.min+∆

(t,j)
x − 1 do

f tw[i, :]← f tw[i, :] +MaxMinCoord[P
(t,j)
n].x.min+∆

(t,j)
x − i;

end
// If the pin is to the right of the net bounding box
for i←MaxMinCoord[P

(t,j)
n].x.max+∆

(t,j)
x + 1 to N − 1 do

f tw[i, :]← f tw[i, :] + i− (MaxMinCoord[P
(t,j)
n].x.max+∆

(t,j)
x);

end
end

Congestion Satisfaction. The algorithm implemented in the congestion satisfaction block can be
seen in Algorithm 4.

Algorithm 4: Placement with Congestion Constraint
Data: Trained place agent agent, expected congestion threshold Cth

Result: A placement plan [a1, a2, ..., aV] that meet the congestion requirement
for i← 1 to V do

Choose ai from the probability matrix generated by policy network agent;
Cong ← congestion matrix from the state after taking ai;
Compute congestion value c from Cong;
if c > Cth then

Randomly sample N different actions a1:Ni from action space;
Compute N congestion values c1:Ni from congestion metrics;
Get N wirelength values w1:N

i from wire masks;
Sort the N actions according to w1:N

i (as the 1st key) and c1:Ni (as the 2nd key);
flag ← False ;
for j ← 1 to N do

if cji ≤ Cth then
flag ← True;
ai ← aji ;
break;

end
end
// If all sampled actions cannot satisfy congestion threshold, we

choose the one with minimal congestion increase.
if flag is False then ai ← the action aji with minimum cji ;

end
Take action ai as the final action;

end

16

A.4 Details of Model Architecture

The parameters of layers in model architecture are in Table 10. Also, the features used by pixel-level
mask generation are in Table 11. The comparison of features for the placement order in different
methods can be seen in Table 12.

Table 10: Model Architecture
Block Layer Kernel Size Output shape

Local Mask Fusion
Conv 1× 1 (224, 224, 8)
Conv 1× 1 (224, 224, 8)
Conv 1× 1 (224, 224, 1)

Global Mask Encoder ResNet-18 - 1000
FC - 768

Global Mask Decoder

Deconv 3× 3 (14, 14, 8)
Deconv 3× 3 (28, 28, 4)
Deconv 3× 3 (56, 56, 2)
Deconv 3× 3 (112, 112, 1)
Deconv 3× 3 (224, 224, 1)

Merge Conv 1× 1 (224, 224, 1)

Position Embedding - - 64

FC for Value
FC - 512
FC - 64
FC - 1

Table 11: State Features
Module status Index Feature Notation Dimension per module

Placed M1:t−1

Width Mw 1
Height Mh 1

Position Mx,My 2
Pin Offset ∆x,∆y 2× num of pins

Pin to Net Connection Pn num of pins

Unplaced M t,M t+1

Width Mw 1
Height Mh 1

Pin Offset ∆x,∆y 2× num of pins
Pin to Net Connection Pn num of pins

Table 12: Features used for placement order

Method Features for place order

Graph Placement [3] Topological order, Area
DeepPR [22] None
MaskPlace Number of nets, Area, Number of its connected modules have been placed

A.5 Training Configuration

The detailed configuration and hyperparameter settings of our model is in Table 13.

17

Table 13: Model Configuration
Configuration Value Configuration Value

Optimizer Adam Learning rate 2.5× 10−3

Total epoch 150 Epoch for update 10
Batch size 64 Buffer capacity 10× num of modules

Clip ϵ 0.2 Clip gradient norm 0.5
Reward discount γ 0.95 Num GPUs 1

CPU AMD Ryzen 9 5950X GPU GeForce RTX 3090

Also, we implement DREAMPlace6 [9], Graph Placement7 [3] ,and DeepPR8 [22] by their open
source codes with their default settings.

A.6 Details of Benchmark

The detailed statistics of benchmarks are in Table 14. Hard macros are macros placed by the RL
method in Graph Placement [3], and the remaining macros, also named soft macros, are placed by
the classic optimization-based method. However, this distinction does not apply to the process of
our method, which means we place all macros by RL. The statistical range of nets, pins, and area
utilization are macros. Ports are terminals connecting to an external circuit, seen as fixed and no-size
modules. Our method is also applicable to circuits with ports without additional modifications.

Table 14: Statistics of different chip benchmarks.
Benchmark Macros Hard Macros Standard Cells Nets Pins Ports Area Util(%)

adaptec1 543 63 210,904 3,709 4,768 0 55.62
adaptec2 566 190 254,457 4,346 10,663 0 74.46
adaptec3 723 201 450,927 6,252 11,521 0 61.51
adaptec4 1,329 92 494,716 5,939 13,720 0 48.62
bigblue1 560 32 277,604 657 1,897 0 31.58
bigblue3 1,293 138 1,095,519 5,537 15,225 0 66.81

ariane 932 134 0 12,404 22,802 1,231 78.39
ibm01 246 246 12,506 908 1,928 246 61.94
ibm02 280 272 19,321 602 1,466 259 64.63
ibm03 290 290 22,846 614 1,237 283 57.97
ibm04 608 296 26,899 1,512 3,167 287 54.88
ibm06 178 178 32,320 83 175 166 54.77
ibm07 507 292 45,419 2,471 5,992 287 46.03
ibm08 309 302 51,000 1,725 3,721 286 47.13
ibm09 253 56 53,142 446 898 285 44.52
ibm10 786 56 68,643 2,160 4,720 744 61.40
ibm11 373 56 70,185 682 1,371 406 41.40
ibm12 651 205 70,425 1,589 3,468 637 53.85
ibm13 424 100 83,775 804 1,669 490 39.43
ibm14 614 91 146,991 1,620 3,960 517 22.49
ibm15 393 22 161,177 748 1,521 383 28.89
ibm16 458 37 183,026 1,755 3,981 504 39.46
ibm17 760 107 184,735 2,055 4,366 743 19.11
ibm18 285 285 210,328 727 1,600 272 11.09

A.7 Supplementary Experiment

More benchmarks We also conducted experiments in the IBM benchmark suite (ICCAD 2004)
[31], which has been used to evaluate placement for more than a decade. We remove the “ibm05” be-
cause it does not contain any macros. We use our MaskPlace to place large macros and DREAMPlace

6github.com/limbo018/DREAMPlace
7github.com/google-research/circuit_training
8github.com/Thinklab-SJTU/EDA-AI

18

https://github.com/limbo018/DREAMPlace
https://github.com/google-research/circuit_training
https://github.com/Thinklab-SJTU/EDA-AI

[9] to place standard cells. We compared our method with graph placement [3] and the simulated
annealing method used in [3]. The results are in Table 15 and our method can achieve the lowest
HPWL in all benchmarks.

Table 15: Comparisons of HPWL (×105) for macro and standard cell placement in ibm benchmark.
Method ibm01 ibm02 ibm03 ibm04 ibm05 ibm06

Graph Placement [3] 31.71 55.12 80.00 86.86 - 63.48
Simulated Annealing [3] 25.85 54.87 80.68 83.32 - 69.09

MaskPlace+DREAMPlace [9] 24.18 47.45 71.37 78.76 - 55.70
Method ibm07 ibm08 ibm09 ibm10 ibm11 ibm12

Graph Placement [3] 117.71 134.77 148.74 440.78 218.73 438.57
Simulated Annealing [3] 117.71 144.89 141.67 463.04 228.79 435.77

MaskPlace+DREAMPlace [9] 95.27 120.64 122.91 367.55 202.23 397.25
Method ibm13 ibm14 ibm15 ibm16 ibm17 ibm18

Graph Placement [3] 278.93 455.31 520.06 642.08 814.37 450.67
Simulated Annealing [3] 259.89 405.80 510.06 614.54 720.40 442.00

MaskPlace+DREAMPlace [9] 246.49 302.67 457.86 584.67 643.75 398.83

For the larger circuit bigblue4 in ISPD 2005 benchmark, the result of our method and baselines can
been seen as Table 16. MaskPlace still achieved the best performance.

Table 16: HPWL (×107) results for bigblue4 benchmark

Benchmark Random NTUPlace3[6] RePlAce[8] DREAMPlace [9]

bigblue4 128.06±3.94 48.38 11.80±0.73 12.29±1.64

Benchmark Graph Placement [3] DeepPR [22] DeepPR-no-overlap [8] MaskPlace

bigblue4 53.35±4.06 68.30±4.44 115.08±2.29 11.07±0.90

Search time We compared the search time of our method, Graph Placement [3] and DeepPR [22].
We tested all methods in the same environment and took the HPWL as the metric in benchmark
adaptec1. The result is in Fig. 10. We can see that our approach can achieve the best performance in
a few hours.

0 50 100 150 200 250
Wall Clock Time(min)

106

5x106

Re
wa

rd
(-H

PW
L)

MaskPlace
Graph Placement
DeepPR

Figure 10: Search time comparison

A.8 Detailed equation description of the model

We describe our model architecture in Fig. 4 in the form of equation.

19

With current state st, we first calculate the position masks f tp, f
t+1
p , wire masks f tw, f

t+1
w and view

mask f tv via the mask generation function m(·).
f tp, f

t+1
p , f tw, f

t+1
w , f tv = m(st) (3)

Then we extract the local feature zlt via local mask fusion gω(·) and the global features zgt via the
global mask encoder encη(·).

zlt = gω(f
t
p, f

t+1
p , f tw, f

t+1
w) (4)

where gω(·) is a 1×1 convolutional neural network with parameter ω.
zgt = encη(f

t
w, f

t+1
w , f tv) (5)

where encη(·) is a convolutional neural network with ResNet-18 architecture with parameter η.

With local features zlt and global features zgt , the state value V̂t is derived by

V̂t = vϕ(pos(t), z
g
t) (6)

where vϕ is an MLP-like neural network with parameter ϕ and pos(t) is an embedding vector which
is related to step t.

We decode the global features zgt into the dimension as same as the action space by the global mask
decoder

z
′g
t = decδ(z

g
t) (7)

where decδ(·) is a transpose convolutional neural network with parameter δ.

Finally, we concatenate the local features zlt and global features z
′g
t in the channel dimension and

merge them by another 1×1 convolutional neural network ψξ(·). We further combine it with the
position mask f tp to generate action at via the policy network πθ(·)

at ∼ πθ(ψξ(z
l
t||z

′g
t), f tp) (8)

where πθ(·) is an MLP-like neural network with parameter θ and ψξ(·) is a 1×1 convolutional neural
network with parameter ξ.

B Related Work

Classic optimization-based methods. Optimization has been the dominant method in placement
for decades. They can be divide into three categories: partitioning-based methods [4, 5], simulated
annealing methods [10, 11] and analytical methods [6–9, 12–21].

Partitioning-based methods [4, 5] cluster the whole circuits into several parts to minimize the
connections between parts. These methods first solve the placement problems within the same part
and then place these parts to suitable positions on the chip based on the divide-and-conquer idea.
However, optimizing modules within one part is an isolated problem, and sometimes it is hard to
divide the circuits into relatively independent parts, which is highly related to the topology of the
circuits.

Simulated Annealing (SA) methods [10, 11] are also known as hill-climbing methods, a widely
used iterative heuristic algorithm for solving combinatorial optimization problems. They initialize a
random status and then search for the following status by moving from the current status to a neighbor
status. If the metrics of the neighbor status are better than that of the current status, they move to the
neighbor status. Otherwise, the move may still be taken with a decreasing probability over time. The
advantage is that they can be implemented when metrics do not have the analysis formula or cannot
be differentiable. However, it is not efficient enough, and the placement results are highly dependent
on the random initial state.

Analytical methods gradually replace the above two methods because of the best performance. They
can be divided into quadratic methods [12–18] and nonlinear (non-quadratic) methods [6–9, 19–21].
Quadratic methods [12–18] transform the placement problem into a sequence of convex quadratic
problems, and there are well-established solvers for such problems. However, it is a very rough
approximation. Nonlinear methods [6–9, 19–21] design a single differentiable objective function
and optimize it. The advantage is that it can handle large-scale modules. However, the objective
function is still approximated, and they cannot avoid overlaps when combining multiple metrics in
one objective function. Methods in this category achieved the highest placement quality among all
classic methods [9].

20

Learning-based methods. With the development of deep learning, some learning-based approaches
[11, 37–39] have been proposed to assist classic methods. Huang et al. [37] uses convolutional neural
networks to estimate the congestion for SA placement. Vashisht et al. [11] uses the reinforcement
learning models to generate the initial placement of SA. Kirby et al. [38], Agnesina et al. [39]
help classic placement tools choose the most suitable hyperparameters with reinforcement learning
methods. However, these methods do not implement end-to-end placement by deep learning, so the
placement results depend heavily on the classic methods.

Pure reinforcement learning methods [3, 22, 23, 40] view placement as a process of placing modules
sequentially. Mirhoseini et al. [3] uses reinforcement learning to place hard macros, and the force-
directed method [18] to place remaining soft macros. Jiang et al. [23] replaces the force-directed
method with DREAMPlace [9] to place soft macros based on Graph Placement [3]. Cheng and Yan
[22] proposes a reinforcement learning method by using wirelength as the reward. Moreover, Chang
et al. [40] puts all metrics in the RL reward. They have in common that they convert the circuit as
a graph structure and input them to the graph neural networks [41]. However, the pin information
has been lost, leading to sub-optimal placement. Also, they cannot avoid overlaps because of the
reduction in search space. These methods still have room for improvement in terms of realistic chip
placement. For instance, DeepPR [22] ignores the realistic size of the module. However, the size of
the modules varies widely in most circuits. Although it proposes to use routing wirelength instead of
HPWL as the reward, it will affect the efficiency and lead to sparse reward, making models hard to
train. In contrast, HPWL is a high-quality wirelength estimation, and we do not need to discard this
inherent dense reward.

21

	Introduction
	Preliminary and Notation
	Our Approach
	Experiments
	Conclusion
	Appendix
	Module, Net and Pin
	Metric
	Algorithms
	Details of Model Architecture
	Training Configuration
	Details of Benchmark
	Supplementary Experiment
	Detailed equation description of the model

	Related Work

