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ABSTRACT

The Transformer architecture is widely deployed in many popular and impactful
Large Language Models. At its core is the attention mechanism for calculating
correlations between pairs of tokens. Performing an attention computation takes
quadratic time in the input size, and had become the time bottleneck for trans-
former operations. In order to circumvent this, researchers have used a variety
of approaches, including designing heuristic algorithms for performing attention
computations faster, and proposing alternatives to the attention mechanism which
can be computed more quickly. For instance, state space models such as Mamba
were designed to replace attention with an almost linear time alternative.
In this paper, we prove that any such approach cannot perform important tasks that
Transformer is able to perform (assuming a popular conjecture from fine-grained
complexity theory). We focus on document similarity tasks, where one is given
as input many documents and would like to find a pair which is (approximately)
the most similar. We prove that Transformer is able to perform this task, and we
prove that this task cannot be performed in truly subquadratic time by any algo-
rithm. Thus, any model which can be evaluated in subquadratic time – whether
because of subquadratic-time heuristics for attention, faster attention replacements
like Mamba, or any other reason – cannot perform this task. In other words, in
order to perform tasks that (implicitly or explicitly) involve document similarity,
one may as well use Transformer and cannot avoid its quadratic running time.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) is widely used for natural language processing
(Devlin et al., 2019b; Yang et al., 2019), computer vision (Dosovitskiy et al., 2021; Carion et al.,
2020), and many other tasks, and has achieved state-of-the-art performance for numerous appli-
cations. At the core of the architecture is the attention mechanism which is designed to calculate
the correlation between all pairs of tokens in a given input sequence. Namely, let Q ∈ Rdin×m be
the query matrix, K ∈ Rdin×m be the key matrix and V ∈ Rdin×dout be the value matrix. Given
X ∈ Rn×din , an attention mechanism computes

AQ,K,V (X) := softmax(XQK⊤X⊤)XV

where the softmax operator

softmax(v) =
(exp(v[1]), . . . , exp(v[n]))∑n

i=1 exp(v[i])

for v ∈ Rn is applied to matrices row-wise. Computing the attention by straightforwardly following
the definition above requires quadratic time (in the sequence length n), which prohibits efficient
model training when the sequence length is too large. As a result, much effort has been devoted
to overcoming this obstacle in recent years, and there are two major lines of research to tackle the
problem.

∗* denotes equal contribution
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The first line of research argues that instead of computing attention exactly in the worst case, it
often suffices to use heuristics which work well when the input data has additional structure, or
to only return coarse approximations of the attention mechanism which can be computed more
quickly. Examples including KDEformer (Zandieh et al., 2023), Reformer (Kitaev et al., 2020),
Hyperattention (Han et al., 2024), Linformer (Wang et al., 2020), SMYRF (Daras et al., 2020), and
Performer (Choromanski et al., 2021). In many cases, these heuristics result in algorithms which
run in close to linear time. However, these techniques usually have corresponding downsides, such
as model accuracy drops, or performance gains which do not appear to scale to large inputs.

The second line of research argues that instead of computing or approximating attention, we can
replace the standard attention mechanism with new, different mechanisms which can be computed
faster. Models such as Longformer (Beltagy et al., 2020), Synthesizer (Tay et al., 2021), Routing
transformers (Roy et al., 2021), and MAMBA (Gu & Dao, 2023) all aim to circumvent the quadratic
barrier by proposing new attention alternatives. A priori, these techniques would result in weaker
expressiveness since they replace attention’s calculation of token interactions with simpler alterna-
tives, although most also provide empirical evidence that the loss in accuracy at certain tasks is not
large.

In this paper, we prove that any approach that takes subquadratic time, no matter whether it uses
heuristic or approximations, or a new architecture, or a completely different approach, is inherently
unable to perform important learning tasks that a transformer is able to perform. By using tools and
popular hardness conjectures from the area of fine-grained complexity theory, we show that many
learning tasks involving document similarity cannot possibly be solved in subquadratic time using
any algorithmic approach. This implies that subquadratic alternatives to standard transformers are
not able to solve these simple and natural tasks in machine learning and NLP. To complement this,
we show that standard transformers (even simple transformers with one layer and one attention head)
are able to perform these tasks, thereby establishing a separation between standard transformers and
these new approaches. In other words, we prove that accuracy loss for any task relating to document
similarity is unavoidable for any subquadratic approach, even when compared only to the simplest
transformers, because of the inherent computational complexity of the task.

1.1 DOCUMENT SIMILARITY

In this work we will be focusing on document similarity tasks. We will show that standard trans-
formers are capable of solving these tasks but subquadratic alternatives to transformers cannot.

Document similarity is a fundamental area in natural language processing with many applica-
tions including recommender systems (Ostendorff, 2020), search engines (Mahdi et al., 2018), and
plagiarism-detection (Baba et al., 2017). For a given document D, we first need to define a docu-
ment embedding to transform it into a vector v ∈ Rd, and we will then measure how similar two
documents are by using a similarity measure on their embedding vectors. There are many ways to
embed a document as a vector including Doc2Vec (Le & Mikolov, 2014), TF-IDF (Sparck Jones,
1988), BERT (Devlin et al., 2019b), bag-of-words (Harris, 1954), and many ways to measure how
similar two documents are including cosine similarity, Euclidean distance, and Jaccard Similarity.
In this work, we focus on two of the most popular options, bag-of-words embedding and cosine
similarity, although our results extend naturally to almost any reasonable alternatives.

Bag-of-words Embedding. Bag-of-words embedding is a well-studied method of embedding
(Blei et al., 2003) that is commonly used for text classification (Jin et al., 2016), radiology (Ju-
luru et al., 2021) and many other settings, especially in NLP. Given a document D and a list of ℓ key
words, the bag-of-words embedding of D is a vector v ∈ {0, 1}ℓ such that the i-th entry of v corre-
sponds to whether the i-th key word exists in D or not. 1 For example, if a document only contains
one sentence “There are ten apples on the apple tree” and the key words chosen are “apple”, “tree”,
“computer” and “ten”, this document will have bag-of-words embedding (1, 1, 0, 1).

Cosine Similarity. Cosine similarity is one of the most commonly used method to measure how
similar two documents are. Given two document embeddings v, w ∈ Rd, the cosine similarity is

1Sometimes the entries are also frequency counts, but that would only make the embedding vectors more
complex. Since our main goal is to show hardness, we will focus on the simpler binary case.
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given by
⟨v, w⟩

∥v∥2 · ∥w∥2
∈ [0, 1]

where 1 represents complete similarity and 0 represents no similarity. It is defined in this way, rather
than just taking the inner product ⟨v, w⟩, so that two documents (vectors) with large magnitude
can still be considered close if they have similar directions. Cosine similarity is one of the most
popular and effective measures; for instance, Sanchez-Gomez et al. (2021) found that when used for
extractive multi-document text summarization, cosine similarity gives the best results.

Problem Statement. We define our most similar document (MSD) and least similar document
(LSD) problems as: given a set of n binary vectors v1, . . . , vn of length d (document embeddings),
the goal is to find two documents that are the most/least similar to each other in terms of cosine
similarity. There are many natural variants of these two problems, and we prove similar hardness
for all of them:

1. (Bichromatic MSD, LSD) Sometimes we have two sets of documents A,B and we want to
find one document from each set such that the pair is (un)similar.

2. (γ-MSD, γ-LSD) Sometimes we might only need to find a pair of documents that is ap-
proximately the most (un)similar, (up to an approximation factor γ) and not necessarily the
optimal pair.

3. (MSDn,d,t, LSDn,d,t) Sometimes we only want to know if there exists a pair whose cosine
similarity is above (or below) a threshold t ∈ [0, 1].

These variants occur in many practical scenarios when using a large language model. They can arise
explicitly when the descriptions of n documents of size ℓ are given to a language model, and the
model is asked to find the most similar pair of documents. However, there are many scenarios where
document similarity can arise implicitly as well, such as in plagiarism detection and team matching.

1.2 MAIN RESULTS

Our hardness results are based on a prevalent conjecture from fine-grained complexity theory called
the Strong Exponential Time Hypothesis (SETH):

For every ε > 0, there is an integer k such that kSAT with n variables requires Ω(2(1−ε)n) time.

SETH was first introduced by Impagliazzo & Paturi (2001), and is a popular strengthening of the
conjecture that P ̸= NP. (In other words, proving that SETH is true implies P ̸= NP.) Since then,
there has been a long line of work studying and making use of SETH. Prior work has given theo-
retical evidence for SETH (Impagliazzo & Paturi, 2001; Abboud et al., 2018; Vassilevska Williams,
2015), and has used SETH to prove hardness of problems in many different areas of algorithm
design. See the survey Williams (2018) for a detailed background.

Main Results: Limitations of subquadratic alternatives. We show that MSD, LSD and their
variants require quadratic time assuming SETH for some natural choice of parameters, and there-
fore any subquadratic alternatives to transformers are not able to solve them due to computational
constraints. The formal hardness results are as follows, and vary slightly in the dimension parameter
ℓ depending on the details of the problem:
Theorem 1.1 (Theorem 3.1 and Corollary 3.2). Assuming SETH, for every ε > 0, there exists a
constant c > 0 such that LSDn,ℓ cannot be solved in O(n2−ε) time when ℓ = c log n. Moreover,
the same lower bound also holds for LSDn,ℓ,t for some 0 < t < 1, γ-LSDn,ℓ for any γ ≥ 1, and
bichromatic LSDn,ℓ.

Theorem 1.2 (Theorem 3.3 and Corollary 3.4). Assuming SETH, for every ε > 0, there exists a
constant c > 0 such that MSDn,ℓ cannot be solved in O(n2−ε) time when ℓ = n

c
log log n . Moreover,

the same lower bound also holds for MSDn,ℓ,t for some 0 < t < 1 and γ-MSDn,ℓ for any 1 ≤ γ ≤
polylog(n).

For bichromatic MSD we can obtain a stronger hardness result.
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Theorem 1.3 (Theorem 3.3 and Corollary 3.4). Assuming SETH, for every ε > 0, there exists a
constant c > 0 such that bichromatic MSDn,ℓ cannot be solved in O(n2−ε) time when ℓ = c log n.

In all these problems, we prove hardness when ℓ is Θ(log n) or no(1). This is a natural choice: for
any smaller ℓ < log n, there could be at most 2ℓ < n vectors under a bag-of-words embedding,
which means that there would be duplicate vectors in our instance. Making ℓ larger can only make
the problem harder.

It follows that any language task which, either explicitly or implicitly, involves solving any of these
document similarity problems, cannot be solved in subquadratic time when the input size is large
enough, no matter what the parameters or architecture of the language model are.2

Main Results: Representational strength of standard transformers. When a problem requires
quadratic time to solve, this means that subquadratic-time models cannot solve it, but it does not
necessarily mean that a transformer model can solve it. For example, Sanford et al. (2024b) defined
a problem called “Match3” which can be solved in quadratic time by a textbook algorithm, but
which they prove cannot be solved by a one-layer transformer unless it has a lot of attention heads
or a very high embedding dimension.

We show that this is not the case for MSD and LSD by showing that a single standard attention
unit with input and output MLPs can solve MSDn,d,t, LSDn,d,t and a simpler version of MSD, the
Orthogonal Vectors problem (OV), where one is given a set of binary vectors and needs to determine
if there exists a pair of vectors that are orthogonal. Thus, these problems establish a separation
between standard transformers and subquadratic alternatives to transformers.
Theorem 1.4 (Theorems 4.1 and C.2). A single unit of standard attention with input and output
MLPs, embedding dimension ℓ+ 1 can solve OVn,ℓ and MSDn,ℓ,t, LSDn,ℓ,t for any 0 ≤ t ≤ 1.

In principle, there could be concerns with representational results like these that the weights of the
model are complicated and hard to find in training. However, our constructions of transformers that
solve these problems are very simple: our MLPs are piece-wise linear functions that are easy to
approximate/compute, and our key/query/value matrices in the attention unit are also simple, sparse
and low-rank matrices with small entries.

1.3 RELATED WORK

In recent years, several theoretical and algorithmic aspects of transformers have been extensively
studied. We discuss next two aspects that are most relevant to our work, and which we build on in
the proofs of our results.

Representational strengths of Transformers. Representational strengths of transformers have
been widely studied in recent years. It has been shown that transformers have several natural lim-
itations, including not being able to model periodic finite-state languages or hierarchical structure
(Hahn, 2020), and not being able to recognize some counter languages without large depth (Bhat-
tamishra et al., 2020). On the other hand, transformers are able to recognize formal languages such
as Dyck languages (Yao et al., 2021), simulate finite-state automata (Liu et al., 2023) with O(log n)
depth, and simulate Turing machines if given enough depth (Wei et al., 2024; Merrill & Sabhar-
wal, 2024). There is also a line of work (Hao et al., 2022; Merrill et al., 2022) that understands
what transformers can compute through the lens of circuit complexity; see Strobl et al. (2024) for a
comprehensive survey.

Another line of work has shown that transformers can compute particular problems of interest, in-
cluding PARITY (which perceptrons are notably unable to compute) (Chiang & Cholak, 2022) and
learning problems that attention is particularly suited toward like “sparse averaging” and “k-hop
induction heads” (Sanford et al., 2024a;b).

2We briefly emphasize that the parameter ℓ in these similarity problems need not be related to the architec-
ture or parameters (like din, dout, etc) of a language model which solves the problems. For instance, to ask a
language model to solve MSDn,ℓ, we may ask it “Which of the following paragraphs is most similar?” followed
by a list of n different paragraphs of at most ℓ words each. Thus, the input to the language model would be a
string of length O(nℓ), and since ℓ < no(1) is small compared to n, our result shows that a language model
would need to take quadratic time in the string length to answer this type of query.
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Faster attention mechanisms. As previously discussed, attention computation remains a bottle-
neck for efficiency, and many different approaches have been proposed to tackle this issue. These
approaches typically result in accuracy loss (and a consequence of our main result is theoretical
proof that this is necessary), which has mostly been investigated empirically.

The main prior work on theoretical limitations of subquadratic transformers we’re aware of is San-
ford et al. (2024a). Among other results, they study “kernel-based subquadratic attention” in which
one heuristically computes attention faster by approximating intermediate matrices in the attention
computation either by sparse matrices (Kitaev et al., 2020; Roy et al., 2021; Daras et al., 2020)
or low-rank matrices (Choromanski et al., 2021; Katharopoulos et al., 2020). Sanford et al. (2024a)
defined a “k-hop induction heads” task and proved that transformers can perform this task but kernel-
based subquadratic attention models cannot. Our limitation result is more general than this, applying
to any approach that runs in subquadratic time, rather than needing to focus on a particular architec-
ture or heuristic.

Fine-Grained Complexity and Machine Learning Fine-grained complexity theory has been suc-
cessful at proving conditional lower bounds for problems in diverse areas of algorithm design, such
as in graph theory (Abboud & Williams, 2014; Abboud et al., 2015a; Williams & Williams, 2018)
and combinatorial optimization (Rubinstein, 2018; Alman et al., 2024; Künnemann et al., 2017;
Backurs & Indyk, 2015). See Williams (2018) for a detailed survey.

Recently, it has been shown that many problems in machine learning are also inherently hard as-
suming popular conjectures in fine-grained complexity. For example, Backurs et al. (2017); Alman
& Guan (2024) use SETH to give a lower bound on the time to perform kernel density estimation,
Hu et al. (2024a) use SETH to demonstrate a computational phase transition in modern Hopfield
models, Hu et al. (2024c) and Hu et al. (2024b) use SETH to characterize the computational limits
of diffusion transformers and Low-Rank Adaptation for transformers respectively, and Duman Keles
et al. (2023); Alman & Song (2024) use SETH to give a lower bound on computational complexity
of approximating the attention mechanism itself. We remark that our results, together, give a new,
alternate proof of the hardness of attention assuming SETH. Indeed, we prove that a single attention
unit can solve MSD, and that MSD requires quadratic time assuming SETH, which together imply
that evaluating the attention unit requires quadratic time.

Hardness of similarity search. Similarity search has been a fundamental area in modern machine
learning, and the efficiency of similarity search algorithms has been well-studied through the lens of
fine-grained complexity. Perhaps the most well-known problem in this area is the nearest neighbor
problem.

Nearest Neighbor is a fundamental problem in machine learning which has been the subject of
decades of research (Indyk & Motwani, 1998; Andoni & Indyk, 2008; Andoni & Razenshteyn,
2015; Andoni et al., 2017; Tao et al., 2002; Engels et al., 2024; Uddin et al., 2022; Gu et al., 2019).
Given a dataset P ⊆ Rd with n points, we want to preprocess it such that given a query point
q ∈ Rd, one can find its nearest neighbor in P (in some metric) efficiently. The nearest neighbor
problem gives one common way of classifying objects in machine learning: given an object with
unknown label, one just find its nearest neighbor in the dataset and use its label as the label for the
target object. In addition, it has many applications in classical similarity search over different types
of data including text, images, audio (see Shakhnarovich et al. (2006) for a complete overview).

There are many natural variants of the nearest neighbor problem, including the closest (furthest)
pair problem where one is given a dataset P and wants to find the two points from P that are the
closest (furthest). This problem is exactly Min-IP(Max-IP) if we let inner product be the measure of
closeness. Under standard Euclidean distance, one can also express the distance between two points
as ∥p − q∥ = ∥p∥ + ∥q∥ − 2⟨p, q⟩ such that when all points have the same ℓ2 norm, finding the
closest pair is equivalent to finding the pair with the largest inner product, i.e. Max-IP. In fact, it has
been shown that assuming SETH is true, finding closest pairs in Euclidean or Manhattan distance
both require quadratic time (Alman & Williams, 2015; Rubinstein, 2018). We will use this in our
proofs below.
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2 PRELIMINARIES

Notation. For a vector v, we use v[i] to denote its i-th entry for all i. For a matrix A, we use Ai,:

to denote the i-th row of A and A:,j to denote the j-th column of A. Given a positive integer d, we
use 1d ∈ Rd to denote the vector whose entries are all 1. Given two vectors v ∈ Ra, w ∈ Rb, we use
v ⊗ w ∈ Rab to denote the Kronecker product of v and w (whose entries are all the products of an
entry of v and an entry of w) and v ◦ w ∈ Ra+b to denote the concatenation of v and w. ∥ · ∥ refers
to ℓ2 norm unless otherwise specified. Given a binary vector v ∈ {0, 1}d, we use v̄ ∈ {0, 1}d to
denote the vector where all entries are flipped. The softmax operator, when given a vector v ∈ Rn,
outputs a vector in Rn given by

softmax(v) =
(exp(v[1]), . . . , exp(v[n]))∑n

i=1 exp(v[i])
.

For matrices A ∈ Rn×n, we apply softmax operator row-wise, so that
softmax(A)i,: = softmax(Ai,:).

2.1 THE TRANSFORMER ARCHITECTURE

Transformer is a machine learning architecture composed mainly of attention layers and multi-layer
perceptrons (MLP). We model the input to a attention unit is a n× din matrix where din is the input
dimension and the output of a attention is a n× dout matrix where dout is the output dimension.
Definition 2.1 (attention). For input dimension din ∈ N, output dimension dout ∈ N, embedding
dimension m ∈ N, matrices Q,K ∈ Rdin×m and V ∈ Rdin×dout , a attention is a mapping AQ,K,V :
Rn×din → Rn×dout by

AQ,K,V (X) = softmax(XQK⊤X⊤)XV.

We use Adin,m,dout = {AQ,K,V : Q ∈ Rdin×m,K ∈ Rdin×m, V ∈ Rdin×dout} to denote all such
attentions.

An attention layer consists of many attentions in parallel. Upon receiving input X , each attention
computes an output locally, then the results are all concatenated into a large matrix before being sent
to the next layer. Our constructions in this paper will only need transformers with one layer and
one single unit of attention to illustrate representational strength (transformers with more layers and
heads could only be stronger), so we omit the formal definitions of attention layers.

A multi-layer perceptron (MLP) is a type of neural network that is used to learn nonlinear relation-
ships in data. Mathematically, it is usually formulated as a neural network with different types of
activation functions (Bartlett et al., 2017; Montúfar et al., 2014; Jacot et al., 2018) or sometimes as
a more specific threshold circuit (Maass et al., 1994). Since the universal approximation theorem
(Hornik et al., 1989) states that any continuous function with a finite support can be approximated by
a neural network with one hidden layer, Sanford et al. (2024a;b) modeled MLP as an arbitrary func-
tion ϕ : Rd → Rd′

defined on fixed-precision vectors, and we will notationally use that definition
here.
Definition 2.2 (Multi-player perceptron). A multi-layer perceptron is represented by some continu-
ous function φ : Ra → Rb for some positive integers a, b. We can apply φ to a matrix row-wisely:
given any matrix X ∈ Rn×a, φ(X) = (φ(X1), . . . , φ(Xn)) ∈ Rn×b.

That said, in all our constructions in this paper, it will suffice to use MLPs which are simple,
piecewise-linear functions that fit in all the categories discussed above, and can be easily approxi-
mated by a small neural network or any other MLP definition.

In this work, our transformer (with a single attention unit) will be defined as a composition of the
first MLP, then one attention unit, then the second MLP. This is a natural model for many well-
known transformer models including BERT (Devlin et al., 2019a), GPT-3 Brown et al. (2020), GPT-
4 (OpenAI, 2023) and is typically used in theoretical work on simple transformers (Phuong & Hutter,
2022; Sanford et al., 2024a;b).

Recall in particular that we will be designing such transformers for document similarity problems.
In this case, given n documents D1, . . . , Dn, we will let their bag-of-words embeddings

(BOW(D1), . . . ,BOW(Dn))
⊤ ∈ Rn×d
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be the input to our transformer, and the output of the transformer will be a real number indicating
the answer to our problems.
Definition 2.3. A transformer is a mapping TF : Rn×d → R specified by a attention unit AQ,K,V

and two MLPs φ1 : Rn×d → Rn×din , φ2 : Rn×dout → R. Upon an embedding matrix E ∈ Rn×d,
the transformer outputs φ2(AQ,K,V (φ1(E))).

To emphasize, this is a very simplified model of a transformer with a single attention unit. We say
that a transformer TF solves a problem whose input is a matrix E ∈ Rn×d if TF(E) is the answer
of the problem on instance E. For example, for decision problems like MSDn,d,t, we say TF solves
MSDn,d,t if for all input v1, . . . , vn and E such that Ei,: = vi for all i, TF(E) = 1 if there exists a
pair ⟨vi,vj⟩

∥vi∥·∥vj∥ ≥ t and TF(E) = 0 otherwise.

2.2 FINE-GRAINED COMPLEXITY

We first introduce some common notions from fine-grained complexity. Many proofs in this sec-
tion are deferred to Appendix A, and we also refer the reader to Appendix A for a more detailed
introduction to fine-grained complexity.

In fine-grained complexity, one is usually interested in whether we can improve the running time of
our algorithms by a polynomial factor. For example, the OV problem (defined below) has a straight-
forward quadratic time (ignoring logarithmic factors) algorithm, and it is a major open problem to
determine whether there exists a faster, O(n1.99) time algorithm. We say that an algorithm is truly
subquadratic 3 if it runs in time O(n2−ε) for some constant ε > 0. In this work, all our problems
have quadratic time solutions, and we are interested in whether truly subquadratic time algorithms
exist.

A key technique (that we will use frequently in this work) in fine-grained complexity is the fine-
grained reduction, which is a way to connect the running times of different problems. If problems P
and Q both have quadratic time algorithms, we say that P reduces to Q (sometimes we would also
say P is easier than Q or Q is harder than P) if a truly subquadratic time algorithm for Q implies a
truly subquadratic time algorithm for P . We say P and Q are subquadratic equivalent if they reduce
to each other, i.e. there is a truly subquadratic time algorithm for P if and only if there is a truly
subquadratic time algorithm for Q. Such relationships are proved by careful reductions, and we will
see many examples soon.

2.2.1 HARDNESS CONJECTURES: SETH AND OVC

We restate our central hardness conjecture here.
Definition 2.4 (Strong Exponential Time Hypothesis (SETH)). For any ε > 0, there exists a positive
integer k such that kSAT requires Ω(2(1−ε)n) time, where n is the number of variables in the CNF.

SETH has been one of the biggest open problem in fine-grained complexity, and one of the reasons
is that SETH being true would imply P ̸= NP. See Section 1.2 for a detailed explanation of its
significance and why many people believe that it is true.

We also introduce the Orthogonal Vectors problem, which is an important problem in fine-grained
complexity and will be a key intermediate problem in some of our proofs.
Definition 2.5 (Orthogonal Vectors (OVn,ℓ)). Given binary vectors v1, . . . , vn ∈ {0, 1}ℓ, OVn,ℓ

asks to determine if there exists a pair i ̸= j such that ⟨vi, vj⟩ = 0.

Much effort has been made to give a truly subquadratic algorithm for OVn,c logn for all c, but none
has succeeded. Therefore, Williams (2005) proposed the Orthogonal Vectors Conjecture, which
asserts that such an algorithm does not exist.

3Usually in fine-grained complexity, a subquadratic time algorithm means the algorithm runs in time o(n2),
and a truly subquadratic time algorithm means the algorithm runs in time O(n2−ε) for a fixed constant ε > 0.
For example, O(n2/ logn) is subquadratic but not truly subquadratic. By contrast, in the context of fast
attention, prior machine learning literature often just calls an approach subquadratic to mean that it is truly
subquadratic, or often even almost linear time. In this work, we will use the fine-grained complexity definition
and refer to such approaches as truly subquadratic.
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Conjecture 2.6 (OVC). For any ε > 0, there exists a constant c > 0 such that OVn,c logn cannot
be solved in O(n2−ε) time.

Williams (2005) showed that assuming SETH is true, then OVC is true (the other direction is un-
known). Our paper will use these two conjectures interchangeably such that our hardness results can
be obtained from either conjecture.

There is also a bichromatic version of OVn,ℓ where one is given two sets of vectors A =
{a1, . . . , an}, B = {b1, . . . , bn} such that ai, bj ∈ {0, 1}ℓ and wants to determine if there exists i, j
such that ⟨ai, bj⟩ = 0. In fact, these two problems are subquadratic equivalent (see Theorem A.4 for
proof).

2.2.2 MINIMUM INNER PRODUCT

In this section we introduce the minimum inner product problem, an important problem related to
similarity search.
Definition 2.7 (Min-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, Min-IPn,ℓ asks to find
one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is minimum.

Sometimes we are happy with finding a pair of vectors whose inner product is close enough to
optimal, so we also introduce the approximate Min-IP problem as follows.
Definition 2.8 (γ-Min-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, γ-Min-IPn,ℓ asks to
find one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is a γ-approximation of the minimal inner
product.

It is not hard to see that Min-IP and γ-Min-IP are both at least as hard as OV for any γ ≥ 1 (just
find the minimum inner product and see if it is 0, and any multiplicative approximation of 0 must be
0). Therefore, assuming OVC, for any ε > 0 there exists c > 0 such that Min-IPn,c logn cannot be
solved in O(n2−ε) time.

In addition, there is a decision version of Min-IP, by which we denote Min-IPn,ℓ,t, where one wants
to know whether there exists a pair of vectors whose inner product is at most t for some 0 ≤ t ≤ ℓ.
Definition 2.9 (Min-IP decision version). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ and
0 ≤ t ≤ ℓ, Min-IPn,ℓ,t asks to determine if there exists one pair of 1 ≤ i, j ≤ n, i ̸= j such that
⟨vi, vj⟩ ≤ t.

The bichromatic versions of these problems can be defined analogously: given two sets A,B with
vectors in {0, 1}ℓ, one needs to find i, j that achieves (for bichromatic Min-IPn,ℓ) or approximates
(for bichromatic γ-Min-IPn,ℓ) the minimal ⟨ai, bj⟩. One can obtain a truly subquadratic algorithm
for all three problems above given a truly subquadratic algorithm for their bichromatic versions (see
Theorem A.8 for proof).

2.2.3 MAXIMUM INNER PRODUCT

One can analogously define Max-IP and its variants; see Appendix A.3 for the formal definitions.

It is less obvious whether Max-IP is a harder problem than OV or not. The answer is positive, see
Theorem A.13 for a simple proof.

In fact, Karthik & Manurangsi (2020) proved a stronger statement which says that even approximate
Max-IPn,ℓ is harder than OVn,ℓ for some approximation factor.

2.3 DOCUMENT SIMILARITY PROBLEMS

In this section we formally define the MSD, LSD problems that we will study. First we define the
MSD variants, which are defined similarly to Max-IP variants.
Definition 2.10 (MSD). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ, MSDn,ℓ asks to find
1 ≤ i, j ≤ n, i ̸= j such that ⟨vi,vj⟩

∥vi∥·∥vj∥ is the maximum. 4

4In all versions of MSD and LSD, we assume that there are no zero vectors.

8



Published as a conference paper at ICLR 2025

Even though MSD looks similar to Max-IP, notice that they are not the same problem because of
normalization. For example, v = (1, 1, . . . , 1) ∈ Rℓ and w = (1, 1, . . . , 1, 0, . . . , 0) ∈ Rℓ where w
has ℓ/2 ones have a very large inner product but they might not be considered similar. In contrast,
v′ = (1, 1, . . . , 1, 0, . . . , 0) ∈ Rℓ where v′ has 10 ones and w′ = (0, 1, . . . , 1, 0, . . . , 0) ∈ Rℓ where
w′ has 10 ones have a inner product of 9 but they are very similar in terms of cosine similarity.
Definition 2.11 (γ-MSD). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ, γ-MSDn,ℓ asks to
find 1 ≤ i∗, j∗ ≤ n, i∗ ̸= j∗ such that

1

γ
· max
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

≤ ⟨vi∗ , vj∗⟩
∥vi∗∥ · ∥vj∗∥

≤ max
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

.

Definition 2.12 (MSD decision version). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ,
MSDn,ℓ,t asks to determine if there exists 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi,vj⟩

∥vi∥·∥vj∥ ≥ t.

It is not hard to see that γ-MSDn,ℓ and MSDn,ℓ,t are both easier than MSD. In addition, notice that
the number of possible t can be considered as discrete because there could only be O(ℓ3) possible
values of ⟨vi,vj⟩

∥vi∥·∥vj∥ . As a result, the existence of truly subquadratic time algorithm for MSDn,ℓ,t for
all t ∈ [0, 1] would imply a truly subquadratic time algorithm for MSDn,ℓ using binary search.

Bichromatic versions of these problems can be defined analogously and the proof of Lemma A.8
again tells us that bichromatic versions are harder.

One can analogously define LSD and its variants; see Appendix A.4 for the formal definitions.

3 HARDNESS OF DOCUMENT SIMILARITY

In this section, we show that assuming SETH or OVC, for any ε > 0, there exists a constant c > 0
(only depends on ε) such that many variants of LSDn,c logn,MSDn,c logn require O(n2−ε) time.
Theorem 3.1. Assuming SETH or OVC, for every ε > 0, there exists a constant c > 0 such that
γ-LSDn,ℓ cannot be solved in O(n2−ε) time for any γ ≥ 1 when ℓ = c log n.

Proof. Assume by contradiction that there exists an algorithm A for γ-LSDn,c logn that runs in time
O(n2−ε) for some γ ≥ 1, ε > 0 and any constant c > 0. We show that OVn,c logn can be solved in
time O(n2−ε) for any constant c > 0, which refutes OVC and SETH.

Given vectors v1, . . . , vn ∈ {0, 1}ℓ where ℓ = c log n for any constant c, if any vector is the zero
vector (we can check in time O(nℓ)), then output yes. Otherwise we run A on v1, . . . , vn to compute
i∗, j∗ such that

min
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

≤ ⟨vi∗ , vj∗⟩
∥vi∗∥ · ∥vj∗∥

≤ γ · min
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

.

Observe that min
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

= 0 if and only if there exists a pair of orthogonal vectors, which

implies that there exists a pair of orthogonal vectors if and only if A outputs a pair of orthogonal
vectors. The total amount of time needed for OVn,ℓ is therefore O(nℓ + n2−ε) = O(n2−ε), which
refutes SETH.

Since γ-LSDn,ℓ is easier than LSDn,ℓ and bichromatic γ-LSDn,ℓ, the same lower bound applies to
these two problems as well. In addition, there must exist t ∈ [0, 1] such that LSDn,ℓ,t cannot be
solved in O(n2−ε) time when ℓ = c log n because otherwise that would imply a O(n2−ε) time
algorithm for LSDn,ℓ using binary search.
Corollary 3.2. Assuming SETH or OVC, for every ε > 0, there exists a constant c > 0 such that
LSDn,d cannot be solved in O(n2−ε) time when ℓ ≥ c log n. Moreover, the same lower bound holds
for bichromatic γ-LSDn,ℓ for all γ ≥ 1 and LSDn,ℓ,t for some t ∈ [0, 1].

A similar hardness result for γ-MSDn,d can be derived with much more complicated techniques.
Our proof follows the same idea as Theorem 6.1 of Karthik & Manurangsi (2020) which uses graph
constructions, and we delay the proof of Theorem 3.3 to Appendix B.
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Theorem 3.3. Assuming SETH, for every ε > 0, there exists a constant c > 0 such that γ-MSDn,ℓ

cannot be solved in O(n2−ε) time when

ℓ ≥ (log n)
c log n

(log log n)2 and γ ≤
(
1 +

1

log log n

) log n

(log log n)2

.

Similarly, the hardness result also applies to harder problems including MSDn,ℓ and bichromatic
γ-MSDn,ℓ.
Corollary 3.4. Assuming SETH or OVC, for every ε > 0, there exists a constant c > 0 such that

MSDn,ℓ cannot be solved in O(n2−ε) time when ℓ ≥ (log n)
c log n

(log log n)2 . Moreover, the same lower

bound holds for bichromatic γ-MSDn,ℓ for all 1 ≤ γ ≤ (1 + 1
log logn )

log n

(log log n)2 and MSDn,ℓ,t for
some t ∈ [0, 1].

4 REPRESENTATIONAL STRENGTH OF TRANSFORMERS

So far we have seen multiple problems (OV,Min-IP,Max-IP and variants of MSD, LSD) that require
quadratic time to solve under certain parameters assuming SETH or OVC. In this section, we show
that OV and decision versions of MSD, LSD can be solved by a transformer with one attention unit
in one layer.

Notice that fine-grained reduction does not trivially apply in representational strength of transform-
ers, i.e. two problems might be subquadratic equivalent, but one problem solvable by transformers
might not imply that the other one is also solvable by transformers. This is because many tech-
niques that are simple to do on the word-RAM model (where one can do arithmetic operations, find
the maximum/minimum over n numbers in constant time) might not be easy to implement in parallel
architectures like transformers.

We show that transformers are able to solve OV with appropriate parameters. The constructions
for Min-IP,Max-IP,MSD, LSD are more complicated but follow similar ideas, so we leave them to
Appendix C.
Theorem 4.1. An attention unit with input and output MLPs with parameters d = ℓ, din = ℓ, dout =
1,m ≥ ℓ+ 1 can solve OVn,ℓ.

Proof. Let v1, . . . , vn ∈ {0, 1}ℓ be an OVn,ℓ instance; define vn+1 := 0ℓ and X ∈ R(n+1)×ℓ

such that Xi,: = vi for all i. Since m ≥ ℓ + 1, let Q,K be arbitrary matrices such that QK⊤ =
−3 log n · Iℓ and V ∈ Rℓ×1 be the all-one matrix. Let AQ,K,V denote this attention head, and φ1 be
the identity function.

Let X be the input to the transformer with AQ,K,V as the only attention head. We claim that if there
exists a pair 1 ≤ i ̸= j ≤ n such that ⟨vi, vj⟩ = 0, then AQ,K,V (X) has an entry which is at least
1

n+1 , and otherwise all entries will be at most 1
(n+1)1.5 . As a result, we can use the second MLP φ2

to map AQ,K,V (X) to 1 if any of its entry is at least 1
n+1 and 0 otherwise (see Lemma D.1 for a

formal proof).

We can calculate that the i-th entry of AQ,K,V (X) is
n∑

j=1

exp(−3 log n · ⟨vi, vj⟩)∑n
k=1 exp(−3 log n · ⟨vi, vk⟩) + 1

· ∥vj∥1 =

∑n
j=1 n

−3⟨vi,vj⟩∑n
k=1 n

−3⟨vi,vk⟩ + 1
· ∥vj∥1.

As a result, if there exists a pair ⟨vi∗ , vj∗⟩ = 0 with 1 ≤ i∗, j∗ ≤ n, then the i∗-th entry of
AQ,K,V (X) can be lower bounded as∑n

j=1 n
−3⟨vi,vj⟩∑n

k=1 n
−3⟨vi,vk⟩ + 1

≥ n−3⟨vi∗ ,vj∗ ⟩

n+ 1
=

1

n+ 1
.

Otherwise, ⟨vi, vj⟩ ≥ 1 for all i, j and thus the i-th entry of AQ,K,V (X) is∑n
j=1 n

−3⟨vi,vj⟩∑n
k=1 n

−3⟨vi,vk⟩ + 1
· ∥vj∥1 ≤

n∑
j=1

d

n3⟨vi,vj⟩
≤ n · d

n3
<

1

n1.5
.
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A A DETAILED INTRODUCTION TO FINE-GRAINED COMPLEXITY

A.1 HARDNESS CONJECTURES: SETH AND OVC

We restate our central hardness conjecture here.

Definition A.1 (Strong Exponential Time Hypothesis (SETH)). For any ε > 0, there exists a posi-
tive integer k such that kSAT requires Ω(2(1−ε)n) time.

SETH has been one of the biggest open problem in fine-grained complexity, and one of the reasons
is that SETH being true would imply P ̸= NP. See Section 1.2 for a detailed explanation of its
significance and why many people believe that it is true.

We also introduce the Orthogonal Vectors problem, which is an important problem in fine-grained
complexity and will be a key intermediate problem in some of our proofs.
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Definition A.2 (Orthogonal Vectors (OVn,ℓ)). Given binary vectors v1, . . . , vn ∈ {0, 1}ℓ, OVn,ℓ

asks to determine if there exists a pair i ̸= j such that ⟨vi, vj⟩ = 0.

Usually researchers focus on the regime when ℓ ≪ n, and thus we will assume that ℓ ≤ no(1)

throughout this paper. The straightforward algorithm for OVn,ℓ runs in time O(n2ℓ) by simply
computing the inner products between each pair of vectors. In very low dimensions, one can employ
a folklore recursive approach to obtain a O(2ℓ + n) time algorithm (see CST (2017)). When ℓ =
c log n for a large constant c, all algorithms mentioned above require quadratic time with respect to
n, but Abboud et al. (2015b); Chan & Williams (2021) gave a slight improvement, showing that for
a fixed constant c > 0, OVn,c logn can be solved in time n2−1/O(log c). This is a truly subquadratic
running time for any fixed constant c, but becomes quadratic as c grows. It is still unknown whether
there exists a O(n2−ε) time algorithm for all constant c, where ε is an absolute constant that does
not depend on c, and the popular OVC Conjecture states that no such algorithm exists.
Conjecture A.3 (OVC). For any ε > 0, there exists a constant c > 0 such that OVn,c logn cannot
be solved in O(n2−ε) time.

Williams (2005) showed that assuming SETH is true, then OVC is true (the other direction is un-
known). Our paper will use these two conjectures interchangeably such that our hardness results can
be obtained from either conjecture.

There is also a bichromatic version of OVn,ℓ where one is given two sets of vectors A =
{a1, . . . , an}, B = {b1, . . . , bn} such that ai, bj ∈ {0, 1}ℓ and wants to determine if there exists
i, j such that ⟨ai, bj⟩ = 0. In fact, these two problems are subquadratic equivalent.
Lemma A.4. There exists an algorithm for OVn,ℓ that runs in time O(n2−ε ·poly(ℓ)) for some ε > 0

if and only if there exists an algorithm for bichromatic OVn,ℓ that runs in time O(n2−ε′ · poly(ℓ))
for some ε′ > 0.

Proof. First we assume that there exists an algorithm A for bichromatic OVn,ℓ that runs in time
O(n2−ε · poly(ℓ)) for some ε > 0. Given an OVn,ℓ instance V = {v1, . . . , vn} with vi ∈ {0, 1}ℓ
for all i, we first check if any vi is the all zero vector (if so then it is a yes instance). Otherwise, let
A = B = V and run A on A,B. Notice that since there is no all zero vector, ⟨vi, vi⟩ ≠ 0 for all i,
and therefore there exists i ̸= j such that ⟨vi, vj⟩ = 0 if and only if there exists vi = a ∈ A, vj =
b ∈ B such that ⟨a, b⟩ = 0. The total running time is O(n2−ε · poly(ℓ) + nℓ) = O(n2−ε · poly(ℓ)).
Now we assume that there exists an algorithm A′ for OVn,ℓ that runs in time O(n2−ε · poly(ℓ))
for some ε > 0. Let A = {a1, . . . , an}, B = {b1, . . . , bn} with vectors ai, bj ∈ {0, 1}ℓ be a
bichromatic OVn,ℓ instance. For each ai we construct a′i = (ai, 1, 0) ∈ Rℓ+2 and for each bj
we construct b′j = (bj , 0, 1) ∈ Rℓ+2 and let A′ = {a′1 . . . , a′n}, B′ = {b′1, . . . , b′n}. Notice that
now ⟨a′i, a′j⟩, ⟨b′i, b′j⟩ ≥ 1 for all i, j. As a result, if there exists ⟨ai, bj⟩ = 0, then ⟨a′i, b′j⟩ =
⟨ai, bj⟩ + 0 = 0. Conversely, if ⟨v, w⟩ = 0 for any v, w ∈ A′ ∪ B′, then it must be the case that
v = a′i and w = b′j for some i, j or vice versa, which implies that ⟨ai, bj⟩ = 0. Therefore, running
A′ on A′ ∪ B′ will tell us whether A,B is a yes instance or not. The total running time required is
O((2n)2−ε · poly(ℓ+ 2)) = O(n2−ε poly(ℓ)).

When ℓ = c log n for some constant c > 0, an algorithm running in O(n2−ε · poly(ℓ)) time for
some fixed constant ε > 0 is a truly subquadratic algorithm. Therefore, Lemma A.4 implies that
assuming OVC, there is no truly subquadratic algorithm for bichromatic OVn,ℓ.

A.2 MINIMUM INNER PRODUCT

In this section we introduce the minimum inner product problem, an important problem related to
similarity search.
Definition A.5 (Min-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, Min-IPn,ℓ asks to find
one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is minimum.

The trivial algorithm for Min-IPn,ℓ takes O(n2ℓ) time by enumerating all possible pairs of inner
product. Sometimes we are happy with finding a pair of vectors whose inner product is close enough
to optimal, so we also introduce the approximate Min-IP problem as follows.
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Definition A.6 (γ-Min-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, γ-Min-IPn,ℓ asks to
find one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is a γ-approximation of the minimal inner
product.

It is not hard to see that Min-IP and γ-Min-IP are both at least as hard as OV for any γ ≥ 1 (just
find the minimum inner product and see if it is 0, and any multiplicative approximation of 0 must be
0). Therefore, assuming OVC, for any ε > 0 there exists c > 0 such that Min-IPn,c logn cannot be
solved in O(n2−ε) time.

In addition, there is a decision version of Min-IP, by which we denote Min-IPn,ℓ,t, where one wants
to know whether there exists a pair of vectors whose inner product is at most t for some 0 ≤ t ≤ ℓ.

Definition A.7 (Min-IP decision version). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ and
0 ≤ t ≤ ℓ, Min-IPn,ℓ,t asks to determine if there exists one pair of 1 ≤ i, j ≤ n, i ̸= j such that
⟨vi, vj⟩ ≤ t.

Min-IPn,ℓ is trivially at least as hard as Min-IPn,ℓ,t for any t because if we can calculate the mini-
mum, then we can decide whether it is at most t or not. In addition, notice that when t ≥ ℓ + 1 or
t < 0 the problem is trivial and requires constant time to respond.

The bichromatic versions of these problems can be defined analogously: given two sets A,B with
vectors in {0, 1}ℓ, one needs to find i, j that achieves (for bichromatic Min-IPn,ℓ) or approximates
(for bichromatic γ-Min-IPn,ℓ) the minimal ⟨ai, bj⟩. One can easily obtain a truly subquadratic
algorithm for all three problems above given a truly subquadratic algorithm for their bichromatic
versions.

Lemma A.8. Suppose there exists an algorithm A for bichromatic Min-IPn,ℓ that runs in time
O(n2−ε · poly(ℓ)) for any ε > 0, then there exists an algorithm for Min-IPn,ℓ that runs in time
O(n2−ε′ · poly(ℓ)) for some ε′ > 0. The same statement is true for γ-Min-IPn,ℓ and Min-IPn,ℓ,t.

Proof. Given a Min-IPn,ℓ instance V = {v1, . . . , vn}, we first partition V into V1, V2 of equal size
and run A on V1, V2. This will allow us to find the minimal pair in V1 × V2. Now we further
partition V1 into two sets of equal size and recurse on V1 to eventually find the minimal pair in
V1 × V1. Similarly we recurse on V2 to find the minimal pair in V2 × V2. The running time of our
algorithm is

poly(ℓ) ·
logn∑
i=1

O
(( n

2i

)(2−ε))
= O(n2−ε · poly(ℓ) · log n) ≤ O(n2−ε′ · poly(ℓ))

for some ε′ > 0. The exact same argument holds for γ-Min-IPn,ℓ as well because the minimal
pair must appear in some recursion where we run our algorithm on. The argument also holds for
Min-IPn,ℓ,t because we have gone over all possible pairs of vectors.

A.3 MAXIMUM INNER PRODUCT

In this section we introduce the maximum inner product problem and its variants. The problems are
basically the same as problems in the previous section.

Definition A.9 (Max-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, Max-IPn,ℓ asks to find
one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is maximal.

Definition A.10 (γ-Max-IP). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ, γ-Max-IPn,ℓ asks
to find one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ is a γ-approximation of the maximal inner
product.

Definition A.11 (Max-IP decision version). Given a set of binary vectors v1, . . . , vn ∈ {0, 1}ℓ,
Max-IPn,ℓ,t asks to determine if there exists one pair of 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi, vj⟩ ≥ t.

The bichromatic versions of these problems can be defined analogously. Similar to Min-IP, one can
easily obtain a truly subquadratic algorithm for all three problems above given a truly subquadratic
algorithm for their bichromatic versions again using the proof of Lemma A.8.
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Lemma A.12. Suppose there exists an algorithm A for bichromatic (γ-)Max-IPn,ℓ that runs in time
O(n2−ε · poly(ℓ)) for any ε > 0, then there exists an algorithm for (γ-)Max-IPn,ℓ that runs in time
O(n2−ε′ · poly(ℓ)) for some ε′ > 0.

It is less obvious whether Max-IP is a harder problem than OV or not. The answer is positive, and
for bichromatic Max-IP, there exists a simple proof.
Lemma A.13. Suppose there exists an algorithm A for bichromatic Max-IPn,ℓ that runs in time
O(n2−ε ·poly(ℓ)) for any ε > 0, then there exists an algorithm for OVn,ℓ that runs in time O(n2−ε ·
poly(ℓ)).

Proof. Given an OVn,ℓ instance v1, . . . , vn ∈ {0, 1}ℓ, we partition all vi into subsets S1, . . . , Sℓ

such that each Sj contains all vectors with j ones. Now for each pair of 1 ≤ i, j ≤ ℓ, let S̄j consists
of vectors in Sj but with all the entries flipped. As a result, for any v ∈ Si, w ∈ S̄j we have
⟨v, w⟩ = i− ⟨v, w̄⟩, which implies that ⟨v, w̄⟩ = 0 if and only if ⟨v, w⟩ = i. Therefore, running A
on Si, S̄j will tell us whether there is an orthogonal pair of vectors in Si and Sj . The total running
time is O(ℓ2 · n2−ε · poly(ℓ)) = O(n2−ε) · poly(ℓ).

In fact, Karthik & Manurangsi (2020) proved a stronger statement which says that even approximate
Max-IPn,ℓ is stronger than OVn,ℓ for some approximation factor.

A.4 LEAST SIMILAR DOCUMENTS

We now formally define LSD variants, which are defined similarly to Min-IP variants. Recall that
MSD and variants were defined in Section 2.3 above.
Definition A.14 (LSD). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ, LSDn,ℓ asks to find
1 ≤ i, j ≤ n, i ̸= j such that ⟨vi,vj⟩

∥vi∥·∥vj∥ is the minimum.

Definition A.15 (γ-LSD). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ, γ-MSDn,ℓ asks to
find 1 ≤ i∗, j∗ ≤ n, i∗ ̸= j∗ such that

min
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

≤ ⟨vi∗ , vj∗⟩
∥vi∗∥ · ∥vj∗∥

≤ γ · min
1≤i,j≤n

⟨vi, vj⟩
∥vi∥ · ∥vj∥

.

Definition A.16 (LSD decision version). Given n document embeddings v1, . . . , vn ∈ {0, 1}ℓ,
LSDn,ℓ,t asks to determine if there exists 1 ≤ i, j ≤ n, i ̸= j such that ⟨vi,vj⟩

∥vi∥·∥vj∥ ≤ t.

γ-LSDn,ℓ and LSDn,ℓ,t are both easier than LSD. In addition, the existence of truly subquadratic
time algorithm for LSDn,ℓ,t for all t again implies a truly subquadratic time algorithm for LSDn,ℓ

using binary search. Bichromatic versions of these problems can be defined analogously and the
proof of Lemma A.8 again tells us that bichromatic versions are harder.

B PROOF OF THEOREM 3.3

In this section we prove Theorem 3.3, and our ideas are similar to the ideas in section 5 and 6 of
Karthik & Manurangsi (2020). Recall the theorem as follows.

Theorem B.1 (Theorem 3.3). Assuming SETH or OVC and γ ≤ (1 + 1
log logn )

log n

(log log n)2 =

2(logn)1−o(1)

, for every ε > 0 there exists a constant c > 0 such that there is no algorithm for

γ-MSDn,ℓ that runs in time O(n2−ε) where ℓ = (log n)
c log n

(log log n)2 .

We break down the proof into several lemmas below.

Lemma B.2. Suppose there exists an algorithm for γ-MSDn,ℓ where ℓ = (log n)
c log n

(log log n)2 for any

constant c > 0, γ ≤ (1 + 1
log logn )

log n

(log log n)2 that runs in O(n2−ε) time for any ε > 0, then there
exists an algorithm for (1 + 1

log logn )-MSDn,(logn)k with running time O(n2−ε) for any constant
k > 0.

20



Published as a conference paper at ICLR 2025

Proof. Let v1, . . . , vn ∈ {0, 1}(logn)k be an instance of (1+ 1
log logn )-MSDn,(logn)k for any constant

k > 0. Construct V ′ = {v⊗q
1 , . . . , v⊗q

n } for q = logn
(log logn)2 : all the vectors in V ′ have dimension

(log n)kq = (log n)
k log n

(log log n)2 , so we can run the algorithm provided to find a γ-approximation of
MSD on V ′ for some γ ≤ (1 + 1

log logn )
q . Notice that we have

⟨v⊗q
i , v⊗q

j ⟩
∥v⊗q

i ∥ · ∥v⊗q
j ∥

=
( ⟨vi, vj⟩
∥vi∥ · ∥vj∥

)q

for any i, j, so an γ-approximation of MSD on V ′ is a γ1/q = (1+ 1
log logn ) approximation of MSD

on v1, . . . , vn.

Now we define the bichromatic γ-Additive-MSD problem as: given a A,B ⊆ {0, 1}ℓ, α ∈ [0, 1]
with |A| = |B| = n, we want to distinguish between the following two cases:

1. Yes instance: There exists (a, b) ∈ A×B such that ⟨a,b⟩
∥a∥·∥b∥ ≥ α.

2. No instance: For every (a, b) ∈ A×B we have ⟨a,b⟩
∥a∥·∥b∥ < α− γ.

Lemma B.3. Suppose there exists an algorithm A for (1 + 1
log logn )-MSDn,(logn)k for any

constant k > 0 with O(n2−ε) running time, then there exists an algorithm for bichromatic
logn
ℓ -Additive-MSDn,c logn for any c > 0 in time O(n2−ε′) for some ε′ > 0.

Proof. The proof follows from Theorem B.4 and Theorem B.5

Theorem B.4 (Karthik & Manurangsi (2020) Theorem 6.2). Suppose there exists an algorithm for
(1 + 1

log logn )-MSDn,(logn)k for any constant k > 0 that runs in O(n2−ε) time for any ε > 0, then
there exists an algorithm for bichromatic (log n)-Additive-Max-IPn,c logn for any constant c > 0

that runs in O(n2−ε′) time for some ε′ > 0.

Lemma B.5. Bichromatic logn
ℓ -Additive-MSDn,ℓ with ℓ = O(log n) and bichromatic

(log n)-Additive-Max-IPn,ℓ′ with ℓ′ = O(log n) are subquadratic equivalent.

Proof. Given a bichromatic (log n)-Additive-Max-IPn,ℓ instance with sets A = {a1, . . . , an}, B =
{b1, . . . , bn} and integer α, we construct A′ = {a′1, . . . , a′n}, B′ = {b′1, . . . , b′n} as follows: for
each ai we first attach ℓ − ∥ai∥1 many ones at the end and another ℓ + ∥ai∥1 zeros to obtain
a′i ∈ {0, 1}3ℓ, and for each bj we first attach ℓ+ ∥bj∥1 zeros at the end and another ℓ− ∥bj∥1 ones
to obtain b′j ∈ {0, 1}3ℓ. Now all a′i, b

′
j have ℓ many ones, and ⟨a′i, b′j⟩ = ⟨ai, bj⟩ for all i, j by our

construction. Therefore, running our algorithm for logn
ℓ -Additive-MSDn,ℓ on A′, B′ and α

ℓ will tell
us whether:

1. there exists (a′, b′) ∈ A′ × B′ such that ⟨a′,b′⟩
∥a′∥·∥b′∥ ≥ α

ℓ , which is equivalent to ⟨a, b⟩ =

⟨a′, b′⟩ ≥ α, or

2. for every (a′, b′) ∈ A′ ×B′ we have ⟨a′,b′⟩
∥a′∥·∥b′∥ < α

ℓ − logn
ℓ , which is equivalent to ⟨a, b⟩ =

⟨a′, b′⟩ < α− log n for all a ∈ A, b ∈ B.

The running time of our algorithm is O(n2−ε · poly(3ℓ)) = O(n2−ε · poly(ℓ)).
The reduction for the other direction is similar. Suppose we are given a bichromatic
logn
ℓ -Additive-MSDn,ℓ instance with sets A = {a1, . . . , an}, B = {b1, . . . , bn} and α ∈ [0, 1],

we construct the exact same A′, B′ as before such that ⟨a′i, b′j⟩ = ⟨ai, bj⟩ for all i, j. Since
∥a′i∥ = ∥b′j∥ =

√
ℓ for all i, j now, the same argument implies that running the algorithm on

A′, B′ and α · ℓ will solve the problem.
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Lemma B.6 (Chen (2020)). Suppose there exists an algorithm for
(log n)-Additive-BMax-IPn,c logn for any constant c > 0 running in time O(n2−ε′) for some
ε′ > 0, then there exists an algorithm for OVn,c′ logn for any constant c′ > 0 with running time

O(n2− ε′
2 ), thus refuting SETH and OVC.

Proof of Theorem 3.3. This follows from a combination of Lemma B.2, Lemma B.3, Lemma B.5
and Lemma B.6.

C TRANSFORMERS CAN SOLVE Max-IP,Min-IP,MSDn,ℓ,t AND LSDn,ℓ,t

Theorem C.1. A attention unit with input and output MLPs with parameters d = ℓ, din = ℓ +
1, dout = 1,m ≥ ℓ+ 1 can solve Max-IPn,ℓ,t and Min-IPn,ℓ,t for 1 ≤ t ≤ ℓ.

Proof. Given a Max-IPn,ℓ instance v1, . . . , vn ∈ {0, 1}ℓ and V ∈ Rn×ℓ such that Vi,: = vi for all
i, let xi = (vi, 1) ∈ {0, 1}ℓ+1 for all i, xn+1 := (0, . . . , 0, t + 1) ∈ Rℓ+1 and X ∈ R(n+1)×(ℓ+1)

be such that Xi,: = xi for all i. Let Q,K ∈ Rdin×m be such that QK⊤ = 3 log n · Idin , V =
(1, 1, . . . , 1, 0) ∈ Rℓ+1 and AQ,K,V denote this attention head.

We want to send X to the attention head, which could be done by many ways given the input V . For
example, we can add a “end token” 5 to the n documents that is always embedded into the vector
(0, . . . , 0, t+1) ∈ Rℓ. Then we can use a MLP to send V to X (see Lemma D.2 for a formal proof).
Now we can check that the i-th entry of AQ,K,V (X) is

n∑
j=1

exp(3 log n · ⟨xi, xj⟩)∑n
k=1 exp(3 log n · ⟨xi, xk⟩) + exp(3(t+ 1) log n)

· ∥vj∥1 =

∑n
j=1 n

3⟨xi,xj⟩ · ∥vj∥1∑n
k=1 n

3⟨xi,xk⟩ + n3(t+1)
.

Let 1 ≤ i∗ ̸= j∗ ≤ n be such that ⟨vi∗ , vj∗⟩ is the largest. Therefore, if ⟨vi∗ , vj∗⟩ ≥ t, then
⟨xi∗ , xj∗⟩ ≥ t+ 1, which means that∑n

j=1 n
3⟨xi∗ ,xj⟩ · ∥xj∥1∑n

k=1 n
3⟨xi∗ ,xk⟩ + n3(t+1)

≥ n3⟨xi∗ ,xj∗ ⟩ · ∥vj∗∥1∑n
k=1 n

3⟨xi∗ ,xk⟩ + n3(t+1)
≥ ∥vj∗∥1

n+ 1
≥ 1

n+ 1
.

On the other hand, if ⟨vi∗ , vj∗⟩ ≤ t− 1, then ⟨xi∗ , xj∗⟩ ≤ t, which means∑n
j=1 n

3⟨xi∗ ,xj⟩ · ∥vj∥1∑n
k=1 n

3⟨xi∗ ,xk⟩ + n3(t+1)
≤ ℓ · n · n3t

n3(t+1)
=

ℓ

n2
<

1

(n+ 1)1.5
.

Therefore, we can use the second MLP φ2 to map AQ,K,V (X) to 1 if any of its entry is at least 1
n+1

and 0 if all its entries are at most 1
(n+1)1.5 (see Lemma D.1 for a formal proof of existence).

The proof for Min-IP is almost the same, except that we new let QK⊤ = −3 log n · Idin and xn+1 =
[0, . . . , 0,−(t+ 1)] ∈ Rℓ+1 instead. Now the i-th entry of AQ,K,V (X) is∑n

j=1 n
−3⟨xi,xj⟩ · ∥vj∥1∑n

k=1 n
−3⟨xi,xk⟩ + n−3(t+1)

.

Let i∗, j∗ be such that ⟨xi∗ , xj∗⟩ is the smallest. Therefore, if ⟨vi∗ , vj∗⟩ ≤ t, then ⟨xi∗ , xj∗⟩ ≤ t+1,
which means that∑n

j=1 n
−3⟨xi∗ ,xj⟩ · ∥vj∥1∑n

k=1 n
−3⟨xi∗ ,xk⟩ + n−3(t+1)

≥ n−3⟨xi∗ ,xj∗ ⟩∑n
k=1 n

−3⟨xi∗ ,xk⟩ + n−3(t+1)
≥ 1

n+ 1
.

On the other hand, if ⟨vi∗ , vj∗⟩ ≥ t+ 1, then ⟨xi∗ , xj∗⟩ ≥ t+ 2, which means∑n
j=1 n

−3⟨xi∗ ,xj⟩ · ∥vj∥1∑n
k=1 n

−3⟨xi∗ ,xk⟩ + n−3(t+1)
≤ ℓ · n · n−3(t+2)

n−3(t+1)
=

ℓ

n2
<

1

(n+ 1)1.5
.

5Sanford et al. (2024b) has a similar assumption.
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Theorem C.2. A attention unit with input and output MLPs with parameters d = ℓ, din = ℓ +
1, dout = 1,m ≥ ℓ+ 1 can solve MSDn,ℓ,t and LSDn,ℓ,t for any t ∈ [0, 1].

Proof. When t = 0 the problem is trivial so we simply need to output 1 using MLPs, so without
losing of generality we assume t ̸= 0. Given a MSDn,ℓ instance v1, . . . , vn ∈ {0, 1}ℓ and V ∈ Rn×ℓ

such that Vi,: = vi for all i, let xi = ( vi
∥vi∥1

, 1) ∈ Rℓ+1 for all i, xn+1 := (0, . . . , 0, t + 1) ∈ Rℓ+1

and X ∈ R(n+1)×(ℓ+1) be such that Xi,: = xi for all i. Let Q,K ∈ Rdin×m be such that QK⊤ =
3 log n · Idin , V = (1, 1, . . . , 1, 0) ∈ Rℓ+1 and AQ,K,V denote this attention head.

Since MSD is exactly Max-IP after we normalize the document embeddings, the proof of Theo-
rem C.1 implies that it suffices to send X to the attention head. See Lemma D.3 for a construction.

The proof for LSD is exactly the same as the proof for Min-IP after applying the φ1 construced in
Lemma D.3.

D MLP CONSTRUCTIONS

Lemma D.1. For any a, b ∈ R such that b > a, there exists a continuous function f : Rℓ → R such
that

f(x) =

{
1 if x[i] ≥ b for any 1 ≤ i ≤ ℓ

0 if x[i] < a ∀1 ≤ i ≤ ℓ.

Proof. Firstly we define g : R such that

g(x) =


1 if x ≥ b
1

b−a (x− a) if a ≤ x < b

0 if x < a.

Now we let

f(x) = 1−
ℓ∏

i=1

(1− g(x[i])).

It is not hard to see that g is a continuous function, and therefore f is a continuous function. When
x[i] ≥ b for any 1 ≤ i ≤ ℓ, g(x[i]) = 1 and therefore f(x) = 1 − 0 = 1. On the other hand, if
x[i] < a for all i, then f(x) = 1− 1 = 0.

Lemma D.2. There exists a continuous function f : Rℓ → Rℓ+1 such that

f(x) =

{
(x, 1) if x[ℓ] ≤ 1

(0, x) otherwise.

Proof. First we define a function g : R → R such that

g(x) =


1 if x ≤ 1

2− x if 1 < x ≤ 2

0 if x > 2,

and we also define f1, f2 : Rℓ → Rℓ+1 where

f1(x) = (x, 1), f2(x) = (0, x).

It is not hard to see that g, f1, f2 are all continuous functions, so we let

f(x) = g(x[ℓ]) · f1(x) + (1− g(x[ℓ])) · f2(x)
such that f is also continuous. We can check that f satisfies the requirement in the lemma statement.

Lemma D.3. There exists a continuous function f : Rℓ → Rℓ+1 such that

f(x) =

{
( x
∥x∥1

, 1) if x[d] ≤ 1

(0, x
∥x∥1

) otherwise.
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Proof. Let g be the same functions as in Lemma D.2 and f1, f2 : Rℓ → Rℓ+1 where

f1(x) =
( x

∥x∥1
, 1
)
, f2(x) =

(
0,

x

∥x∥1

)
.

f1, f2 are continuous function over Rℓ, and therefore we let

f(x) = g(x[ℓ]) · f1(x) + (1− g(x[ℓ])) · f2(x)

such that f is also continuous. We can check that f satisfies the requirement in the lemma statement.
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