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Supplementary Materials

Description of G-Mixup hyperparameters

We describe the hyperparameters relevant to the G-Mixup method. We also state the
values for these hyperparameters used in the in the original paper, as stated in the paper;
we note that some of these values in the original author’s code were different, and so we
therefore changed it in our code.

- Augmentation ratio a: Multiplying the number of training graphs by this ratio
gives the number of synthetic graphs generated by applying G-Mixup to the graphons
estimated from the training data. The authors use a = 0.2 in their experiments.

- Mixup ratio A and mixup interval [A1, As]: Given graphons Wy, Wy and mixup ratio
A € [0,1], the authors’ algorithm produces a new mixed-up graphon

The mixup ratio A is randomly sampled from the interval [A, As]. The authors use
the mixup interval [0.1,0.2] in their experiments.

+ Augmentation number n,ug: In the G-Mixup algorithm, we generate n,ug mixed-up
graphons from any two distinct classes among all of the classes; the mixup ratios
of these mixed-up graphons are given by A; for i = 1,2,...,n,,4. We generate
lan/naue] synthetic graphs from each mixed-up graphon, where n is the size of
the original training set. For binary classification with Ay = Ay, this parameter is
made irrelevant. The authors use n..g = 10 in their experiments.

+ Graphon resolution: If n is the graphon resolution, then in the graphon estima-
tion step, an n x n matrix is used to represent the graphon. To sample from the
graphon, an n x n adjacency matrix is then generated. Isolated nodes are then
removed to provide a synthetic graph. Thus, the resolution influences the size of
synthetic graphs, but does not determine it. In particular, it is an upper bound on
the number of nodes in the synthetically generated graphs. The authors use the
median number of nodes in the training set as the resolution.

Theoretical result details

We first provide some of the relevant definitions and background for Section 4.1.1 (Re-
sult 1).

Definition A.1. A discriminative motif F¢; of a graph G is the subgraph with the minimal
number of nodes and edges that can decide the class of the graph G. Let Fg denote the
set of discrminative motifs for a set G of graphs.

The authors use this notion of discriminative motifs as their measure for “key topolo-
gies” among graphs of a certain class or label.

Given an arbitrary graph or graphon, we want to measure “how often” such a motif ap-
pears in the graph or graphon. The following definition will be used as this measure.

Definition A.2. Let F' be an arbitrary graph.
+ Let G be a graph. Then the homomorphism density of F with respect to the graph
Gis
_ hom(F,G)
"= e

where hom(F, G) denotes the total number of graph homomorphisms from F to
G, and |V (F)|, |V(G)| denote the number of nodes of the graphs F, G respectively.
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+ Let W be a graphon. Then the homomorphism density of F with respect to the
graphon W is

tF,W :/ -’1:171‘ dm’u
F= fyon M 2y

(i,5)EE(F) i€V (F)
where F(F), V(F) denote the edge and vertex sets of F respectively.

Finally, the following norm on graphons provides a way to measure the “similarity” of
graphons.

Definition A.3. Let W : [0,1]2 — R be a measurable function. Then the cut norm of W
is defined as

[Wlo = sup
S,7Cl0,1]

W(z,y)dz dy|,
ST

where the supremum is taken over all measurable subsets S,7" C [0, 1].

We note that the use of the box () in the cut norm notation is the standard notation
and is used to distinguish cut norm from other norms.

)

Remark A.4. The cutnormisindeed a norm. In particular, itis homogeneous, so for o €
R is a scalar and W : [0, 1]> — R a measurable function, then oW is also a measurable
function on [0, 1)%, and

[aW o = |af[W]a.

In particular, note that
Wlo = I-Wlo-

We now provide our detailed proof of Lemma 4.1.

Proof of Lemma 4.1. We expand upon the proof of this result in [2, Lemma 4.1].
First, notice that an equivalent definition for the cut norm of a graphon U is

IUllo = sup

f.9

[, V@St drdy). @

where the supremum is taken over all measurable functions f, g : [0,1] — [0, 1].
LetV(F)={1,....,n}and E(F) = {e1,..., e}, where e; = (i, j;). Then

t(F,W)—t(F,W’):/ I Wwaiz)- I W) | [] de

(0,1]™ e, €E(F) e, €E(F) i€V (F)

Fort=1,...,m, define

t—1
Xe(@1,. .. 2n) = <H W(mikvxjk)> (W(xit'/xjt) - W xtumJt ( H W mlk"rjk )
k=1

k=t+1
= V[/(.711;17.7}j1) e W(ajimij)W/(xi1+17$jr+1) e W/(a:im7xjm)
- W(wiuwh) e W(:L.it—17xjt—l)W ('thv ’r) W (‘Lfmv'le)'

Notice that for¢t = 1,...,m — 1, the second term of X;(z1,...,x,) cancels out with the
first term of X;y1(x1,...,2,). Thus,
m
H W(xy,,x;,) — H w'( (@i, xj,) =2Xt(x1,...,:rn).
e:€E(F) et€E(F) t=1
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Fix all variables z; € [0,1] , where k # 4, j;; we then have that

t—1 m
j(mu) = H W(mik7xjk)7 g(xjt) = H W/(xiwxjk)
k=1 k=t+1

are both measurable functions [0,1] — [0, 1] in «;, and x;, respectively. Then by Equa-
tion 4,

QXt(xl,...,xn)dﬂcit dz;,| < |W —W||g,
(0,1]
and so
Xi(z1, ... 20) Hdﬂ% < / Xi(z1,. .., zp) dx;, dzj, H dz;
[0,1)" i=1 [0,1]7=2 |/[0,1]2 i#ie,d1
<[W - W|p.
Thus, we see that
m n
#(F, W) — £(F, W")] = / S Xo(ons ) [ do
01" =1 i=1
m n
< Xt(xh...,mn)Hdwi
t=1|7[0.1]" i=1
<m|W - W|o.
Recall that m = e(F'), and so we have the desired inequality. O

Figures for experimental results

The following figures show the loss curves for experiments from Sections 4.1.2 and 4.2.1,
as well as the original paper’s loss curves.
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Figure 1. The training/validation/test loss curves on IMDB-B and REDDIT-B with GCN as backbone.
The curves are depicted on ten runs. This is part of Figure 4 in the original paper [1].
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Figure 2. The training/validation/test curves on REDDIT-B with GCN as a backbone. The curves are
depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is +

the standard deviation of the losses.
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IMDB-BINARY train loss
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Figure 3. The training/validation/test curves on IMDB-BINARY with GCN as a backbone. The curves
are depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is
=+ the standard deviation of the losses.
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Figure 4. The training/validation/test curves on PROTEINS with GCN as a backbone. The curves
are depicted on ten runs. The line is the mean of the corresponding loss, while the shaded area is
+ the standard deviation of the losses.

ReScience C 9.2 (#1) - Cordaro et al. 2023



