
An Object is Worth 64x64 Pixels:
Generating 3D Object via Image Diffusion

Supplementary Material

AABBConvexConcaveWith vertices mergingNo vertices merging

Figure 9. Left: Merging coincident vertices before repacking will substantially reduce the number of patches. Right: The results of three
commonly used uv-islands packing algorithms. For our Object Images, we use AABB with vertices merging.

Figure 10. The effect of number of kept patches. As the number of patches goes up, more intricate geometric parts are kept. However, the
average number of pixels dedicated to each part is reduced.

A. Repacking the UV-atlas
As mentioned in Sec. 3.3 of the main text, 3D objects with
UV-maps generally cannot be directly converted into Object
Images (omages) due to issues such as overlapping regions,
out-of-boundary UVs, touching boundaries, or extremely
large number of patches. Overlapping regions breaks the
single-valued assumption, making it impossible to map the
overlapped region back to the 3D surface. Since design-
ers often reuse textures for similar parts, overlapping UV
islands are common in 3D assets.

Another common issue is the touching boundary prob-
lem. One important assumption of omages is that different
patches not only do not overlap but can also be separately
recognized. We detect different parts by identifying the
connected components within the alpha (occupancy) map.
If two patches have touching boundaries, this detection
will fail, introducing artifacts that connect patches which
could be far apart. To address the above issues, we lever-
age standard UV-atlas repacking to obtain non-overlapping
patches and pack them into high-resolution images. For



efficient learning, we then downsample the images using
sparse pooling to snap the boundaries and eliminate gaps.
We describe the repacking and baking step in detail below
(the downsampling is described in the main paper).

Repacking and baking. We use UV-atlas repacking to ob-
tain clean patches that are free from artifacts. We first ob-
tain the 2D UV-islands of all patches, then use a 2D irreg-
ular shape packing algorithm to rescale and rearrange the
UV-atlas within the standard UV-domain, leaving margins
between each island. In Fig. 9 (right), we show the the
three packing methods provided by Blender: Concave, Con-
vex, and AABB. Their names indicate the shapes approxi-
mations used for the packing of the patches and result in
different space utilization efficiency. Concave (exact shape)
has the least empty space but introduces complex combina-
torial patterns that are challenging for generative models to
learn. Hence, we adopt AABB as the primary method for
repacking.

Another common issue is that many patches are unneces-
sarily separated into multiple sub-patches by default. This
results in numerous small pieces that degrade the quality
of the omage, potentially reducing it to a triangle soup or
point cloud as the number of patches increases. By merg-
ing vertices that share the same 3D and 2D UV coordinates,
we can reconnect these sub-patches to form larger patches.
This not only reduces empty space but also improves the
integrity of the patches. See Fig. 9 (left) for comparison of
packing with and without vertex merging.

After merging the sub-patches, there may still be an ex-
cessive number of patches. To simplify the generative mod-
eling, we keep a maximum number of patches, K. For
shapes with more patches than this threshold, we sort the
patches by their 3D area and retain only the largest K
patches. Fig. 10 shows the effect of this parameter. Hav-
ing more patches preserves geometric details but compli-
cates generative modeling. This is especially true for lower-
resolution omages, where smaller parts lack enough pixels
to form meaningful regions. In practice, we find that a max-
imum of 64 patches works well for generating 64-resolution
omages (See Fig. 7).

After repacking, we rasterize the geometry and mate-
rial properties into an image format through texture baking
according to the repacked UV-atlas. We bake the geome-
try (including UV occupancy), normal map, albedo, metal-
ness, and roughness into the final (R,R, 12) omage, with
R = 1024 set as default for high-quality results.


	. Introduction
	. Related Work
	. Method
	. Object Images
	. Generative modeling for omages
	. Obtaining object images

	. Experiments
	. Implementation Details
	. Class conditional generation
	. Shape Novelty
	. Representation Analysis

	. Conclusion
	. Repacking the UV-atlas

