
Published as a conference paper at ICLR 2022

SUPPLEMENTARY MATERIAL FOR THE PAPER:
DEEP ATTENTIVE VARIATIONAL INFERENCE

A MODEL ARCHITECTURE

A.1 INFERENCE NETWORK

In this section, we provide the formal description of the attention-enhanced inference network pre-
sented in Section 2.5. Equivalently, we present the procedure for the construction of the conditioning
factor of the posterior distribution q(zl | x, z<l).

The inference network is first traversed from the bottom (stochastic layer closer to the data x) to
the top, to compute successive hidden data representations hl ∈ RH×W×C and their keys: kq

l ∈
RH×W×Q, with Q≪ C:

[hl, k
q
l]← T q

l (hl+1 ⊕ kq
l+1), for l = L,L− 1, . . . , 1. (12)

L is the number of stochastic layers. We assume hL+1 ≡ x. T q
l is a non-linear transformation,

typically implemented as a cascade of ResNet cells (He et al., 2016a;b).

Afterwards, samples from the posterior are drawn in top-down order following the topological or-
dering of the generative model:

z1 ∼ q(z1 | x),
zl ∼ q(zl | x, z<l), for l = 2, . . . , L. (13)

The inference network receives the prior context cpl ∈ RH×W×C and a query feature sql ∈
RH×W×Q from the generative model, see Equation 7. cpl and sql contain latent information of
previous layers z<l. The observed, data-dependent feature hl and the latent feature cpl are com-
bined via an operator ⊕ to give the context of the posterior cql ∈ RH×W×C along with its key
kp,q
l ∈ RH×W×Q:

[cql , k
p,q
l]← hl ⊕ cpl . (14)

As already pointed out, kp,q
l and cql contain stochastic, latent information, while kq

l and hl of Equa-
tion 12 contain only deterministic, observed information.

We allow variational layer l to have access to hl and all subsequent data representations h>l. During
inference, the variational layer decides parts of the deterministic features h≥l and the stochastic
feature cql to pay attention to. For pixel (i, j), with 1 ≤ i ≤ H , 1 ≤ j ≤ W , the generative model
queries according to sql (i, j) ∈ RQ and computes an attention distribution, as follows:

αq
m→l(i, j) =

exp(kq
m(i, j)Tsql (i, j))

Zq(i, j)
, (15)

αq
p→l(i, j) =

exp(kp,q
l (i, j)Tsql (i, j))

Zq(i, j)
, (16)

Zq(i, j) = exp(kp,q
l (i, j)Tsql (i, j)) +

∑
m≥l

exp(kq
m(i, j)Tsql (i, j)). (17)

αq
p→l(i, j) ∈ R reflects the importance of stochastic context cql (i, j) ∈ RC to pixel (i, j). Similarly,

αq
m→l(i, j) ∈ R reflects the importance of deterministic feature hm(i, j) ∈ RC of layer m to pixel

(i, j). Zq(i, j) ∈ R is a normalization constant.

14

Published as a conference paper at ICLR 2022

The posterior context for pixel (i, j), ĉql (i, j) ∈ RC , is the weighted sum:

ĉql (i, j) = αq
p→l(i, j)c

q
l (i, j) +

∑
m≥l

αq
m→l(i, j)hm(i, j). (18)

To scale the deep variational model with ease, we use the following normalization:

ĉql ← ĉql +Gelu(LayerNorm(ĉql)), (19)

where Gelu is the GELU non-linearity (Hendrycks & Gimpel, 2016) and LayerNorm a layer nor-
malization operation (Ba et al., 2016).

At the beginning of the training, we let the inference model rely on nearby latent and observed
information represented by cql , by introducing the residual connection:

ĉql ← cql + γq
l ĉ

q
l , (20)

where γq
l is a learnable scalar parameter initialized to zero.

We adopt the Gaussian residual parametrization between the prior and the posterior proposed by
Vahdat & Kautz (2020). The prior is given by:

p(zl | z<l) = N (µ(cpl),σ(c
p
l)). (21)

The posterior is then given by:

q(zl | x, z<l) = N (µ(cpl) + ∆µ(ĉql),σ(c
p
l)∆σ(ĉql)), (22)

where the summation and multiplication are pointwise, and cql is defined in Equation 20. µ(·), σ(·),
∆µ(·), and ∆σ(·) are transformations implemented as convolutions.

The inference procedure is also described in detail in Algorithm 3.

A.2 SPATIALLY NON-LOCAL VARIATIONAL LAYERS

In this section, we provide the formal description of the non-local blocks (Wang et al., 2018) in the
recidual cells of encoder and decoder. As shown in Figure 3 and explained below, the output of each
block is scaled and added back to the input feature.

Let c ∈ RH×W×C a context feature. We treat c as a sequence of N , where N = H ×W , C−
dimensional features, such that c ∈ RN×C . The non-local block maps c to a feature v ∈ RN×C of
the same dimension by taking into account the response of all the locations in the sequence.

The context feature c is first mapped to two feature spaces of a lower dimension Q, with Q << C,
through a key α and a query β linear transformation:

α(c) = cWα, (23)
β(c) = cWβ , (24)

where the linear transformations Wα ∈ RC×Q, Wβ ∈ RC×Q are implemented as 1 × 1 convolu-
tions, and α(c) ∈ RN×Q, β(c) ∈ RN×Q.

The energy matrix E(c) ∈ RN×N is computed as:

E(c) = β(c)αT (c). (25)

Each element Ei,j(c) = βi(c) × αT
j (c), where βi is the i−th row of β, reflects the relevance of

pixel j to pixel i. The attention distribution is computed by a scaled softmax row normalization,
such that the corresponding attention score Ai,j(c) is :

Ai,j(c) =
exp(ωβi(c)α

T
j (c))

Z(i)
, (26)

Z(i) =
N∑
j=1

exp(ωβi(c)α
T
j (c)). (27)

15

Published as a conference paper at ICLR 2022

ω ∈ R is learnable scalar parameter initialized to one. c is also linearly projected to an embedding
space via a transformation η:

η(c) = cWη, (28)

where Wη ∈ RC×C and η(c) ∈ RN×C . Wη is implemented as a 1× 1 convolution.

The final output v ∈ RN×C is:

v = A(c)η(c). (29)

A(c) ∈ RN×N is the matrix of the attention scores defined in Equation 27. Finally, v represents a
scaled, residual mapping of c such that the final output is:

c← c+ γv, (30)

where γ ∈ R is a learnable scalar parameter initialized to zero.

Figure 3: The spatially non-local ResNet cell. Non-local operations (Wang et al., 2018) interleaved
with the convolutions are responsible for capturing inter-pixel (equivalently, intra-layer) long-range
interactions between stochastic features in the same layer of the hierarchy.

A.3 ALGORITHMS

Algorithms 1, 2, and 3 summarize the inference in our model. T p
l and T q

l refer to a block of ResNet
cells (Figure 3). F d refers to a single convolution computing the parameters of the data distribution,
while convolutions F p

l and F q
l give the parameters of the prior and posterior distribution of layer l

respectively. ⊕ is a merging operator unless one of its operands is zero, in which case it corresponds
to an identity mapping. Algorithm 1 computes the optimization objective of Equation 2. It consists

Algorithm 1 Infer
This algorithm computes a lower bound on the marginal data log-
likelihood (Equation 2).

1: Inputs
2: x: The data.
3: h, kq ← Bottom−Up Pass (x) (Algo. 2).
4: cp, z, p(z), q(z | x)← Top−Down Pass

(
h, kq

)
(Algo. 3).

5: cpL+1← T p
L+1(c

p
L ⊕ zL).

6: θ← F d(cpL+1).
7: p(x | z) ≜ p(x;θ).
8: ELBO ≈ log p(x | z)−DKL(q(z | x) ∥ p(z)).
9: Return

10: ELBO: The evidence lower bound.

of three main steps:

1. The bottom-up pass that is described described in Algorithm 2.

2. The top-down pass that is described described in Algorithm 3.

3. The formation of the conditional data distribution p(x | z).

16

Published as a conference paper at ICLR 2022

Algorithm 2 Bottom-Up Pass
This algorithm computes a sequence of deterministic, hidden fea-
tures and keys of the data.

1: Inputs
2: x: The data.
3: Set hL+1 ≡ x and kq

L+1 ≡ 0.
4: for l = L,L− 1, . . . , 1 do
5: [hl, k

q
l]← T q

l (hl+1 ⊕ kq
l+1).

6: end for
7: Return
8: h ≜ {hl}Ll=1: The hidden data features.
9: kq ≜ {kq

l }Ll=1: The data keys.

During the bottom-up pass described in Algorithm 2 (see also left part of Figures 1a, 1b), the data
x are passed through a sequence of ResNet transformations T q

l to give a sequence of features h
and keys kq . h and kq will be used by the stochastic layers of the VAE hierarchy when forming
the posterior distribution, in a reverse order. Note that in Algorithm 2, kq

L+1 is set to zero since
layer L has access only to its own hL and it is not connected with another layer from the bottom.
Algorithms 1 and 2 are very similar to that of typical deep VAEs. The only difference is that the
ResNet transformations are also producing the data keys kq along with the data features h.

The second, top-down phase of Algorithm 1 infers samples of latent variables z along with the
prior and posterior distributions. It is described in Algorithm 3 and explained in detail below. In
Algorithm 1, cpL encapsulates latent information of z<L. Along with zL, they feed the ResNet block
T p
L+1 succeeded by the convolution F d to compute the conditional data likelihood p(x | z) that is

parameterized by θ.

Algorithm 3 describes the top-down pass that is also visualized in the right part of Figures 1a, 1b.
The layers are traversed from the top (l = 0) to the bottom-up (l = L), sampling latent variables
zl from the posterior distribution and computing context features cpl that contain processed latent
information of previous layers. The prior distribution is also computed in order to obtain the prior
regularization term DKL(q(z | x) ∥ p(z)) of the objective function in Equation 2.

The first layer does not receive latent information or context from a previous layer, therefore it sets
z0 and cp0 to zero. Similarly, since there is no other layer in the generative network to connect with,
it does not produce a query sp1 to attend with. The last layer does not pass any prior information to
a subsequent layer, therefore it does not compute a key kp

L. Similarly, the last layer can use only its
own data features hL. Therefore, the generative portion of the layer does not compute a query for
the inference portion setting sqL ≡ 0.

Each layer l, unless in a marginal case described above, computes four types of features kp
l , spl , sql

and cpl (Line 6). Key features kp
l are used at the depth-wise Attend step of next layers > l (Line

10). spl is a query to the generative network of previous layers < l. sql is a query to the inference
network of current and next layers ≥ l. Finally, cpl are stochastic features that, along with sql , will
be used to form the condition of the prior distribution. We note here that sql is used both to form the
condition of the prior ĉpl (Line 7) and to query the inference network when forming the condition
of the posterior ĉql (Line 21). A layer in a deep VAE that is not attention-guided does not produce
kp
l , s

q
l , s

p
l and the computation falls into the “else” cases of Algorithm 3 (Lines 15, 26).

In Line 10, the generative network queries previous layers via spl to identify latent context features
cpl′ represented by keys kp

l′ that are most critical when forming its prior beliefs. The resulting feature
ĉpl , after being normalized in Line 12, rectifies the initial context cpl by the residual connection of
Line 13. The initial prior context cpl is being used by next layers while the attention-guided context
ĉpl is the conditioning factor of the prior distribution formed in Lines 17, 18.

A similar procedure takes place to form the posterior distribution. cql is the initial posterior context
that merges deterministic information hl and stochastic, latent information ĉpl , as seen in Lines 20,
26. cql is updated with an attention-driven feature computed in Line 21 by the residual connection of

17

Published as a conference paper at ICLR 2022

Algorithm 3 Top-Down Pass
This algorithm infers a sequence of stochastic, latent representa-
tions of the data.

1: Inputs
2: h ≜ {hl}Ll=1: The hidden data features.
3: kq ≜ {kq

l }Ll=1: The data keys.
4: Set z0 ≡ 0, cp0 ≡ 0, sp1 ≡ 0, sqL ≡ 0, and kp

L ≡ 0.
5: for l = 1, 2, . . . , L do
6: [sql , c

p
l , s

p
l , k

p
l]← T p

l (zl−1 ⊕ cpl−1).
7: cpl ← cpl ⊕ sql .

Form the prior distribution.
8: if l > 1 then
9: cpl−1 ← LayerNorm

(
cpl−1

)
.

10: ĉpl ← Attend
(
{cpl′}

l−1
l′=1, s

p
l , {k

p
l′}

l−1
l′=1

)
.

11: ĉpl ← ĉpl +Gelu(LayerNorm(ĉpl)).
12: cpl ← cpl +Gelu(LayerNorm(cpl)).
13: ĉpl ← cpl + γp

l ĉ
p
l .

14: else
15: ĉpl ← cpl .
16: end if
17: [µp

l , σ
p
l]← F p

l (ĉ
p
l).

18: p(zl | z<l) = N (µp
l ,σ

p
l).

Form and sample from the posterior distribution.
19: if l < L then
20: [cql , k

p,q
l]← hl ⊕ ĉpl .

21: ĉql ← Attend
(
{h}Ll′=l ∪ {c

q
l }, s

q
l , {k

q
l′}Ll′=l ∪ {k

p,q
l }

)
.

22: ĉql ← ĉql +Gelu(LayerNorm(ĉql)).
23: cql ← cql +Gelu(LayerNorm(cql)).
24: ĉql ← cql + γq

l ĉ
q
l .

25: else
26: ĉql ← hl ⊕ ĉpl .
27: end if
28: [∆µq

l , ∆σq
l]← F q

l (ĉ
q
l).

29: q(zl | x, z<l) = N (µp
l +∆µq

l ,σ
p
l ∆σq

l).
30: zl ∼ q(zl | x, z<l).
31: end for
32: Return
33: cp ≜ {cpl }Ll=1: The latent context features.
34: z ≜ {zl}Ll=1: The inferred latent variables.
35: p(z) =

∏
l p(zl | z<l): The prior distribution of z.

36: q(z | x) =
∏

l q(zl | x, z<l): The approximate posterior distribution of z.

18

Published as a conference paper at ICLR 2022

Line 24. In Line 29, the residual parametrization of the posterior, as proposed by (Vahdat & Kautz,
2020) and also described in Equation 22, is derived.

B IMPLEMENTATION DETAILS

For all the experiments, we use the AdaMax (Kingma & Ba, 2014) optimizer with the default param-
eters for training. The learning rate is decayed according to the cosine schedule with warm-up during
the first 5 epochs. When we train for 900 epochs, we use a cosine decay schedule with restarts with
T0 = 300 and Tmult = 2 following the notation of Loshchilov & Hutter (2017). We apply weight
normalization (Salimans & Kingma, 2016) in all our models. We use the Swish (Ramachandran
et al., 2017) activation function in the ResNet cells of the architecture.

Table 6 summarizes the main training and architectural hyperparameters for the experiments pre-
sented in Section 3. However, it should be noted that due to the heavy computing requirements, we
do not exhaustively optimize the hyperparameters. Therefore, the results reported could potentially
be further improved.

Table 6: Summary of key hyperparamaters for experiments. The first set pertains to training
hyperparameters. The second set refers to statistical hyperparameters specific to variational models.
The last set includes architectural hyperparameters.

Hyperparameter OMNIGLOT MNIST CIFAR-10
epochs 400 400 900
GPUs 2 2 4
GPU type GeForce RTX 2080 Ti GeForce RTX 2080 Ti 32GB V100-SXM2
batch size per GPU 16 50 40
initial learning rate 0.01 0.01 0.01
l2−regularization λ 1.5e− 4 1.5e− 4 1.5e− 4
Batch Normalization

momentum 0.9 0.9 0.9
epsilon 1e− 5 1e− 5 1e− 5

KL annealing 0.1→ 1 0.1→ 1 0.1→ 1
KL annealing epochs 16 16 16
σnoise ✗ ✗ 0.001
log σp ≥ −5.0 −1.0 −1.0
log σp ≤ 5.0 5.0 5.0
log σq ≥ −5.0 −5.0 −5.0
log σq ≤ 5.0 5.0 5.0
number of layers (L) 15 15 16
spatial dims of latent space z 16× 16 8× 8 16× 16
channels in z 20 20 20
Encoder
pre-proc blocks 1 2 1
ResNet cells in pre-proc blocks 3 3 2
initial channels in pre-proc blocks 32 32 128
channels in encoder 64 128 256
ResNet cells in encoder 2 2 2

Decoder
channels in decoder 64 128 256
ResNet cells in decoder 2 2 2
post-proc blocks 1 2 1
ResNet cells in post-proc blocks 3 3 2
initial channels in post-proc blocks 64 128 256

Attention
key dim in top-down attention path 8 8 20
layer norm in top-down attention path ✓ ✓ ✓
key dim in bottom-up attention path 8 8 20
layer norm in bottom-up attention path ✗ ✓ ✓
key dim in spatially non-local blocks 8 16 32

KL Annealing. We apply KL annealing (Sønderby et al., 2016) for the first 16 training epochs
starting from 0.1 to 1. This technique introduces a scheduled regularization coefficient β for the
KL-divergence. Formally, the regularized ELBO objective becomes:

Eq[log p(x | z)]− βDKL(q(z | x) ∥ p(z)), β0 ≤ β ≤ 1, β0 < 1, (31)
where β linearly increases from β0 to 1 for a number of epochs at the beginning of the training.

19

Published as a conference paper at ICLR 2022

Variational Distributions. We use Gaussian prior and posterior distributions connected via a resid-
ual parametrization, see Equation 22. To ease training stability, we bound the log-scale of the prior
logσp and the posterior logσq as reported in Table 6. In case of CIFAR-10, we also apply additive
zero mean, Gaussian noise to the prior and posterior scale. The mean µ and the log-scale logσ
are jointly learned by using a shared convolution. In particular, a 1 × 1 convolution with an ELU
activation is used for the prior parameters. For the posterior parameters of all but the first layer, two
3 × 3 convolutions with an ELU non-linearity are used. For the posterior of the first layer, a single
1× 1 convoltion with no activation is used.

Data Distributions. For MNIST and OMNIGLOT, we assume a logit-based parametrization of a
Bernoulli distribution. For CIFAR-10, we use a mixture of discretized Logistic distributions (Sal-
imans et al., 2017) with five mixture components. The parameters are jointly learned by a single
3× 3 convolution with an ELU activation.

Pre-Processing and Post-Processing Blocks. The data x, before being passed to the stochastic
hierarchy of L layers, are first pre-processed by a cascade of ResNet cells. Each block is responsible
for downsampling the spatial dimension by a factor of 2. For MNIST, the image is downsampled
twice by two blocks, leading to latent variables with spatial dimension 8× 8. For OMNIGLOT and
CIFAR-10, one pre-processing block is being used leading to latent spaces of dimension 16 × 16.
No further downsampling is performed by encoders in the main hierarchy. Each block consists of
a series of ResNet cells. The last cell of the block is responsible for downsampling while doubling
the number of the output channels. Symmetrically, the context of the last layer L is first being
post-processed by a cascade of post-processing blocks before being passed to the data distribution
of the decoder. Each such block is responsible for upsampling the context by a factor of 2 in order
to match the initial spatial dimension of the image. The upsampling operation is performed by the
first ResNet cell while halving the number of the output channels.

Spatially Non-Local Blocks. For CIFAR-10, we interleave non-local blocks as shown in Figure 3
in the pre-processing blocks of the encoder, as well as the encoder and decoder of each layer. We
interleave non-local blocks with the convolutions of the ResNet cells as shown in Figure 3. For
OMNIGLOT and MNIST, we interleave non-local blocks as shown in Figure 3 in the post-processing
blocks of the encoder. We noticed that it suffices to add a single non-local block right before the first
ResNet cell of the encoder and decoder of each layer.

C TRAINING PLOTS

Figure 4: Training NELBO of Attentive VAE. NELBO for the CIFAR-10 training dataset across
900 training iterations. The shaded areas show the standard deviation across 10 network initializa-
tions and optimizations.

20

Published as a conference paper at ICLR 2022

Figure 5: Validation NELBO of Attentive VAE. NELBO for the CIFAR-10 validation dataset
across 900 training iterations. The shaded areas show the standard deviation across 10 network
initializations and optimizations.

Figure 6: Training KL loss of Attentive VAE. KL loss for the CIFAR-10 training dataset across 900
training iterations. The shaded areas show the standard deviation across 10 network initializations
and optimizations.

21

Published as a conference paper at ICLR 2022

Figure 7: Validation KL loss of Attentive VAE. KL loss for the CIFAR-10 validation dataset
across 900 training iterations. The shaded areas show the standard deviation across 10 network
initializations and optimizations.

Figures 4, 5 show the minimization of the negative ELBO (NELBO) loss in Equation 2 on the
training and the validation CIFAR-10 images across 900 training epochs. The first training phase
(left part) refers to the KL annealing period. For the next two training phases, the learning rate is
annealed according to the cosine schedule. At epoch 300, the learning rate is restarted (right part).
Figures 6, 7 focus on the KL loss of the NELBO.

D ABLATION STUDIES

In this section, we perform ablation experiments to investigate the effect of different architectural
choices on model performance.

For the experiments in Tables 7, 8 and 9, the models were trained on CIFAR-10 for 500 epochs.
We used shallower attentive VAE models of 8 layers for these experiments. We considered model
instances of a varying size, with 64 and 128 channels at the beginning of the bottom-up network and
at the end of the top-down network. As already noted in Section B, the number of channels is halved
when a residual cell upsamples the spatial dimension and vice versa. In all cases, model instances
with more channels in the ResNet modules in encoder and decoder perform significantly better.

We can also see that both weight normalization (Salimans & Kingma, 2016), Table 7, and batch nor-
malization layers interleaved with the convolutions of both the bottom-up and the top-down model,
Table 8, improve performance. These results are consistent with the observations made by Vahdat
& Kautz (2020). Moreover, their effect is greater on the larger models.

22

Published as a conference paper at ICLR 2022

Table 7: Weight Normalization. Predictive performance with and without weight normalization
for two model sizes. − log p(x) ≤ (bits/dim) ↓ is reported.

initial channels w/ Weight Norm. w/o Weight Norm.

64 3.07 3.09

128 2.94 2.99

Table 8: Batch Normalization. Predictive performance with and without batch normalization for
two model sizes. − log p(x) ≤ (bits/dim) ↓ is reported.

initial channels w/ Batch Norm. w/o Batch Norm.

64 3.07 3.09

128 2.94 2.97

In Table 9, we report the performance of different activation functions. The Swish (Ramachandran
et al., 2017) and GELU (Hendrycks & Gimpel, 2016) activations yield the best performance. This is
in accordance with similar choices in current deep VAE architectures (Vahdat & Kautz, 2020; Child,
2020). The rest of the hyper-parameters are identical to that of Section B.

Table 9: Activation Function. Predictive performance for various activation functions for two
model sizes. − log p(x) ≤ (bits/dim) ↓ is reported.

initial channels Activation
ReLU ELU Swish GELU

64 3.12 3.09 3.07 3.07
128 2.99 2.99 2.94 2.94

In Table 10, we take a closer look at the normalized depth-wise attention proposed in Section 2.4.
The gap in the performance is more noticeable for deep VAE models of 16 layers. We train all
model instances for 400 epochs. We omit the application of the normalization scheme presented in
Equations 5 and 6 in the generative and/or inference network. We confirm that usage of depth-wise
normalization facilitates training and helps scale the depth of the proposed architecture.

Table 10: Depth-wise Attention Normalization. Predictive performance for normalized and unor-
malized depth-wise attention in decoder and encoder in a deep, 16-layer, VAE.
− log p(x) ≤ (bits/dim) ↓ is reported.

Normalized Depth-Wise Attention
Generative Network Inference Network − log p(x) ≤ (bits/dim) ↓

✓ ✓ 2.82
✗ ✓ 2.89
✓ ✗ 2.86
✗ ✗ 2.90

23

Published as a conference paper at ICLR 2022

E EMPIRICAL EVIDENCE OF BETTER LATENT VARIABLE UTILIZATION BY
ATTENTIVE VAE

In this section, we probe the capacity of attentive VAE to utilize the latent information inserted in
the model. We first examine the Kullback–Leibler divergence DKL(q ∥ p) observed on the test
data across the hierarchy during training. Unless it explodes, a high DKL(q ∥ p) loss term is often
desirable since it leads to a smaller negative ELBO (NELBO) loss in Equation 2. This is because
higher DKL(q ∥ p) indicates more informative latent factors z, and in turn, higher conditional
likelihood p(x | z). For example, Kingma et al. (2016) use a modified objective function that
lower bounds DKL(q ∥ p) by some free bits. Similarly, Vahdat & Kautz (2020) use a residual
parametrization between the prior and the posterior to keep more latent variables active.

Figure 8: Latent space activation map for NVAE. The logDKL(q ∥ p) for each latent layer zl as
a function of the training epoch on CIFAR-10 for the baseline NVAE.

Figure 9: Latent space activation map for Attentive VAE (ours). The logDKL(q ∥ p) for each
latent layer zl as a function of the training epoch on CIFAR-10 for Attentive VAE.

24

Published as a conference paper at ICLR 2022

In this work, we tackle posterior collapse by imposing attention-driven connections between the
layers. The proposed depth-wise attention naturally realizes long-range couplings between the layers
at a pixel level. Therefore, it selectively preserves the most informative latent information which may
lie far beyond in the hierarchy. In Figure 8, we show logDKL(q ∥ p) per layer zl for the baseline
NVAE during the first 16 KL annealing epochs (left part) and for the rest of the training (right part).
Similarly, in Figure 9, we show logDKL(q ∥ p) for the proposed model.

Given the above plots, we make the following observations:

• Although in both models, logDKL(q ∥ p) remains large (always positive), our model
presents a more balanced activation map in the latent space. In contrast, in Figure 8, we
see that the first two layers are significantly much less active compared to the layers closer
to p(x | z). This phenomenon is exacerbated in deeper hierarchies.

• In Figure 8, logDKL(q ∥ p) increases with depth. In contrast, in Figure 9 of our model,
the first layer converges to a much higher DKL(q ∥ p) compared to layer 12 although it is
much farther from p(x | z).

• In Figure 9, we notice that as the learning progresses, the attention scores can help activate
some latent units. For example, layer 6 is relatively dormant at the beginning of the training,
while it converges at a highly informative posterior distribution at the end.

Finally, in Table 11, we show the bits per dimension as the depth varies for our model. All models
in Table 11 were trained for 500 epochs. As we can see the predictive improvement gained when
doubling the size of the model from 8 to 16 layers is on par with the improvement accomplished
when transitioning from a model of 2 layers to a model of 4 layers. In contrast, deep VAEs without
attention experience half the amount of relative improvement, as seen in Table 1. We also note that
the first two smallest models have converged during the last 100 training epochs which is not the
case for the last two model instances. Therefore, the gap in the relative decrease for the models of 8
and 16 layers could be further closed by longer training.

Table 11: − log p(x) for varying depth L (bits/dim) for attentive VAE (ours).

Depth (L) bits/dim ↓ ∆(·)%
2 3.31 −
4 3.12 −5.7
8 2.96 −5.1
16 2.81 −5.1

25

Published as a conference paper at ICLR 2022

F VISUALIZATION OF ATTENTION PATTERNS

In order to get further insights into the attention-driven inference, we visualize the attention maps
proposed in this work. In Figure 10, we show the layer connectivity in the generative network as
explained in Section 2.4 for some test images that belong to different classes. For the same images,
in Figure 11 we illustrate the depth-wise attention scores in the inference network we describe in
Section 2.5, and explain in greater detail in Section A.1. For both cases, we chose to visualize the
layer which has the largest receptive field, i.e, the last layer for L = 16 which is right before the
conditional likelihood p(x | zL) in the decoder, and the first layer which has access to all hidden,
data-dependent feature maps of the bottom-up pass in the encoder.

This analysis validates the hypothesis made in this work and suggests the following conclusions:

• For all pixels, the layer relies greatly on the immediately above layer when forming the
prior distribution, as shown in Figure 10.

• Different latent pixels of the same image can discover related latent clues that lie in different
layers.

• Similarly, the connectivity patterns in the generative network vary significantly across im-
ages.

• Although the context cp14 already carries latent information from all previous layers, the
decoder does not depend solely on that. Instead, it chooses to activate direct connections
with layers far beyond in the hierarchy. This reinforces our hypothesis that the effect of
latent variables in early layers may be obfuscated by more recent latent information leading
in practice to non fully factorized prior distributions: p(z) =

∏
l p(zl | z<l).

• The inference attention scores in Figure 11 are more balanced across layers compared to
the generative attention scores in Figure 10.

• Mitigation of posterior collapse as described in E is accomplished in a dual fashion. First,
all layers during the bottom-up pass of the inference can directly interact with the initial
data feature maps of the last layers in the hierarchy, as shown in Figure 11. Second, early
latent variables of the top layers condition the prior distribution of the latent variables in
layers with closer affinity to the conditional data distribution in the decoder, as shown in
Figure 10.

In Figures 12, 13, 14, we plot the attention scores among pixels that lie in the same layer as discussed
in Sections 2.6 and A.2. The attention scores pertain to the non-local block of the last convolution
of the last residual cell, as depicted in Figure 3, of the ResNet module in the generative portion of
each layer.

We derive the following observations:

• The connectivity patterns in all layers are highly structured. This implies that the model
could be benefited by sparse attention factorizations such as those proposed by Child et al.
(2019), that rely on a similar assumption.

• The attention schemes vary widely across layers. For example, the activation map is more
scattered in the first layer of Figure 12 compared to that of the last layer of Figure 14 which
is sparser and gathered in periodic spatial locations. This may align with the functionality of
the latent information as discussed in current research (Child, 2020), according to which top
layers capture global, high-level features while lower layers are responsible for capturing
finer details.

• Different images exhibit different spatial attention maps. The differences are more pro-
nounced in the middle layer, as depicted in Figure 13.

26

Published as a conference paper at ICLR 2022

Figure 10: Depth-wise generative attention scores. Connectivity map at pixel granularity between
the last (16th) layer and the preceding layers in the hierarchy in the generative network using the
proposed depth-wise attention for eight test images (top).

27

Published as a conference paper at ICLR 2022

Figure 11: Depth-wise inference attention scores. Connectivity map at pixel granularity between
the first layer and the subsequent layers in the inference network as dictated by the generative net-
work using the proposed depth-wise attention for eight test images (top).

28

Published as a conference paper at ICLR 2022

Figure 12: Spatial attention maps. Pixel connectivity at the final latent feature map of the first
layer in the generative network for eight test images (top).

29

Published as a conference paper at ICLR 2022

Figure 13: Spatial attention maps. Pixel connectivity at the final latent feature map of the middle
(8th) layer in the generative network for eight test images (top).

30

Published as a conference paper at ICLR 2022

Figure 14: Spatial attention maps. Pixel connectivity at the final latent feature map of the last
(16th) layer in the generative network for eight test images (top).

31

Published as a conference paper at ICLR 2022

G RECONSTRUCTIONS AND FANTASY SAMPLES GENERATED FROM OUR
MODEL

In this section, we qualitatively assess the Attentive VAE presented in the paper. Figures 15b and 16b
illustrate reconstructed MNIST and CIFAR-10 test images from the inferred latent variables.

Figures 15c and 16c show novel MNIST and CIFAR-10 images sampled by the generative model.

(a) Original MNIST images. (b) Reconstructed MNIST images.

(c) Uncurated generated MNIST images.

Figure 15: Qualitative evaluation on MNIST images.

32

Published as a conference paper at ICLR 2022

(a) Original CIFAR-10 images. (b) Reconstructed CIFAR-10 images.

(c) Uncurated generated CIFAR-10 images..

Figure 16: Qualitative evaluation on CIFAR-10 images.

33

	Model Architecture
	Inference Network
	Spatially Non-Local Variational Layers
	Algorithms

	Implementation Details
	Training Plots
	Ablation studies
	Empirical evidence of better latent variable utilization by attentive vae
	Visualization of Attention Patterns
	Reconstructions and Fantasy Samples Generated from our Model

