
Towards Practical Control of Singular Values of
Convolutional Layers:

Supplementary Materials

Alexandra Senderovich∗†

HSE University
Ekaterina Bulatova∗

HSE University
Anton Obukhov

ETH Zürich
Maxim Rakhuba
HSE University

A Compressed Convolutional Layers

A.1 Proof of Lemma 1

The result essentially follows from different ways to represent the TT decomposition [Holtz et al.,
2012]. By applying the QR decomposition to K(1) and K(3)⊤, we obtain:

K(1) = Q(1)R(1), K(3)⊤ = Q(3)⊤R(3),

where R(1), R(3) are upper triangular. Substituting these formulas into (4) yields (6) with

Q(2)
p1...pdαβ

=

r1−1∑
α′=0

r2−1∑
β′=0

R
(1)
αα′K(2)

p1...pdα′β′R
(3)
β′β ,

which completes the proof.

A.2 Proof of Theorem 1

Using (5), we have
TK = TK(3)TK(2)TK(1) .

Let us first show that given K(1)⊤K(1) = Ir1 , the matrix TK(1) has orthonormal rows, i.e., it satisfies

TK(1)T⊤
K(1) = Ir1nd . (13)

To do so, let us find TK(1) in terms of K(1). For any X ∈ Rcin×n×···×n and its row-major reshaping
into a matrix X ∈ Rcin×nd

, we have

TK(1)vec(X) ≡ vec (CK(1)(X))

= vec
(
K(1)X

)
=
(
K(1) ⊗ Ind

)
vec (X)

=
(
K(1) ⊗ Ind

)
vec (X) .

Therefore, TK(1) = K(1) ⊗ Ind , where ⊗ denotes the Kronecker product of matrices. Using basic
Kronecker product properties and the orthogonality of K(1), we arrive at (13). Analogously, we may
obtain TK(3) = K(3)⊤ ⊗ If(n,k)d and

T⊤
K(3)TK(3) = Icoutf(n,k)d .

∗Equal contribution.
†Corresponding author: Alexandra Senderovich (AlexandraSenderovich@gmail.com)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:AlexandraSenderovich@gmail.com

Finally, using SVD of TK(2) : TK(2) = UΣV ⊤, we get:

TK =
(
K(3)⊤ ⊗ If(n,k)d

)
UΣV ⊤

(
K(1)⊤ ⊗ Ind

)
=
((
K(3)⊤ ⊗ If(n,k)d

)
U
)
Σ
((
K(1) ⊗ Ind

)
V
)⊤

= ŨΣṼ ⊤,

where Ũ , Ṽ have orthonormal columns as a product of matrices with orthonormal columns. Hence,
TK = ŨΣṼ ⊤ is in the compact SVD form, which completes the proof.

B Periodic Strided Convolutions

B.1 Code for Computing Singular Values of a Strided Convolution

According to Theorem 2, the following code computes the singular values of a transform encoded
by a strided convolution. Note that neither the full SVD nor the clipping operation is included in
the code. The code for computing the singular vectors and the new kernel with constrained singular
values can be found in the source code repository.

def SingularValues(kernel, input_shape, stride):
1 kernel_tr = np.transpose(kernel, axes=[2, 3, 0, 1])
2 d1 = input_shape[0] - kernel_tr.shape[2]
3 d2 = input_shape[1] - kernel_tr.shape[3]
4 kernel_pad = np.pad(kernel_tr, ((0, 0), (0, 0), (0, d1), (0, d2)))
5 str_shape = input_shape // stride
6 r1, r2 = kernel_pad.shape[:2]
7 transforms = np.zeros((r1, r2, stride**2, str_shape[0], str_shape[1]))
8 for i in range(stride):
9 for j in range(stride):

10 transforms[:, :, i*stride+j, :, :] = \
11 kernel_pad[:, :, i::stride, j::stride]
12 transforms = np.fft.fft2(transforms)
13 transforms = transforms.reshape(r1, -1, str_shape[0], str_shape[1])
14 transpose_for_svd = np.transpose(transforms, axes=[2, 3, 0, 1])
15 sing_vals = svd(transpose_for_svd, compute_uv=False).flatten()
16 return sing_vals

B.2 Proof of Theorem 2

In this section, we prove Theorem 2 from Sec. 4.1. Firstly, we analyze the structure of the matrix
corresponding to a strided convolution. Secondly, we show that the columns of this matrix can be
permuted to make matrix structure similar to that of a non-strided convolution. Therefore, the new
theorem can be reduced to the already proven theorem.

Let us denote a circulant with each row shifted by the value of stride as a “strided circulant”. The
shape of such a strided circulant is n

s × n, where n is the number of elements in the first row. Here is
an example of a strided circulant with n = 4, s = 2:(

a b c d
c d a b

)
.

One can think of this strided circulant as a block-circulant matrix with block sizes 1 × s. At the
same time, slicing this matrix by taking columns with a step equal to the stride, e.g., columns(
0, s, 2 · s, . . .

(
n
s − 1

)
· s
)
, gives a standard circulant matrix. This fact can be stated as

A =

s−1∑
i=0

Ai

(
In

s
⊗ eTi

)
,

where ⊗ denotes the Kronecker product, A is a strided circulant, ei ∈ Rs is the i-th standard basis
vector in Rs, and Ai is a circulant obtained by slicing columns of A.

2

The regular 2D convolutional transform matrix with a single input and single output channels has a
doubly block-circulant structure (see Section 5.5 in Jain [1989]). However, for strided convolutions,
the structure is different. For a fixed pair of input and output channels, the output of a strided
convolution is a submatrix of an output of a convolution with the same kernel but without the stride.
More specifically, it is a slice with the stride s by both dimensions (in Python, it would be written as
[::s, ::s]). For the matrix encoding the transformation, it means that only every s-th block row
(simulating the slice by the first dimension) and every s-th regular row of a block (simulating the
slice by the second dimension) are considered. This means that the doubly block-circulant structure
of the initial matrix turns into a doubly block-strided circulant structure of shape

(
n
s

)2 × n2, where n
is the size of a kernel.

Each block of this matrix is a strided circulant, and the block structure is that of a strided circulant as
well. The matrix consists of n

s × n blocks, and each of them has the shape n
s × n. If we denote a

strided circulant of a row vector a as circs(a), then the matrix of the transform is as follows:

B =


circs(K0,:) . . . circs(Kn91,:)
circs(Kn9s,:) . . . circs(Kn9s91,:)

...
. . .

...
circs(Ks,:) . . . circs(Ks91,:)

 .

It can be noted that, in the same way as in strided circulants, we can take block columns of the matrix
with a step equal to the stride and get block circulants (where each block is a strided circulant). This
block structure can be described as follows:

B =

s−1∑
i=0

Bi

((
In

s
⊗ eTi

)
⊗ In

)
.

Here B is a doubly block-strided circulant matrix, and Bi ∈ R(n
s)2×n2

s is a block-circulant matrix.
This formula is similar to our previous sum representation for a strided circulant; however, the
dimensions of the right term of each element are larger to account for the block structure of the left
term. Note that this term is needed to describe how the columns of Bi are positioned in the matrix B,
similar to the 1D case.

Let us consider Bi. It consists of block columns
(
i, s+ i, 2s+ i, . . .

(
n
s − 1

)
s+ i

)
:

Bi =


circs(Ki,:) . . . circs(Kn9s+i,:)

circs(Kn9s+i,:) . . . circs(Kn92s+i,:)
...

. . .
...

circs(Ks+i,:) . . . circs(Ki,:)


As a block-circulant with n

s ×
n
s blocks of n

s × n, it can be expanded as follows:

Bi =

n
s −1∑
k=0

P k ⊗ Cik,

where Cik ∈ Rn
s ×n is a strided circulant block, Cik = circs (Ki−sk,:) and P is a permutation matrix:

P =


0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 ∈ R
n
s ×n

s .

We can expand Cik as a strided circulant:

Cik =

s−1∑
j=0

Aikj

(
In

s
⊗ eTj

)
,

3

where Aikj ∈ Rn
s ×n

s is a regular circulant matrix that can be acquired as circ1(Ki−sk,j::s), i.e. as a
circulant built from the slice of a string Ki−sk, taken with a step s starting from the index j. Finally,

Bi =

n
s −1∑
k=0

P k ⊗ Cik =

n
s −1∑
k=0

P k ⊗

s−1∑
j=0

Aikj

(
In

s
⊗ eTj

) =

n
s −1∑
k=0

s−1∑
j=0

P k ⊗
(
Aikj

(
In

s
⊗ eTj

))

=

n
s −1∑
k=0

s−1∑
j=0

P k ⊗
(
Aikj ⊗ eTj

)
=

n
s −1∑
k=0

s−1∑
j=0

((
P k ⊗Aikj

)
⊗ eTj

)
=

s−1∑
j=0

n
s −1∑
k=0

P k ⊗Aikj

⊗ eTj

=

s−1∑
j=0

n
s −1∑
k=0

P k ⊗Aikj

(I(n
s)2 ⊗ eTj

)
.

This reformulation helps us see that the slices of Bi by columns with step s are, in fact, doubly block-
circulant matrices defined by spatial slices of the kernel. There are s matrices Bi, each containing s
column slices. The jth column slice of Bi is defined by Ai,:,j , which, in turn, is defined by the kernel
slice Ki::s,j::s.

In order to reduce the task of computing singular values of the matrix B, corresponding to the strided
convolution, to the simpler task of computing singular values of a matrix corresponding to a regular
convolution, let us permute the columns of Bi:

B′
i =

s−1∑
j=0

eTj ⊗
n

s −1∑
k=0

P k ⊗Aikj

 .

This matrix consists of s consecutive doubly block-circulant matrices circ2 (Ki::s,j::s). The first
dimension of Bi is the same as the first dimension of B. Therefore, for B, this is also just a
permutation of the columns. The next step is to permute the block columns of B:

B′ =

s−1∑
i=0

eTi ⊗
s−1∑
j=0

eTj ⊗
n

s −1∑
k=0

P k ⊗Aikj

 .

After this permutation, matrix B consists of s2 consecutive doubly block-circulant matrices. Note
that the particular order of these blocks is not important, as it is just a matter of column order.

Finally, let us look at the matrix associated with the multiple-channel convolution. The matrix of the
convolutional transform with cin input channels and cout output channels is as follows (equivalent to
the structure described in Sedghi et al. [2019]):

M =


B0,0 B0,1 . . . B0,(cout91)
B1,0 B1,1 . . . B1,(cout91)

...
...

. . .
...

B(cin91),0 B(cin91),1 . . . B(cin91),(cin91)

 ,

where
Bc,d = circs(K:,:,c,d).

However, now we know that we can permute the columns of this matrix to get a matrix comprised of
doubly block-circulant blocks. After the permutation described above, we get a matrix

M ′ =


B′

0,0 B′
0,1 . . . B′

0,(s2cout91)
B′

1,0 B′
1,1 . . . B′

1,(s2cout91)
...

...
. . .

...
B′

(cin91),0
B′

(cin91),1
. . . B′

(cin−1),(s2cout91)

 ,

where
B′

c,d = circ2
(
Ki::s,j::s,c,⌊d/s2⌋

)
,

4

Table 3: Various metrics for the proposed framework applied to the SOC method (SOC-TT) and the
LipConvNet-N architectures. λort denotes the regularization parameter of the orthogonal loss (11).
We chose a range of lambda values to allow us to keep the Lipschitz constant under 1. The rank is set
to 256.

PARAMETERS METRICS
-N λort ACC. ↑ CIFAR-C ↑ ECE ↓ AA ↑ LIP. ↓

5

5E3 78.37 69.84 5.42 34.65 0.93
8E3 77.68 69.57 6.57 33.73 0.79
1E4 77.17 68.99 6.61 32.13 0.76
3E4 76.25 67.9 8.35 30.96 0.6
4E4 75.8 67.67 7.96 30.69 0.59
5E4 75.74 67.66 8.71 30.77 0.58

20

7E4 78.41 70.47 4.89 35.89 0.91
8E4 78.34 70.27 5.18 35 0.89
1E5 77.45 69.81 5.43 34.1 0.8
2E5 76.56 68.4 6.62 32.19 0.64
3E5 76.03 68 7.23 32.52 0.58
4E5 75.66 67.56 7.08 31.54 0.57

30

2E5 77.82 69.94 4.78 34.91 0.86
3E5 77.86 69.38 5.86 33.96 0.75
5E5 76.57 68.23 6.79 32.73 0.65
7E5 75.93 68.03 6.93 32.65 0.59
9E5 75.88 67.71 6.81 31.49 0.59

1.2E6 76.22 67.6 7.23 31.85 0.56

i, j – some integer indices from 0 to s − 1. The exact relationship between i, j and c, d is not
important, as it depends only on the order of the columns. The only important thing is that it has to
be the same in all the rows. We choose the following functional form:

i =
⌊(
d mod s2

)
/s
⌋
, j = d mod s.

This matrix M ′ can be perceived as the matrix of convolution for a new kernel K ′ ∈
Rn

s ×n
s ×cin×couts

2

, defined by this equation:

Ka,b,c,d = K̂⌊(d mod s2)/s⌋+as,d mod s+bs,c,d mod s.

Alternatively, to make things simpler, we can use the additional tensor R, defined in (8). It is easier
to use this tensor for implementing the formula in Python.

To conclude, we reduced the task of computing the singular values of M to the task of computing
the singular values of the M ′, solved by Sedghi et al. [2019]. The reduction is made possible via
columns permutation, meaning that the singular values of the matrix did not change.

C Additional Empirical Studies

C.1 Plotting Empirical Lipschitz Constant

In order to estimate the Lipschitz constants of LipConvNet networks and their TT-compressed
counterparts, we plot histograms of empirical Lipschitz constants inspired by Sanyal et al. [2020].
The Lipschitz constants are evaluated by attacking each image from the test set using the FGSM
attack of a fixed radius (0.5 in our experiments) [Goodfellow et al., 2015]. We compute a ratio that is
upper-bounded by the true Lipschitz constant L:

Lestimated(X) ≡
∥f(X)− f(Xattacked)∥2
∥X − Xattacked∥2

⩽ L (14)

for each image and plot the results as a histogram. Here, f(X) is the output of a model f for an
input image X ; Xattacked is X perturbed, as described in the first paragraph. Then, by computing

5

0.0 0.2 0.4 0.6 0.8
Lestimated

0
2
4
6
8

10
12

0.930.790.760.60.590.58

LipConv-5, SOC-TT 256
ort

5 103

8 103

1 104

3 104

4 104

5 104

(a)

0.0 0.2 0.4 0.6 0.8
Lestimated

0

2

4

6

8

10

0.910.890.80.640.580.570.56

LipConv-20, SOC-TT 256
ort

7 104

8 104

1 105

2 105

3 105

4 105

5 105

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Lestimated

0

2

4

6

8

10

1.160.860.750.650.590.590.56

LipConv-30, SOC-TT 256
ort

1 105

2 105

3 105

5 105

7 105

9 105

1 106

(c)

Figure 5: Histograms of empirical constants (14) of networks for different regularization parame-
ters λort and LipConvNet-N architectures.

Lestimated(X) for different X from the dataset, we plot the histograms (Fig. 5). These histograms
give us insights into the true Lipschitz constant of the network.

If all network layers are 1-Lipschitz, then we expect each Lestimated(X) on the histogram to be
strictly bounded by 1. However, for the LipConvNet architectures, the bound on the Lipschitz
constant might not be exact in practice due to truncating Taylor expansion. In our case, the frame
matrices K(1) and K(3) are trained with the regularization loss, so they are not precisely orthogonal
either. By increasing the coefficient λort of this loss component, though, we can force the matrices to
become orthogonal by the end of the training process.

To support this claim, we provide the distributions of the empirical Lipschitz constants for several
LipConvNet architectures trained with different λort. The trained models are presented in Tab. 3. The
last metric, “Lip.”, or Maximum Empirical Lipschitz Constant, is a lower bound on the real Lipschitz
constant of the corresponding model. It is obtained as the maximum value of all calculated empirical
Lipschitz constants. As we can see, by increasing λort, we can balance between the 1-lipschitzness
and the quality of metrics: the higher λort, the lower the metrics are and the more constrained the
Lipschitz constant is. Numbers selected with bold correspond to models that were selected as best
for the corresponding LipConvNet-N architectures: they demonstrate high performance in terms of
accuracy and robust metrics while at the same time maintaining the Maximum Empirical Lipschitz
Constant that does not exceed 1. We also note that LipConvNet architectures do not converge if the
convolutional layers are too far from being 1-Lipschitz. For example, this effect was observed on
LipConvNet-5 with λort = 4e3, where the λort turns out to be not big enough.

Fig. 5 demonstrates the shifts in distribution depending on λort. We can observe ranges of empirical
Lipschitz constants on the x-axis. Maximum values for each model, denoted with dotted vertical
lines, are the discussed Maximum Empirical Lipschitz Constants in Tab. 3.

C.2 Inference Time of a SOC-TT Layer

6

Table 4: Performance metrics for different constraints applied to WideResNet-16-10 trained on
CIFAR-100. Clipping to 1 increases the baseline performance only without TT decomposition, while
the other methods (clipping to 2 and division) yield an increase in some of the metrics. “Speedup” is
the speedup of an overhead resulting from singular values control in all the layers in the network.
Clipping the whole network w/o decomposition takes 6.2 min, while the application of division takes
0.6 sec. “Comp.” (compression) is the ratio between the number of parameters of convolutional
layers in the original (∼ 16.8M) and decomposed networks.

METHOD RANK ACC. ↑ AA ↑ CC ↑ ECE ↓ CLIP (S) ↓ COMP. ↑

BASELINE

– 77.97 27.24 48.95 8.27 – 1.0
192 78.53 25.5 47.28 11.78 – 3.6
256 78.55 26.11 47.72 11.76 – 2.4
320 76.51 24.81 46.18 12.5 – 1.8

CLIP TO 1

– 78.99 27.84 47.89 10.09 1.0 1.0
192 77.7 25.02 46.77 11.9 4.1 3.6
256 77.71 27.15 46.24 11.88 3.3 2.4
320 77.79 26.34 47.51 11.75 2.3 1.8

CLIP TO 2

– 79.92 28.15 47.73 9.4 1.0 1.0
192 78.74 27.21 46.08 11.41 4.1 3.6
256 79.39 27.54 47.26 11.07 3.3 2.4
320 79.52 26.82 47.68 10.43 2.3 1.8

DIVISION

– 78.59 26.85 48.38 10.97 1.0 1.0
192 78.65 25.4 47.86 8.29 4.1 3.6
256 78.98 26.26 47.77 8.21 3.3 2.4
320 77.58 25.69 46.28 12.18 2.3 1.8

200 400 600 800 1000 1200
c, number of channels

2

4

6

8

sp
ee

du
p

r=c/2
r=c/3
r=c/4

Figure 6: Speedups (w.r.t. uncompressed layer) of
the application of a SOC-TT layer, n = 16.

In this section, we present the inference time of
our framework when applied to the SOC method.
In particular, we consider the application of a
single SOC layer with various numbers of chan-
nels. Fig. 6 illustrates speedups when a single
SOC layer is accelerated using the proposed
method with different rank values. The figure
suggests that for larger residual networks that
contain layers with a number of channels up to
1000, the speedup can be up to ≈ 6 times for
c/4 and up to ≈ 3 times for c/2. However, for
networks where the number of channels is less
than 500, the speedup is less than 2.

C.3 WideResNet16-10 on CIFAR-100

In addition to evaluating our framework on CIFAR-10, we conducted experiments on another classic
vision dataset, CIFAR-100. We trained WideResNet-16-10 on CIFAR-100 with the same experimental
setup as in Gouk et al. [2021] and compared clipping and division as in the main body of the paper.
The results are presented in Tab. 4. Compared with CIFAR-10 experiments from 2, we observe that
both clipping and division do not give gain on CIFAR-C (CC). The other metrics tend to improve
with the control of singular values. Except for clipping-1, the TT-compressed versions with singular
value control outperform the baseline accuracy in most cases. The AA metric of the baseline is
outperformed when using clipping to 2 and r = 256.

7

	Compressed Convolutional Layers
	Proof of Lemma 1
	Proof of Theorem 1

	Periodic Strided Convolutions
	Code for Computing Singular Values of a Strided Convolution
	Proof of Theorem 2

	Additional Empirical Studies
	Plotting Empirical Lipschitz Constant
	Inference Time of a SOC-TT Layer
	WideResNet16-10 on CIFAR-100

