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A IMPLEMENTATION DETAILS OF THE NUMERICAL EXPERIMENTS

All experiments are conducted using Matlab R2019a on Ubuntu 18.04 with the AMD Ryzen 2700X
8-core processor and 16GB 2133MHz memory.

In the non-stationary LQR experiments, we select nx = 6, nu = 6 and � = 0.5. The dynamical
matrices A0 and B0 at episode 0 are randomly generated from a Gaussian distribution N (0, 0.12).
Then, we generate the time-varying dynamical matrices according to At+1 = At + 0.01Mt and
Bt+1 = Bt + 0.01Nt, where Mt and Nt are random matrices whose entries are uniformly sampled
from [0,1]. To evaluate the cost function Vt(Kt) given the policy parameter Kt at episode t, we roll
out a trajectory of length H = 50 using policy parameter Kt and sum up the collected rewards.

In the non-stationary resource allocation experiments, the policy function ⇡i,t(oi; ✓i,t) is param-
eterized as the following: aij = exp(zij)/

P
j
exp(zij), where zij =

P9
p=1  p(oi)✓ij(p) and

✓i = [. . . , ✓ij , . . . ]T and episode index t is omitted for notation simplicity. Specifically, the feature
function  p(oi) is selected as  p(oi) = koi � cpk

2, where cp is the parameter of the p-th feature
function. Effectively, the agents need to make decisions on 64 actions, and each action is decided by 9
parameters. Therefore, the problem dimension is d = 576. The discount factor is set as � = 0.75 and
the length of horizon H = 30. The time-varying sensitivity parameter ⇣i,t is generated as follows: let
⇣i,0 = 1 and ⇣i,t+1 = ⇣i,t + 0.1Pt, where Pt is a random number uniformly sampled from [�1, 1].

B PROOF OF LEMMA 2.5

By definition of the residual feedback, we have

E[kg̃t(xt)k
2] = E[ 1

�2

�
ft(xt + �ut)� ft�1(xt�1 + �ut�1)

�2
kutk

2]


2

�2
E[
�
ft(xt + �ut)� ft(xt�1 + �ut�1)

�2
kutk

2]

+
2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2].

(14)
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Since ut is independent of xt�1, ut�1 and the generation of functions ft�1 and ft, we have that
2
�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2]  2d
�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 +

�ut�1)
�2
]. Moreover, adding and subtracting ft(xt�1 + �ut) in the term

�
ft(xt + �ut)� ft(xt�1 +

�ut�1)
�2 of the above inequality, we obtain that

E[kg̃(xt)k
2] 

4

�2
E[
�
ft(xt + �ut)� ft(xt�1 + �ut)

�2
kutk

2]

+
4

�2
E[
�
ft(xt�1 + �ut)� ft(xt�1 + �ut�1)

�2
kutk

2]

+
2d

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
].

(15)

Since ft 2 C
0,0 is Lipschitz with constant L0, we further obtain that

E[kg̃(xt)k
2] 

4L2
0

�2
E[kxt � xt�1k

2
kutk

2] + 4L2
0E[kut � ut�1k

2
kutk

2]

+
2d

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
]. (16)

Note that ut is a Gaussian vector independent from xt � xt�1, we then obtain that E[kxt �

xt�1k
2
kutk

2] = dE[kxt � xt�1k
2]. Furthermore, using Lemma 1 in Nesterov & Spokoiny

(2017), we know that E[kut � ut�1k
2
kutk

2]  2E[(kutk
2 + kut�1k

2)kutk
2] = 2E[(kutk

4] +
2E[kut�1k

2
kutk

2]  4(d+ 4)2. Substituting these bounds into inequality (16), we obtain that

E[kg̃(xt)k
2] 

4dL2
0

�2
E[kxt � xt�1k

2] + 16L2
0(d+ 4)2

+
2d

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
].

Since xt = ⇧X
⇥
xt�1 � ⌘g̃(xt�1)

⇤
, we get that kxt � xt�1k = k⇧X

⇥
xt�1 � ⌘g̃(xt�1)

⇤
�

⇧X
⇥
xt�1

⇤
k  ⌘kg̃(xt�1)k due to the nonexpansiveness of the projection operator onto a convex set.

Therefore, we have that

E[kg̃t(xt)k
2] 

4dL2
0⌘

2

�2
E[kg̃t�1(xt�1)k

2] + 16L2
0(d+ 4)2

+
2d

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
].

The proof is complete.

C PROOF OF THEOREM 3.2

Note that f�,t(x) is convex for all t, we then conclude that

f�,t(xt)� f�,t(x)  hrf�,t(xt), xt � xi, for all x 2 X , (17)

Adding and subtracting g̃t(xt) after rf�,t(xt) in above inequality, and taking expectation over ut on
both sides, we obtain that

E
⇥
f�,t(xt)� f�,t(x)

⇤
 E

⇥
hg̃t(xt), xt � xi

⇤
. (18)

Since xt+1 = ⇧X
⇥
xt � ⌘g̃(xt)

⇤
, for any x 2 X we have that

kxt+1 � xk
2 = k⇧X

⇥
xt � ⌘g̃(xt)

⇤
�⇧X

⇥
x
⇤
k
2

 kxt � ⌘g̃(xt)� xk
2

= kxt � xk
2
� 2⌘hg̃t(xt), xt � xi+ ⌘

2
kg̃t(xt)k

2
. (19)

Rearranging the above inequality yields that

hg̃t(xt), xt � xi =
1

2⌘

�
kxt � xk

2
� kxt+1 � xk

2
�
+
⌘

2
kg̃t(xt)k

2
. (20)
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Taking expectation on both sides of the above inequality over ut and substituting the resulting bound
into (18), we obtain that

E
h TX

t=0

f�,t(xt)�
TX

t=0

f�,t(x)
i


1

2⌘
kx0 � xk

2 +
⌘

2
E
h TX

t=0

kg̃t(xt)k
2
i
. (21)

Since ft(x) 2 C
0,0, we know that |f�,t(x)� ft(x)|  �L0

p
d. Therefore, we obtain from the above

inequality that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤
= E

⇥ TX

t=0

f�,t(xt)�
TX

t=0

f�,t(x)
⇤
+ E

⇥ TX

t=0

�
ft(xt)� f�,t(xt)

�
�

TX

t=0

�
ft(x)� f�,t(x)

�⇤


1

2⌘
kx0 � xk

2 +
⌘

2
E
⇥ TX

t=0

kg̃t(xt)k
2
⇤
+ 2

p

dL0�T. (22)

Telescoping the bound in (5) over t = 1, 2, ..., T , adding E
⇥
kg̃0(x0)k2

⇤
on both sides, adding

4dL2
0⌘

2

�2
E[kg̃T (xT )k2] to the right hand side and using Assumption 3.1, we obtain that

E
⇥ TX

t=0

kg̃t(xt)k
2
⇤


1

1� ↵
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
L
2
0(d+ 4)2T +

2dV 2
f

1� ↵

1

�2
T, (23)

where ↵ = 4dL2
0⌘

2

�2
. Substituting the above bound into (22) yields that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤


1

2⌘
kx0 � xk

2 +
⌘

2(1� ↵)
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
L
2
0(d+ 4)2⌘T

+ 2
p

dL0�T +
2dV 2

f

1� ↵

⌘

�2
T. (24)

Since above inequality holds for all x 2 X , we can replace x with x
⇤. When the upper bound on

kx0 � x
⇤
k  R is known, let ⌘ = R

3
2

2
p
2L0

p
dT

3
4

and � =
p
R

T
1
4

, so that ↵ = 4dL2
0⌘

2

�2
= R

2

2T 
1
2 , when

T � R
2. Then, we obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x
⇤)
⇤


p
2L0

p

dRT
3
4 +

E
⇥
kg̃0(x0)k2

⇤
R

3
2

2
p
2dL0T

3
4

+ 8
p
2
(d+ 4)2

p
d

L0R
3
2T

1
4 + 2L0

p

dRT
3
4 +

p
2dRV

2
f

L0
T

3
4 . (25)

When R is unknown, let ⌘ = 1

2
p
2L0

p
dT

3
4

and � = 1

T
1
4

, so that ↵ = 4dL2
0⌘

2

�2
= 1

2T 
1
2 . Then, we

obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x
⇤)
⇤


p
2L0

p

dR
2
T

3
4 +

E
⇥
kg̃0(x0)k2

⇤

2
p
2dL0T

3
4

+ 8
p
2
(d+ 4)2

p
d

L0T
1
4

+ 2
p

dL0T
3
4 +

p
2dV 2

f

L0
T

3
4 . (26)

On the other hand, we can let ⌘ = R
3
2

2
p
2L0

p
dT

3
4

and � =
p
R

L
q
0T

1
4

, where q 2 R is a user-specific

parameter. With this choice of parameters, we get ↵ = 4dL2
0⌘

2

�2
= L

2q
0 R

2

2T 
1
2 when T � L

2q
0 R

2 and,
as a result, we obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x
⇤)
⇤


p
2L0

p

dRT
3
4 +

E
⇥
kg̃0(x0)k2

⇤
R

3
2

2
p
2dL0T

3
4

+ 8
p
2
(d+ 4)2

p
d

L0R
3
2T

1
4

+ 2L1�q

0

p

dRT
3
4 +

p

2dRL
2q�1
0 V

2
f
T

3
4 . (27)
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D PROOF OF THEOREM 3.4

Since ft(x) 2 C
1,1, we know that |f�,t(x)� ft(x)|  �

2
L1d. Following the same proof logic as that

for proving (22), we obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤


1

2⌘
kx0 � xk

2 +
⌘

2
E
⇥ TX

t=0

kg̃t(xt)k
2
⇤
+ 2dL1�

2
T. (28)

Substituting the bound in (23) into the above inequality, we obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤


1

2⌘
kx0 � xk

2 +
⌘

2(1� ↵)
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
L
2
0(d+ 4)2⌘T

+ 2dL1�
2
T +

2dV 2
f

1� ↵

⌘

�2
T. (29)

Since above inequality holds for all x 2 X , we can replace x with x
⇤. Assuming the bound

kx0 � x
⇤
k  R is known, let ⌘ = R

4
3

2
p
2L0d

2
3 T

2
3

and � = R
1
3

d
1
6 T

1
6

so that ↵ = 4dL2
0⌘

2

�2
= R

2

2T 
1
2 when

T � R
2. Plugging these parameters into above inequality, we finally obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤


p
2L0d

2
3R

2
3T

2
3 +

E
⇥
kg̃0(x0)k2

⇤
R

4
3

2
p
2L0d

2
3T

2
3

+ 8
p
2L0

(d+ 4)2

d
2
3

R
4
3T

1
3

+ 2L1d
2
3R

2
3T

2
3 +

p
2

L0
d

2
3R

2
3V

2
f
T

2
3 . (30)

When the bound kx0 � x
⇤
k  R is unknown. Choose ⌘ = 1

2
p
2L0d

2
3 T

2
3

and � = 1

d
1
6 T

1
6

so that

↵ = 4dL2
0⌘

2

�2
= 1

2T 
1
2 . Plugging these parameters into above inequality, we finally obtain that

E
⇥ TX

t=0

ft(xt)�
TX

t=0

ft(x)
⇤


p
2L0d

2
3 kx0 � xk

2
T

2
3 +

E
⇥
kg̃0(x0)k2

⇤

2
p
2L0d

2
3T

2
3

+ 8
p
2L0

(d+ 4)2

d
2
3

T
1
3

+ 2d
2
3L1T

2
3 +

p
2

L0
d

2
3V

2
f
T

2
3 . (31)

The proof is complete.

E PROOF OF THEOREM 4.2

We first consider the case where Assumption 4.1.1 holds. Note that ft(x) 2 C
0,0. According

to Lemma 2.2, f�,t(x) has L1,�-Lipschitz continuous gradient with L1,� =
p
d

�
L0. Furthermore,

according to Lemma 1.2.3 in Nesterov (2013), we have the following inequality

f�,t(xt+1)  f�,t(xt) + hrf�,t(xt), xt+1 � xti+
L1,�

2
kxt+1 � xtk

2

= f�,t(xt)� ⌘hrf�,t(xt), g̃t(xt)i+
L1,�⌘

2

2
kg̃t(xt)k

2

= f�,t(xt)� ⌘hrf�,t(xt),�ti � ⌘krf�,t(xt)k
2 +

L1,�⌘
2

2
kg̃t(xt)k

2
,

(32)

where �t = g̃t(xt)�rf�,t(xt). According to Lemma 2.4, we know that Eut [g̃t(xt)] = rf�,t(xt).
Therefore, taking expectation over ut conditional on xt on both sides of inequality (32) and rearrang-
ing terms, we obtain that

⌘E[krf�,t(xt)k
2]  E[f�,t(xt)]� E[f�,t(xt+1)] +

L1,�⌘
2

2
E[kg̃t(xt)k

2]

 E[f�,t(xt)]� E[f�,t+1(xt+1)] +
L1,�⌘

2

2
E[kg̃t(xt)k

2] + E[f�,t+1(xt+1)]� E[f�,t(xt+1)],

(33)
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where the expectation is conditional on xt. Then, we can further condition both sides of (33) on x0

without changing the sign of inequality, and then apply the tower rule of conditional expectation
to make the expectation in (33) become full expectation. Telescoping the above inequality over
t = 0, ..., T � 1 and dividing both sides by ⌘, we obtain that

T�1X

t=0

E[krf�,t(xt)k
2] 

E[f�,0(x0)]� E[f�,T (xT )]

⌘
+

L1,�⌘

2

T�1X

t=0

E[kg̃t(xt)k
2] +

WT

⌘


E[f�,0(x0)]� f

⇤
�,T

⌘
+

L1,�⌘

2

T�1X

t=0

E[kg̃t(xt)k
2] +

WT

⌘
,

(34)

where f
⇤
�,T

is the lower bound of the smoothed function f�,T (x). f⇤
�,T

must exist because we assume
the orignal function ft(x) is lower bounded and the smoothed function has a bounded distance from
ft(x) due to Lemma 2.2 for all t.

Next, we consider the case where Assumption 4.1.2 holds. Summing the bound in (5) from t =

1, ..., T , adding E
⇥
kg̃0(x0)k2

⇤
on both sides, and adding 4dL2

0⌘
2

�2
E[kg̃T (xT )k2] to the right hand side,

we obtain that

E
⇥ TX

t=0

kg̃t(xt)k
2
⇤


1

1� ↵
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
L
2
0(d+ 4)2T +

2d

1� ↵

fWT

�2
, (35)

Substituting this bound into the inequality (34), we obtain that
T�1X

t=0

E[krf�,t(xt)k
2] 

E[f�,0(x0)]� f
⇤
�,T

⌘
+

WT

⌘
+

p
dL0⌘

2�

1

1� ↵
E
⇥
kg̃0(x0)k

2
⇤

+

p
dL0⌘

2�

16

1� ↵
L
2
0(d+ 4)2T +

p
dL0⌘

2�

2d

1� ↵

fWT

�2
.

(36)

To fullfill the requirement that |ft(x)� f�,t(x)|  ✏f , we set the exporation parameter � = ✏f

d
1
2 L0

. In

addition, let the stepsize be ⌘ =
✏
1.5
f

2
p
2L2

0d
1.5T

1
2

. Then, we have that ↵ = 4dL2
0⌘

2

�2
= ✏f

2dT 
1
2 when

T �
1

d✏f
. Therefore, we have that 1

1�↵
 2. Substituting this bound and the choices of ⌘ and � into

the bound (??), we finally obtain that
T�1X

t=0

E[krf�,t(xt)k
2]  2

p
2L2

0

�
E[f�,0(x0)]� f

⇤
�,T

+WT

�d1.5

✏
1.5
f

T
1
2 +

✏

1
2
f
E
⇥
kg̃0(x0)k2

⇤

2
p
2dT

+ 4
p
2L0✏

1
2
f

(d+ 4)2

d
1
2

T
1
2 +

L
2
0

p
2

d
1.5fWT

✏
1.5
f

T
1
2

. (37)

The proof is complete.

F PROOF OF THEOREM 4.3

We first consider the case where Assumption 4.1.1 holds. Note that when ft 2 C
1,1 with Lipschitz

constant L1, the smoothed function f�,t 2 C
1,1 with Lipschitz constant L1. Therefore, following the

proof of Theorem 4.2 but replacing L1,� with L1, we obtain that
T�1X

t=0

E[krf�,t(xt)k
2] 

E[f�,0(x0)]� f
⇤
�,T

⌘
+

L1⌘

2

T�1X

t=0

E[kg̃t(xt)k
2] +

WT

⌘
. (38)

Since ft 2 C
1,1, according to Lemma 2.2, we have that krf�,t(x)�rft(x)k  �L1(d+ 3)3/2.

Furthermore, we have that
T�1X

t=0

E[krf(xt)k
2] =

T�1X

t=0

E[krf(xt)�rf�,t(xt) +rf�,t(xt)k
2]

 2E[krf(xt)�rf�,t(xt)k
2] + 2E[krf�,t(xt)k

2]. (39)
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Next, we consider the case where Assumption 4.1.2 holds. Substituting the bound in (35) into (38)
and using the bound in (39), we obtain that
T�1X

t=0

E[krf(xt)k
2]  2

E[f�,0(x0)]� f
⇤
�,T

⌘
+ 2

WT

⌘
+

L1

1� ↵
E
⇥
kg̃0(x0)k

2
⇤
⌘ +

16L1

1� ↵
L
2
0(d+ 4)2⌘T

+
2dL1

fWT

1� ↵

⌘

�2
+ 2L2

1(d+ 3)3�2T, (40)

Choose ⌘ = 1

2
p
2L0d

4
3 T

1
2

and � = 1

d
5
6 T

1
4

. Then, ↵ = 4dL2
0⌘

2

�2
= 1

2
p
T


1
2 and 1

1�↵
 2. Substituting

these results into the above inequality, we finally obtain that
T�1X

t=0

E[krf(xt)k
2]  4

p
2L0

�
E[f�,0(x0)]� f

⇤
�,T

+WT

�
d

4
3T

1
2 +

L1E
⇥
kg̃0(x0)k2

⇤
p
2L0d

4
3T

1
2

+ 8
p
2L1L0

(d+ 4)2

d
4
3

T
1
2 +

p
2L1

L0
d

4
3 fWT + 2L2

1
(d+ 3)3

d
5
3

T
1
2 . (41)

The proof is complete.

G PROOF OF LEMMA 5.2

Consider the case when Ft(x, ⇠) 2 C
0,0 with L0(⇠). According to (13), we have that

E[kg̃t(xt)k
2] = E[ 1

�2

�
Ft(xt + �ut, ⇠t)� Ft�1(xt�1 + �ut�1, ⇠t�1)

�2
kutk

2]


2

�2
E[
�
Ft(xt + �ut, ⇠t)� Ft(xt�1 + �ut�1, ⇠t)

�2
kutk

2]

+
2

�2
E[
�
Ft(xt�1 + �ut�1, ⇠t)� Ft�1(xt�1 + �ut�1, ⇠t�1)

�2
kutk

2].

(42)

Using the bound in Assumption 5.1 and the fact that the generation of random objective func-
tions Ft�1(·, ⇠t�1) and Ft(·, ⇠t) are independent of ut, we get that 2

�2
E[
�
Ft(xt�1 + �ut�1, ⇠t) �

Ft�1(xt�1+�ut�1, ⇠t�1)
�2
kutk

2]  2d
�2
V

2
f,⇠

. In addition, adding and subtracting Ft(xt�1+�ut, ⇠t)

in
�
Ft(xt + �ut, ⇠t)� Ft(xt�1 + �ut�1, ⇠t)

�2 in above inequality, we obtain that

E[kg̃t(xt)k
2] 

4

�2
E[
�
Ft(xt + �ut, ⇠t)� Ft(xt�1 + �ut, ⇠t)

�2
kutk

2]

+
4

�2
E[
�
Ft(xt�1 + �ut, ⇠t)� Ft(xt�1 + �ut�1, ⇠t)

�2
kutk

2]

+
2d

�2
E[
�
Ft(xt�1 + �ut�1, ⇠t)� Ft�1(xt�1 + �ut�1, ⇠t�1)

�2
].

(43)

By Lipschitz continuity of Ft(·; ⇠t), we can bound the first two items on the right hand side of above
inequality following the same procedure after inequality (16) and get that

E[kg̃t(xt)k
2] 

4dL2
0⌘

2

�2
E[kg̃t(xt�1)k

2] + 16L2
0(d+ 4)2

+
2d

�2
E[
�
Ft(xt�1 + �ut�1, ⇠t)� Ft�1(xt�1 + �ut�1, ⇠t�1)

�2
].

The proof is complete.

H RESIDUAL-FEEDBACK CONVEX OPTIMIZATION WITH UNIT SPHERE
SAMPLING

Consider the online convex zeroth-order optimization problem (P) with a compact constraint set X .
In this section, we assume that the objective function f(x) cannot be queried outside the constraint

17
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set X . To satisfy this requirement, we estimate the gradient as

egt(xt) :=
d

�

�
ft(xt + �ut)� ft�1(xt�1 + �ut�1)

�
ut, (44)

where ut�1 and ut are independently and uniformly sampled from the unit sphere S := {x 2 Rd :
kxk = 1}. Consider the smoothed function f�(x) = Ev2B

⇥
f(x+ �v)

⇤
, where the random vector v is

uniformly sampled from the unit ball B = {x 2 Rd : kxk  1} . Then, we have the following lemma
Lemma H.1. The function egt(xt) is an unbiased estimate of the gradient rf�(xt), i.e., E

⇥
egt(xt)

⇤
=

rf�(xt).

Proof. Since ut is sampled independently from xt�1 and ut�1, and ut has zero mean, it is straight-
forward to complete the proof by applying Lemma 2.1 in Flaxman et al. (2005).

To ensure that the iterates are confined within the constraint set X , we consider the update

xt+1 = ⇧(1�⇠)X
�
xt � ⌘g̃t(xt)

�
, (45)

where the set (1� ⇠)X := {(1� ⇠)x : 8x 2 X} is a shrinked version of the original constraint set
X . The goal is to select a parameter ⇠ so that for every x⇠ 2 (1� ⇠)X , x⇠ + �u 2 X for every u 2 S.
To achieve this, we first make the following assumption that is inspired by Flaxman et al. (2005);
Bubeck et al. (2012).
Assumption H.2. There exist contants r and r̄ such that rB ⇢ X ⇢ r̄B.

Then, we have the following lemma.
Lemma H.3. If the parameter ⇠ satisfies 1 � ⇠ �

�

r
, then for every iterate xt obtained using (45),

we have that xt + �ut 2 X for all ut 2 S.

Proof. When 1 � ⇠ �
�

r
, we get that k�uk  ⇠r. Therefore, there exists x0

2 rB ⇢ X such that
the vector �u = ⇠x

0. Since xt 2 (1� ⇠)X , there exists x 2 X such that xt = (1� ⇠)x, and there
exists x0

2 X such that �u = ⇠x
0. As a result, we have that xt + �u = (1� ⇠)x+ ⇠x

0
2 X . This is

because set X is convex.

Next, we study the regret RT := E
hP

T�1
t=0 ft(xt)�minx2X

P
T�1
t=0 ft(x)

i
achieved by executing

the online update (45) We do so in the following two steps. First, in Lemma H.4, we provide
an upper bound on the difference between the optimal solution that lies in the set (1 � ⇠)X and
the one that lies in the set X , i.e., minx2(1�⇠)X

P
T�1
t=0 ft(x) � minx2X

P
T�1
t=0 ft(x); Then, in

Theorem H.7, we bound the regret defined by the expected difference between the function values
achieved by running the update (45) and the term minx2(1�⇠)X

P
T�1
t=0 ft(x), i.e., E

hP
T�1
t=0 ft(xt)�

minx2(1�⇠)X
P

T�1
t=0 ft(x)

i
. Adding the two bounds above, we can complete the proof.

In the following lemma we provide a bound on minx2(1�⇠)X
P

T�1
t=0 ft(x)�minx2X

P
T�1
t=0 ft(x).

Lemma H.4. If the function ft is convex and ft 2 C
0,0

with Lipschitz constant L0 for all time t, we

have that

T�1X

t=0

ft(x
⇤
⇠
)�

T�1X

t=0

ft(x
⇤)  r̄L0⇠T, (46)

where x
⇤
⇠
= argminx2(1�⇠)X

P
T�1
t=0 ft(x) and x

⇤ = argminx2X
P

T�1
t=0 ft(x).

Proof. Since x
⇤
2 X , we have that (1� ⇠)x⇤

2 (1� ⇠)X . Moreover, since x
⇤
⇠

is the minimizer in
the set (1� ⇠)X , we get that

T�1X

t=0

ft(x
⇤
⇠
) 

T�1X

t=0

ft((1� ⇠)x⇤). (47)
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Also, since ft is convex and (1� ⇠)x⇤ = (1� ⇠)x⇤ + ⇠0, we have that

ft((1� ⇠)x⇤)  (1� ⇠)f(x⇤) + ⇠ft(0)

 (1� ⇠)ft(x
⇤) + ⇠ft(x

⇤)� ⇠ft(x
⇤) + ⇠ft(0)

 ft(x
⇤) + ⇠L0kx

⇤
k  ft(x

⇤) + r̄L0⇠, (48)

where the last inequality is due to the fact that x⇤
2 X ⇢ r̄B. Summing the inequality (48) over time,

we obtain that

T�1X

t=0

ft((1� ⇠)x⇤)�
T�1X

t=0

ft(x
⇤)  r̄L0⇠T. (49)

Adding up the inequalities (47) and (49) and rearranging terms completes the proof.

Next, we study the regret E
hP

T�1
t=0 ft(xt)�minx2(1�⇠)X

P
T�1
t=0 ft(x)

i
following similar steps as

in Section 3. First, we can bound the difference between the smoothed objective function f�,t and ft

for every time step t as follows.

Lemma H.5. Consider a function f and its smoothed version f� . It holds that

|f�(x)� f(x)| 

⇢
�L0, if f 2 C

0,0
,

�
2
L1, if f 2 C

1,1
.

Proof. Recall that f�(x) = Ev2B
⇥
f(x+ �v)

⇤
. Then, we have that

|f�(x)� f(x)| = |Ev2B
⇥
f(x+ �v)� f(x)

⇤
|

 Ev2B
⇥
|f(x+ �v)� f(x)|

⇤

 Ev2B
⇥
L0k�vk

⇤
. (50)

Furthermore, since v 2 B, we have that k�vk  �. Combining this inequality with (50), we have that
|f�(x)� f(x)|  Ev2B

⇥
�L0

⇤
= L0�. When the function f 2 C

1,1 with Lipschitz constant L1, we
have that

hrf(x), �vi �
L1

2
k�vk

2
 f(x+ �v)� f(x)  hrf(x), �vi+

L1

2
k�vk

2
, (51)

for all v 2 B. Taking the expectation of (51) over v sampled uniformly from the unit ball B and
recalling that v is sampled independently from x and has zero mean, we get that

�L1�
2
 �

L1

2
Ev2B

⇥
k�vk

2
⇤
 Ev2B

⇥
f(x+ �v)� f(x)

⇤


L1

2
Ev2B

⇥
k�vk

2
⇤
 L1�

2
. (52)

In addition, because |f�(x)� f(x)| = |Ev2B
⇥
f(x+ �v)� f(x)

⇤
|, we obtain that |f�(x)� f(x)| 

L1�
2. The proof is complete.

The next lemma provides a bound on the second moment of the gradient estimate (44) under
update (45).

Lemma H.6 (Second moment). Assume that ft 2 C
0,0

with Lipschitz constant L0 for all time t.

Then, under the ZO update rule in (45), the second moment of the residual feedback (44) satisfies:

E[kegt(xt)k
2] 

4d2L2
0⌘

2

�2
E[kegt�1(xt�1)k

2] +Dt, (53)

where Dt := 16d2L2
0 +

2d2

�2
E
⇥�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2⇤
.
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Proof. By definition of the residual feedback (44), we have that

E[kg̃t(xt)k
2] = E[d

2

�2

�
ft(xt + �ut)� ft�1(xt�1 + �ut�1)

�2
kutk

2]


2d2

�2
E[
�
ft(xt + �ut)� ft(xt�1 + �ut�1)

�2
kutk

2]

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2]


2d2

�2
E[
�
ft(xt + �ut)� ft(xt�1 + �ut�1)

�2
]

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
],

(54)

where the last inequality is because ut 2 S. Moreover, adding and subtracting ft(xt�1 + �ut) to the
term

�
ft(xt + �ut)� ft(xt�1 + �ut�1)

�2 in the inequality (54), we obtain

E[kg̃(xt)k
2] 

4d2

�2
E[
�
ft(xt + �ut)� ft(xt�1 + �ut)

�2
]

+
4d2

�2
E[
�
ft(xt�1 + �ut)� ft(xt�1 + �ut�1)

�2
]

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
].

(55)

Since ft 2 C
0,0 is Lipschitz with constant L0, we further obtain that

E[kg̃(xt)k
2] 

4d2L2
0

�2
E[kxt � xt�1k

2] + 4d2L2
0E[kut � ut�1k

2]

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
]. (56)

Since ut 2 S, we get that E[kut � ut�1k
2]  4. Substituting this bound into inequality (56), we

obtain that

E[kg̃(xt)k
2] 

4d2L2
0

�2
E[kxt � xt�1k

2] + 16d2L2
0

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
]. (57)

Since xt = ⇧(1�⇠)X
⇥
xt�1 � ⌘g̃(xt�1)

⇤
, we get that kxt �xt�1k = k⇧(1�⇠)X

⇥
xt�1 � ⌘g̃(xt�1)

⇤
�

⇧(1�⇠)X
⇥
xt�1

⇤
k  ⌘kg̃(xt�1)k due to the nonexpansiveness of the projection operator onto a convex

set. Therefore, we have that

E[kg̃t(xt)k
2] 

4d2L2
0⌘

2

�2
E[kg̃t�1(xt�1)k

2] + 16d2L2
0

+
2d2

�2
E[
�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
]. (58)

The proof is complete.

Using Lemmas H.1-H.6, we can obtain the main theorem for online convex optimization using (45).
Theorem H.7 (Regret for Convex Lipschitz ft). Let Assumption 3.1 hold. Assume that ft 2 C

0,0
is

convex with Lipschitz constant L0 for all t. Run ZO with residual feedback for T > r̄
2
L
2q
0 iterations

with ⌘ = r̄
3
2

2
p
2L0

p
dT

3
4

and � =
p
r̄d

L
q
0T

1
4

, where q 2 R is a user-specified parameter. Then, we have that

RT  4
p

2r̄dL0T
3
4 +

E
⇥
kg̃0(x0)k2

⇤
r̄

3
2

2
p
2dL0T

3
4

+ 8
p
2d

3
2L0r̄

3
2T

1
4

+ (2 +
r̄

r
)L1�q

0

p

dr̄T
3
4 +

p
2dr̄V 2

f

L
1�2q
0

T
3
4 . (59)

Asymptotically, we have RT = O
�
(L0 + L

1�q

0 + L0
2q�1

V
2
f
)
p
dr̄T

3
4

�
.
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Proof. First, we provide a bound on the regret that compares the sum of the function values ob-
tained using (45) to that obtained for the optimizer x⇤

⇠
in the shrinked constraint set (1� ⇠)X , i.e.,

E
hP

T�1
t=0 ft(xt)�minx2(1�⇠)X

P
T�1
t=0 ft(x)

i
. Since f�,t(x) is convex for all t, we conclude that

f�,t(xt)� f�,t(x)  hrf�,t(xt), xt � xi, for all x 2 (1� ⇠)X . (60)

Adding and subtracting g̃t(xt) to rf�,t(xt) in inequality (60), and taking the expectation of both
sides with respect to ut, we obtain that

E
⇥
f�,t(xt)� f�,t(x)

⇤
 E

⇥
hg̃t(xt), xt � xi

⇤
. (61)

Since xt+1 = ⇧(1�⇠)X
⇥
xt � ⌘g̃(xt)

⇤
, for any x 2 (1� ⇠)X we have that

kxt+1 � xk
2 = k⇧(1�⇠)X

⇥
xt � ⌘g̃(xt)

⇤
�⇧(1�⇠)X

⇥
x
⇤
k
2

 kxt � ⌘g̃(xt)� xk
2

= kxt � xk
2
� 2⌘hg̃t(xt), xt � xi+ ⌘

2
kg̃t(xt)k

2
. (62)

Rearranging the terms in inequality (62) yields

hg̃t(xt), xt � xi 
1

2⌘

�
kxt � xk

2
� kxt+1 � xk

2
�
+
⌘

2
kg̃t(xt)k

2
. (63)

Taking the expectation of both sides of inequality (63) with respect to ut and substituting the resulting
bound into (61), we obtain that

E
h T�1X

t=0

f�,t(xt)�
T�1X

t=0

f�,t(x)
i


1

2⌘
kx0 � xk

2 +
⌘

2
E
h T�1X

t=0

kg̃t(xt)k
2
i
. (64)

Since ft(x) 2 C
0,0, we know that |f�,t(x)� ft(x)|  �L0. Therefore, we obtain

E
⇥ T�1X

t=0

ft(xt)�
T�1X

t=0

ft(x)
⇤
= E

⇥ T�1X

t=0

f�,t(xt)�
T�1X

t=0

f�,t(x)
⇤

+ E
⇥ T�1X

t=0

�
ft(xt)� f�,t(xt)

�
�

T�1X

t=0

�
ft(x)� f�,t(x)

�⇤


1

2⌘
kx0 � xk

2 +
⌘

2
E
⇥ T�1X

t=0

kg̃t(xt)k
2
⇤
+ 2L0�T, (65)

where we have made use of the bound in (64). Telescoping the bound in (53) over t = 1, 2, ..., T � 1,
adding E

⇥
kg̃0(x0)k2

⇤
to both sides, and adding 4d2

L
2
0⌘

2

�2
E[kg̃T�1(xT�1)k2] to the right hand side,

we obtain that

E
⇥ T�1X

t=0

kg̃t(xt)k
2
⇤


1

1� ↵
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
d
2
L
2
0T +

2d2V 2
f

1� ↵

1

�2
T, (66)

where ↵ = 4d2
L

2
0⌘

2

�2
. Substituting the bound in (66) into (65) yields

E
⇥ T�1X

t=0

ft(xt)�
T�1X

t=0

ft(x)
⇤


1

2⌘
kx0 � xk

2 +
⌘

2(1� ↵)
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
d
2
L
2
0⌘T

+ 2L0�T +
2d2V 2

f

1� ↵

⌘

�2
T. (67)

Since inequality (67) holds for all x 2 (1 � ⇠)X , we can replace x in (67) with x
⇤
⇠
. Furthermore,

using Lemma H.4, we have that
T�1X

t=0

ft(x
⇤
⇠
)�

T�1X

t=0

ft(x
⇤)  r̄L0⇠T. (68)
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Summing inequalities (67) and (68), we obtain

E
⇥ T�1X

t=0

ft(xt)�
T�1X

t=0

ft(x
⇤)
⇤


1

2⌘
kx0 � x

⇤
⇠
k
2 +

⌘

2(1� ↵)
E
⇥
kg̃0(x0)k

2
⇤
+

16

1� ↵
d
2
L
2
0⌘T

+ 2L0�T +
2d2V 2

f

1� ↵

⌘

�2
T + r̄L0⇠T, (69)

where kx0�x
⇤
⇠
k
2
 4r̄2. According to Lemma H.3, we can select ⇠ = �

r
to guarantee that all iterates

xt + �ut 2 X for all ut 2 S. Furthermore, let ⌘ = r̄
3
2

2
p
2L0

p
dT

3
4

and � =
p
r̄d

L
q
0T

1
4

, where q 2 R is a

user-specified parameter. Then, ↵ = 4d2
L

2
0⌘

2

�2
= 1

2T r̄
2
L
2q
0 

1
2 when T � r̄

2
L
2q
0 . Substituting these

parameter values into (69), we obtain that

E
⇥ T�1X

t=0

ft(xt)�
T�1X

t=0

ft(x
⇤)
⇤
 4

p

2r̄dL0T
3
4 +

E
⇥
kg̃0(x0)k2

⇤
r̄

3
2

2
p
2dL0T

3
4

+ 8
p
2d

3
2L0r̄

3
2T

1
4

+ (2 +
r̄

r
)L1�q

0

p

dr̄T
3
4 + L

2q�1
0

p

2dr̄V 2
f
T

3
4 . (70)

The proof is complete.

I DISCUSSION ON THE ONLINE OPTIMIZATION WITH ADVERSARIES

In Section 2, we consider online optimization problems where the sequence of the objective functions
{ft}t is randomly generated and is independent of the agent’s decisions. This assumption is satisfied
when the non-stationarity of the environment is caused by the nature. In this section, we consider
a different scenario where the objective function is selected by an opponent. Specifically, at time t,
the agent selects a decision xt + �ut, then the opponent selects a objective function ft according to
the history information Ht = {x0 + �u0, f0, . . . , xt�1 + �ut�1, ft�1, xt + �ut} to maximize the
agent’s regret.

When the gradient estimator (3) is applied, where the searching direction ut is sampled from Gaussian
distribution N (0, I), we have the following Lemma in adversarial scenario.
Lemma I.1 (Second moment). Assume that ft 2 C

0,0
with Lipschitz constant L0 for all time t. Then,

under the ZO update rule in (4), the second moment of the residual feedback satisfies: for all t,

E[kegt(xt)k
2] 

4dL2
0⌘

2

�2
E[kegt�1(xt�1)k

2] +Dt, (71)

where Dt := 16L2
0(d+ 4)2 +

2

�2
E
⇥�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2
⇤
.

Proof. The proof is essentially the same as the proof of Lemma 2.5, except that the bound
2
�2
E
⇥�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2
⇤


2d
�2
E
⇥�
ft(xt�1 + �ut�1)� ft�1(xt�1 +

�ut�1)
�2⇤ used under (14) does not apply in the adversary case, because the selection of the function

ft depends on ut. Since the other derivations in the proof of Lemma 2.5 does not rely on the
independence between ut and ft, they still hold. It is straightforward to obtain the bound in (71).

Next, we present the assumptions on the adversary agent for online convex optimization problems.
Assumption I.2 (Bounded Adversary). Given the history Ht, the adversary agent selects a function

ft such that for all time t there exists a constant V
2
f

that satisfies

|ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)|
2
 V

2
f
. (72)

Then, within the expectation term in Dt in the bound (71), for any realization of the random vector
ut, the bound

�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
 V

2
f

holds according to Assumption I.2.
Therefore, we have that

2

�2
E
⇥�
ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)

�2
kutk

2
⇤


2

�2
E
⇥
V

2
f
kutk

2
⇤


2d

�2
V

2
f
. (73)
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Therefore, after combining Lemma I.1 and Assumption I.2, we can achieve the bound on the second
moment E

⇥
kg̃t(xt)k2

⇤

E
⇥
kg̃t(xt)k

2
⇤


4dL2
0⌘

2

�2
E[kegt�1(xt�1)k

2] + 16L2
0(d+ 4)2 +

2d

�2
V

2
f
. (74)

This is the same bound we obtained by combining Lemma 2.5 and Assumption 3.1. And it can be
used to obtain (23) in the proofs of Theorems 3.2, which is also used in 3.4. Then, it is straightforward
to follow the same proofs of Theorems 3.2 and 3.4 to get the same regret bounds in online convex
optimization problems under adversarial environment.

Finally, we present the assumptions on the adversary agent for non-stationary non-convex optimization
problems.
Assumption I.3. From time t = 0 to T , the adversary agent selects a sequence of objective functions

{ft} such that

1. There exists a constant WT that satisfies
P

T

t=1 E[f�,t(xt) � f�,t�1(xt)]  WT , where the

expectation is taken with respect to xt.

2. At time t � 1, given the history Ht, the adversary agent selects a function ft such that there exists

a constant V
2
f,t

that satisfies

|ft(xt�1 + �ut�1)� ft�1(xt�1 + �ut�1)|
2
 V

2
f,t

. (75)

Furthermore, we have that

TX

t=1

V
2
f,t

 fWT . (76)

Different from Assumption I.2, where at each time t, the adversary should select a function ft

according to a uniform function variation bound V
2
f

, Assumption I.3.2 allows the adversary to select
ft according to a varying function variation bound V

2
f,t

. However, there also exists a budget fWT for
the adversary, which represents the total variation on the functions that the adversary is allowed to
make from time t = 0 to T .

Then, similar to the discussion under Assumption I.2, within the expectation term in Dt in the
bound (71), for any realization of the random vector ut, the bound

�
ft(xt�1 + �ut�1)� ft�1(xt�1 +

�ut�1)
�2

 V
2
f,t

holds at time t according to Assumption I.3. Therefore, we can combine Lemma I.1
and Assumption I.3 and use similar derivation in (73) to achieve the same bounds in (34), (35) and
(38), which are used in the proof of Theorems 4.2 and 4.3. The other part of the proofs remains the
same. Therefore, by combining Lemma I.1 and Assumption I.3, we achieve the same regret bounds in
Theorems 4.2 and 4.3 in online non-stationary non-convex optimization problems under adversarial
environment.
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