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A Proofs1

Proof of Lemma 3.3 We first note that the statement is empty if v = 0. Let v ̸= 0, and consider the2

nested family of balls B(p+ λ′v, λ′|v|), parametrized by λ′ > 0.3

Because πS(p + λv) ̸= p, the (closed) ball B(p + λv, λ|v|) contains a point q ∈ S other than p.4

Since the balls B(p+ λ′v, λ′|v|) are nested, the point q lies inside every ball B(p+ λ′v, λ′|v|) with5

λ′ ≥ λ. Moreover, q lies in the interior of B(p+ λ′v, λ′|v|) for λ′ > λ. Hence, for every λ′ ≥ λ, we6

have that πS(p+ λ′v) ̸= {p} and for λ′ > λ, that p /∈ πS(p+ λ′v). □7

Proof of Lemma 3.7 Let Q = πS(x) be the subset of S that is closest to x. Because x ∈ ax(S),8

Q contains at least two points, one of them being p. We write λ = |x− p|. Since S and ax(S) are9

disjoint, λ > 0, and thus we can define u = x−p
λ .10

Since the interior of the ball B(x, λ) does not intersect S , it in particular does not intersect Tan(p,S)11

and thus B(x, λ) is weakly tangent at p by Remark 3.2.Let us now consider the nested family12

B(p + λ′u, λ′) of weakly tangent balls at p. By definition, ∂B(x, λ) ∩ S = Q and therefore13

B(p + λ′u, λ′) ∩ S = p for λ′ < λ. At the same time, Lemma 3.3 yields that for λ′ > λ,14

p /∈ πS(p+ λ′u). Hence the projection range in direction u equals d(p, u, πS) = λ and we obtain15

πax,S(p, u) = p+ λu = x directly from Definition 3.6 . The fact that πax,S (UBP(S)) ⊆ ax(S) is16

due to Lemma 2.3 □17

The next two claims are used in the proof of Theorem 3.9:18

Claim A.1

u′ =
(DpF

t)−1(u)

|(DpF t)−1(u)|
, (8)

where DpF
t is the transpose matrix (or the adjoint operator) of DF at the point p, defined by19

∀v1, v2, ⟨v1, DpF (v2)⟩ = ⟨DpF
t(v1), v2⟩.

Proof20

w ∈ DpF (u⊥) ⇐⇒ ⟨DpF
−1(w), u⟩ = 0

⇐⇒ ⟨w, (DpF
−1)tu⟩ = 0

⇐⇒ ⟨w, u′⟩ = 0

⇐⇒ w ∈ u′⊥,
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and thus21

DpF (u⊥) = u′⊥. (9)

In other words, we have shown that u′ is orthogonal to DpF (u⊥) = DpF (T ).22

Because23

⟨DpF (u), (DpF
−1)t(u)⟩ = ⟨DpF

−1(DpF (u)), u⟩ = ⟨u, u⟩ > 0,

we deduce that ⟨DpF (u), u′⟩ > 0. This is in turn equivalent to u′ pointing towards the interior of24

F (B(c, ρ)). □25

Claim A.2 Let ∥DpF − Id ∥ ≤ ε < 1. Then the angle ∠u, u′ between the vectors u and u′ satisfies26

cos∠u, u′ ≥
√

1− ε2.

Proof We first show that ∠u, u′ < π/2. Indeed, define the vector w as27

w = (DpF
t)−1(u),

that is, the vector satisfying u = DpF
t(w). Then u′ = w

|w| (see equation (8) ), and28

|w|⟨u, u′⟩ = ⟨u,w⟩ = ⟨DpF
tw,w⟩

= ⟨w,DpFw⟩ = |w|2 + ⟨w, (DpF − Id)w⟩
≥ |w|2 − |w|2 ∥DpF − Id ∥
> 0. (because, by assumption, ∥DFp − Id ∥ < 1)

Thus, ⟨u, u′⟩ > 0, and therefore ∠u, u′ < π/2.29

Figure 6: Since ∥v −DpF (v)∥ ≤ ε |v|, the vector DpF (v) lies in the green ball B(v, ε |v|). Since
ε < 1, the angle between v and DpF (v) is upper-bounded by arcsin ε < π/2.

Furthermore, consider a vector v ∈ u⊥. Since ∥v −DpF (v)∥ ≤ ∥DpF − Id ∥|v| ≤ ε|v|, the angle30

between v and DpF (v) is upper-bounded by arcsin ε < π/2, as illustrated in Figure 6. This yields a31

bound on the angle between the tangent spaces u⊥ and DpF (u⊥):32

sin∠u⊥, DpF (u⊥) = sin sup
v∈u⊥,w∈DpF (u⊥)

∠v, w ≤ ε. (10)

Using (9) and (10) we deduce that:33

sin∠u, u′ = sin∠u⊥, u′⊥ ≤ ε.

Finally, since ∠u, u′ < π/2, cos∠u, u′ ≥
√
1− ε2. This concludes the proof. □34

Proof of Theorem 3.9 We first derive the bounds for the radius ρ′. As the first step, we apply35

Theorem 2.6to the boundary sphere S(c, ρ) of the maximal empty weakly tangent ball B(c, ρ). In36

particular, we can choose the constant s in Theorem 2.6arbitrarily large, and the constant t arbitrarily37

close to the reach rch(S(c, ρ)) = ρ, to obtain:38

rch (F (S(c, ρ))) ≥ 1(
LF

ρ + LDF

)
(LF )2

=
ρ

(LF )3 + ρLDF (LF )2
=: ρ1.

This means that no open ball of radius ρ1 tangent to the set F (S(c, ρ)) actually intersects F (S(c, ρ)).39

In addition, since the set F (B(c, ρ)) does not contain any points of F (S) in its interior, no ball of40
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radius ρ1 that is tangent to F (S(c, ρ)) and whose centre lies inside F (S(c, ρ)) contains any point of41

F (S).42

The unit vector u′ ∈ DFp(T )
⊥ (defined in (8)) is defined such that the point F (p) + ρ1u

′ lies inside43

the distorted ball F (B(c, ρ)). Due to the above observation, the ball B(F (p) + ρ1u
′, ρ1) is weakly44

tangent to F (S) at F (p) and contains no points of F (S) in its interior.45

Let us now consider the weakly tangent ball B(F (p) + ρ′′u′, ρ′′), whose radius ρ′′ satisfies46

ρ′′ >
(LF )

3ρ

1− ρLDF (LF )2
=: ρ2.

To shorten up the notation, we set47

F (p) + ρ′′u′ =: c′′.

To derive a contradiction, we assume that B(c′′, ρ′′) is maximal empty. This is equivalent to48

assuming that intB(c′′, ρ′′)∩ F (S) = ∅, and thus B(c′′, ρ′′) is a maximal empty weakly tangent ball49

to F (p). Similarly to the beginning of the proof, we now apply Theorem 2.6to the map F−1 and the50

boundary sphere S(c′′, ρ′′) = ∂B(c′′, ρ′′). As a result, the reach of F−1(S(c′′, ρ′′)) is at least51

rch
(
F−1(S(c′′, ρ′′))

)
≥

(LF )3ρ
1−ρLDF (LF )2

(LF )3 +
(LF )3ρ

1−ρLDF (LF )2LDF (LF )2
= ρ.

We conclude that there exists a ball that is tangent to the set F−1(S(c′′, ρ′′)) at F−1(F (p)) = p,52

whose radius is larger than ρ, and that does not contain any points of S in its interior. This contradicts53

the fact that the ball B(c, ρ) is maximal empty, and completes the proof of the first part of the54

statement.55

We now prove the bounds on the distortion of the map πax,S . Let ρ′ ∈ [ρ1, ρ2] be the radius of the56

maximal empty weakly tangent ball at F (p) in the direction u′, and write c′ := F (p) + ρ′u′ for its57

centre. We stress that, as a consequence of Lemma 2.3, c′ ∈ ax(F (S)), but it is not necessarily true58

that c′ ∈ ax(F (S)).59

The goal is to estimate the distance between the two centres c = πax,S(p, u) and c′ = πax,S(F (p), u′).60

Indeed, since c− p = ρu and c′ − F (p) = ρ′u′,61

|c− c′| = |c− p+ p− F (p) + F (p)− c′| = |ρu+ p− F (p)− ρ′c′|
≤ |ρu− ρ′u′|+ |F (p)− p| .

Due to the assumptions of the theorem,|F (p)− p| ≤ ε1. Furthermore, thanks to Claim A.2,62

|ρu− ρ′u′|2 = ρ2 + (ρ′)2 − 2ρρ′ cos∠u, u′ ≤ ρ2 + (ρ′)2 − 2ρρ′
√
1− (ε2)2.

Recalling that ρ′ ∈ [ρ1, ρ2], we thus obtain63

|ρu− ρ′u′| ≤max
(√

ρ2 + (ρ1)2 − 2ρ ρ1 cos(arcsin(ε2)),
√
ρ2 + (ρ2)2 − 2ρ ρ2 cos(arcsin(ε2))

)
= max

(√
ρ2 + (ρ1)2 − 2ρ ρ1

√
1− (ε2)2,

√
ρ2 + (ρ2)2 − 2ρ ρ2

√
1− (ε2)2

)
.

Hence,64

|c− c′| ≤ max

(√
ρ2 + (ρ1)2 − 2ρ ρ1

√
1− (ε2)2,

√
ρ2 + (ρ2)

2 − 2ρ ρ2
√
1− (ε2)2

)
+ ε1.

(11)

As the last step, we simplify the expression (11) (at the cost of weakening the bounds). For this, we65

assume that ρLDF (LF )
2 ≤ 1/2, so that66

ρ1 =
ρ

(LF )3 + ρLDF (LF )2
≥ ρ

(LF )3

(
1− ρ

LDF

LF

)
, (12)

ρ2 =
(LF )

3ρ

1− ρLDF (LF )2
≤ ρ(LF )

3
(
1 + 2ρLDF (LF )

2
)
, (13)
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where we used that, for x ∈ [0, 1/2], 1
1+x ≥ 1− x and 1

1−x ≤ 1 + 2x. We note that both ρ1 and ρ267

tend to ρ as LF tends to 1 and LDF tends to 0. We now consider |ρ1 − ρ| and |ρ2 − ρ|, and claim that68

|ρ1 − ρ|, |ρ2 − ρ| ≤ ρ(LF )
3
(
1 + 2ρLDF (LF )

2
)
− ρ.

For |ρ2 − ρ| = ρ2 − ρ, the claim holds thanks to (13). To establish this for |ρ1 − ρ| requires a small69

calculation:70

|ρ1 − ρ| = ρ− ρ1 ≤ ρ− ρ

(LF )3

(
1− ρ

LDF

LF

)
(due to (12))

≤ ρ(LF )
3
(
1 + 2ρLDF (LF )

2
)
− ρ (assuming the claim holds)

2ρ ≤ ρ(LF )
3
(
1 + 2ρLDF (LF )

2
)
+

ρ

(LF )3

(
1− ρ

LDF

LF

)
(reformulating the previous inequality)

2 ≤ (LF )
3 +

1

(LF )3
+ 2ρLDF (LF )

5 − ρ
LDF

(LF )4
,

where the final inequality holds because x3 + x−3 ≥ 2, and 2x5 − x−4 ≥ 0, for x ≥ 1. We now71

consider the function72

f(δ) = ρ2 + ρ2(1 + δ)2 − 2ρ2 (1 + δ)
√
1− (ε2)2

= ρ2
(
δ2 + 2

(
1−

√
1− (ε2)2

)
δ + 2

(
1−

√
1− (ε2)2

))
.

The function f is a second order polynomial in δ and because all coefficients are positive, the73

maximum of f on the interval [−δm, δm] is a attained at δm, that is,74

sup
δ∈[−δm,δm]

f(δ) = f(δm).

By combining these results, we see that75

|c− c′|

≤
√
f ((LF )3 (1 + 2ρLDF (LF )2)− 1) + ε1

=

√
ρ2 + (ρ(LF )3 (1 + 2ρLDF (LF )2))

2 − 2ρ (ρ(LF )3 (1 + 2ρLDF (LF )2))
√

1− (ε2)2

+ ε1

= ρ

√
1 + (LF )6 (1 + 2ρLDF (LF )2)

2 − 2(LF )3 (1 + 2ρLDF (LF )2)
√
1− (ε2)2 + ε1.

Because both f(δ) and the bound (13) are monotone in ρ, and ρ is bounded by the radius r of the76

bounding sphere S(r), we conclude that77

|c− c′|

≤ 2r

√
1 + (LF )6 (1 + 4rLDF (LF )2)

2 − 2(LF )3 (1 + 4rLDF (LF )2)
√

1− (ε2)2 + ε1. (14)

For every point c in ax(S) we have found a point c′ in ax(F (S)) whose distance is bounded by (14),78

and therefore the one-sided Hausdorff distance between the two medial axes ax(S) and ax(F (S))79

is bounded by the same quantity. Because the symmetrical formulation of the statement, the same80

bound holds for the Hausdorff distance. □81

Proof of Theorem 4.1 We denote Lφ = Lip(ϕ). Expressions (5), (6) and (7) of the main article82

yield:83

Lφ ≤ rε, LDF = ε, LF ≤ 1 + Lφ ≤ 1 + rε, ε1 ≤ r2ε, ε2 ≤ rε. (15)

We deduce84

rε ≤ 1/4 =⇒ rε(1 + rε)2 ≤ 1/2 =⇒ rLDF (LF )
2 ≤ 1/2.
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Thus, the conditions of Theorem 3.9 are satisfied. Next, we reformulate the inequality (3) of Theorem85

3.9.The expression E under the square root at the right hand side of this inequality is:86

E = 1 + (LF )
6
(
1 + 4rLDF (LF )

2
)2 − 2(LF )

3
(
1 + 4rLDF (LF )

2
)√

1− (ε2)2.

By replacing LF by 1 + Lφ in E, the constants, as well as the degree-one terms in Lφ, rLDF , and87

ε2, cancel out. More precisely,88

E = 16r2L2
DF + r2ε22 + 24rLφLDF + 9L2

φ +O(|(rLDF , Lφ, ε2)|3). (16)

Finally, by substituting inequalities (15) into (16), we obtain89

E ≤ 50r2ε2 +O
(
r3ε3

)
,

and90

dH(ax(S), ax(F (S))) ≤
(
1 +

√
50

)
r2ε+O

(
r3ε2

)
.

□91

B Federer’s tubular neighbourhood lemma92

Lemma B.1 (Federer’s tubular neighbourhood lemma, Theorem 4.8 (12) of [19) ] Let p ∈ S93

and lfs(p) > 0. The generalized normal space to S at p is characterized by the following property:94

For any ρ ∈ R satisfying 0 < ρ < lfs(p),95

Nor(p,S) = {λv ∈ Rd | λ ≥ 0, |v| = ρ, πS(p+ v) = {p}}.

In particular, Nor(p,S) is a convex cone. The generalized tangent space Tan(p,S) is the convex96

cone dual to Nor(p,S).97
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