
Published as a conference paper at ICLR 2024

A 2RO PROBLEMS

A.1 ROBUST TWO-STAGE KNAPSACK

We consider the two-stage knapsack problem as defined in Arslan & Detienne (2022) with a set
of n items. Each item i has a weight ci and an uncertain profit pi(ξ) = p̄i − ξip̂i, where p̄i is
the expected profit, p̂i its maximum deviation and ξi the uncertain profit degradation factor, where
the degradation happens after the first stage. In this problem we have a budgeted uncertainty set
Ξ = {ξ ∈ [0, 1]n :

∑n
i=1 ξi ≤ Γ}. The first stage decision is to choose a subset of items to produce.

Then in the second stage, there are three different responses to the profit degradation: (i) accept the
degraded profit, (ii) repair the item by using an additional ti units from the budget to recover the
original profit p̄i, or (iii) outsource the item for a cost of fi units, such that the item’s profit results
in p̄i − fi. This gives the following problem formulation:

min
x∈{0,1}n

max
ξ∈Ξ

min
y∈{0,1}n,r∈{0,1}n

n∑
i=1

(fi − p̄i)xi + (p̂iξi − fi)yi − p̂iξiri

s.t.
n∑

i=1

ciyi + tiri ≤ C

ri ≤ yi ≤ xi ∀i ∈ {1, . . . , n},

where xi is the first-stage decision to produce item i. For the second-stage decisions, we have yi
and ri: (i) yi = 1 if item i is produced without repairing and yi = 0 if the item is outsourced, and
(ii) ri is the decision for repairing item i.

A.2 CAPITAL BUDGETING

Consider the capital budgeting problem in Subramanyam et al. (2020), where a company aims to
invest in a subset of n projects. For each project, i, the uncertain cost, and profit are respectively
defined as

ci(ξ) =
(
1 +Φ⊺

i ξ/2
)
c̄i and ri(ξ) =

(
1 +Ψ⊺

i ξ/2
)
r̄i, ∀i ∈ {1, . . . , n},

where c̄i and r̄i are the nominal cost and nominal profit of project i. Φ⊺
i and Ψ⊺

i are the i-th row
vectors of the sensitivity matrices Φ,Ψ ∈ Rn×4, with ξ ∈ Ξ = [−1, 1]4. We use the problem
formulation described in 1.

B 2RO ALGORITHMS

In this section, we describe the column-and-constraint generation algorithm in more detail and the
k-adaptability problem, briefly describing one of its solution methods.

B.1 COLUMN-AND-CONSTRAINT GENERATION

The CCG iterates between the main problem and the adversarial problem (AP). The MP is given as

min
x∈X

max
ξ∈Ξ′

min
y∈Y

c(ξ)⊺x+ d(ξ)⊺y (6a)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ), (6b)

where Ξ′ ⊂ Ξ is a finite subset of scenarios. Clearly, the MP provides a lower bound on the optimal
value of equation 2. To solve the MP, for each scenario in Ξ′ a copy of the second-stage variables is
generated. Using a level-set transformation, the problem can be formulated as

min
x∈X

µ (7a)

s.t. c(ξ)⊺x+ d(ξ)⊺yξ ≤ µ ∀ξ ∈ Ξ′ (7b)

T (ξ)x+W (ξ)yξ ≤ h(ξ) ∀ξ ∈ Ξ′ (7c)

µ ∈ R,yξ ∈ Y ∀ξ ∈ Ξ′, (7d)

14

Published as a conference paper at ICLR 2024

which is a linear integer problem that state-of-the-art solvers, such as Gurobi, can solve. In each
iteration of the CCG an optimal solution (x∗, µ∗) of equation 7 is calculated. Afterwards, the AP is
solved, which is defined as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (8a)

s.t. W (ξ)y ≤ h(ξ)− T (ξ)x⋆. (8b)

Since the optimal value of the AP is the objective value of the current solution x∗, it provides an
upper bound on the optimal value of equation 2. We define the optimal value to be equal to infinity
if there exists a scenario ξ ∈ Ξ for which no feasible second-stage solution y exists. If the optimal
value of the AP is larger than µ∗ then we add the optimal scenario ξ∗ to Ξ′ and start again from
solving MP. Otherwise, we stop the algorithm since the upper bound is smaller or equal to the lower
bound, and hence x∗ is an optimal solution. The whole procedure is presented in Algorithm 1.

Algorithm 1 Column-and-Constraint Generation
set ub = ∞, lb = −∞
Ξ′ = {ξ0} for any ξ0 ∈ Ξ
while ub− lb > 0 do

Calculate an optimal solution x∗, µ∗ of the main problem equation 7 and set lb = µ∗.
Calculate an optimal solution ξ∗ (with optimal value opt∗) of the adversarial problem equa-
tion 8 where x = x∗.
Set Ξ′ = Ξ′ ∪ {ξ∗} and ub = min{ub, opt∗}.

end while
return x∗

CCG often fails to calculate an optimal solution in a reasonable time since both the MP and the AP
are very hard to solve in the case of integer second-stage variables. In each iteration, the size of MP
increases since we have to add new constraints and a copy of all integer second-stage decisions y.
This often leads to the situation that after even a small number of iterations, the MP cannot be solved
to optimality anymore by classical integer optimization solvers as Gurobi.

Furthermore, solving the AP is extremely challenging for integer second-stage variables. Indeed,
the problem can be formulated as a bilevel problem where the follower problem contains integer
variables. In Zhao & Zeng (2012) the authors present a column-and-constraint algorithm that solves
the AP if the second-stage is a mixed-integer problem. One drawback is that this method is not ap-
plicable if the second-stage does not contain continuous variables, as is the case for many problems,
e.g., the capital budgeting problem. Furthermore, the method involves solving a very large mixed-
integer bilinear problem, which is computationally enormously challenging. The whole procedure
must be executed in each iteration of the main CCG algorithm.

B.2 k-ADAPTABILITY

The k-adaptability approach was introduced in Bertsimas & Caramanis (2010) and later studied for
objective uncertainty and constraint uncertainty in Hanasusanto et al. (2015); Subramanyam et al.
(2020); Ghahtarani et al. (2023); Julien et al. (2022); Kurtz (2023). The main idea of the approach is
to calculate a set of k second-stage solutions already in the first-stage. Instead of choosing the best
feasible second-stage solution for each scenario ξ, we choose the best of the k calculated second-
stage solutions. Since we restrict the number of second-stage reactions, this approach leads to feasi-
ble solutions of equation 2, which are not necessarily optimal. While for larger k the approximation
guarantee gets provably better, the problem gets harder to solve at the same time. Furthermore, it
was shown in Subramanyam et al. (2020) that it may happen that k has to be chosen exponentially
large to guarantee optimality for equation 2. The k-adaptability problem can be formulated as

min
x∈X ,y1,...,yk∈Y

max
ξ∈Ξ

min
y∈{y1,...,yk}

c(ξ)⊺x+ d(ξ)⊺y (9a)

s.t. W (ξ)y + T (ξ)x ≤ h(ξ). (9b)

15

Published as a conference paper at ICLR 2024

The k-adaptability problem is very challenging to solve, especially in the constraint uncertainty case.
The best-known method for this case was introduced in Subramanyam et al. (2020). The authors
perform a branch-and-bound algorithm over partitions of the uncertainty set. They consider k-
partitions of finite scenarios sets, which are iteratively generated, and assign each of the second-stage
solutions to one of the partitions. This approach was later improved by applying machine learning
methods to improve the branching decisions Julien et al. (2022). As an alternative approach in
Postek & Hertog (2016), an iterative uncertainty set splitting method is presented, which converges
to the exact optimal value of the two-stage robust problem.

In case of objective uncertainty, the k-adaptablity problem is easier (but still hard) to solve (Arslan
et al. (2022); Ghahtarani et al. (2023)) and can be approximated if k is not too small; see Kurtz
(2023).

C DETAILED FORMULATION

This section presents the detailed argmax formulation for equation 4. We assume that at this itera-
tion in the MP, we have scenarios ξ1, . . . , ξk and that M and L are upper and lower bounds on the
prediction of the network. The complete formulation is then given by

min
x∈X ,y∈Y,ξa∈Ξ,p,u,z∈{0,1}k

c(ξa)
⊺x+ d(ξa)

⊺y (10a)

s.t. W (ξa)y + T (ξa)x ≤ h(ξa), (10b)
pi = NNΘ(x, ξi) ∀i ∈ {1, . . . , k} (10c)
u ≥ pi ∀i ∈ {1, . . . , k} (10d)
u ≤ pi + (M − L)(1− zi) ∀i ∈ {1, . . . , k} (10e)
k∑

i=1

zi = 1 ∀i ∈ {1, . . . , k} (10f)

ξa =

k∑
i=1

zi · ξi (10g)

To model the argmax, we introduce k binary variables z and k + 1 continuous variables p and u,
which are used to model big-M that ensure z is 1 at the index of the maximizer and 0 everywhere
else. ξa is then given by a linear combination of the scenarios multiplied with z.

D EXTENDED NN ARCHITECTURE

We show the extended neural network architecture used in the experiments in Figure 3.

E 2RO WITH FIXED FIRST-STAGE DECISION

When we compare the calculated solutions of Neur2RO and the baseline in our experiments, we
need to calculate the objective value of a solution x⋆ ∈ X exactly or approximately. The former
involves solving the AP equation 8 for a given solution. Solving this problem is intractable when we
have uncertain parameters in the constraints. We first expand on how the adversarial would be solved
in a tractable way if the uncertain parameters only appear in the objective function. Subsequently,
we describe an approach to approximately solve the AP, which is based on sampling scenarios from
Ξ.

E.1 OBJECTIVE UNCERTAINTY

For the special case of objective uncertainty, the AP can be solved much more efficiently. In this
case, the adversarial problem is given as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (11a)

s.t. Wy ≤ h− Tx⋆, (11b)

16

Published as a conference paper at ICLR 2024

 First-stage
 Embedding
 Network

 Scenario
 Embedding
 Network

 Value
 Network

as estimate for

Per First-Stage / Scenario Variable
Embedding Network

Figure 3: The extended neural network architecture for ML-based CCG. Compared to the NN ar-
chitecture shown in the main text (Figure 2), this model uses the set-based method to be able to
generalize across instance sizes. Let x⋆ ∈ Rn and ξ ∈ Rq . Then, Φ̂x and Φ̂ξ are the embedding
networks for xi, i ∈ [n] and ξj , j ∈ [q], respectively. The features are comprised of the single vari-
able and single-variable specific problem specifications Pi

x, i ∈ [n] and Pj
ξ , j ∈ [q] for first-stage

decisions and scenarios, respectively. The outputs of the Φ̂ networks are aggregated for x∗ and ξ
separately. These embeddings are the input of the original NN given in the main part.

which can be reformulated as

max
ξ∈Ξ

α (12a)

s.t. α ≤ c(ξ)⊺x⋆ + d(ξ)⊺y ∀y ∈ Ȳ, (12b)

where Ȳ = {y ∈ Y : Wy ≤ h− Tx⋆}. While the set Ȳ can contain an exponential number of
solutions, the latter problem can be solved by iteratively generating the constraints for y ∈ Ȳ .

E.2 CONSTRAINT UNCERTAINTY

We collect all scenarios ξ ∈ Ξ which were generated during training and during the solution proce-
dures of the baseline algorithm and our algorithm (including the scenarios calculated by the AP) in
the set Ξsamples. Then for the two returned solutions x∗ and xbaseline we compare

max
ξ∈Ξsamples

min
y∈Y

c(ξ)⊺x⋆ + d(ξ)⊺y (13a)

s.t. W (ξ)y ≤ h(ξ)− T (ξ)x⋆, (13b)

where we replace x by the corresponding solution x∗ or xbaseline. The latter problem can be solved
by calculating the optimal value of the second-stage problem for each scenario independently and
choosing the worst-case overall optimal values.

F CONVERGENCE

In the following, we present the proof of Theorem 1.

Proof. The main idea is to show that the condition equation 5 cannot hold in infinitely many itera-
tions. Since we stop the algorithm if 5 is not true anymore, then finite termination of the algorithm
follows.

Assume the algorithm does not terminate in a finite number of iterations. Let lt and rt be the values
of the left-hand side and right-hand side of inequality 5 in iteration t of the algorithm, i.e.,

lt := max
ξ∈Ξ

NNΘ(x
t, ξ)

and
rt := max

ξ∈Ξt
NNΘ(x

t, ξ).

17

Published as a conference paper at ICLR 2024

where xt is the optimal solution of MP in the t-th iteration and Ξt the finite set of scenarios used
in the MP in iteration t. Let x ∈ X be a feasible first-stage solution and let lt(x) and rt(x) be the
sub-sequences which contain the values of lt and rt only for the iterations where x is an optimal
solution of the MP. Then either this sequence is finite or, if it is infinite, the sequence {rt(x)}t
is monotonous and bounded where monotony follows since Ξt ⊂ Ξt+1 and since the same x is
used. The sequence is bounded since Ξ is a bounded set and NNΘ a piecewise-linear function (as
is known for feedforward ReLU networks (Montufar et al., 2014)) and the maximum of a piecewise
linear function over a bounded set is bounded. Hence, {rt(x)}t converges to a finite value r⋆(x).
Furthermore, it holds lt(x) ≤ rt+1(x) since the optimal scenario of the left-hand-side is added to
Ξt which is a subset of the set later used to evaluate rt+1(x). It follows that

rt(x) ≤ lt(x)− ε ≤ rt+1(x)− ε

for all t which contradicts the convergence of rt(x). Hence the sequence rt(x) must be finite. Since
only finitely many first-stage solutions x exist, and the latter result holds for all of them, the number
of iterations of the algorithm must be finite.

G DISTRIBUTIONAL RESULTS FOR RELATIVE PERFORMANCE

In this section, we provide distributional information for the RE for knapsack in Tables 3-4 and
Figures 4-8.

Correlation # items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
Type Neur2RO BP Neur2RO BP Neur2RO BP Neur2RO BP

Uncorrelated

20 2.005 0.000 1.417 0.000 0.541 0.000 2.379 0.000
30 1.189 0.000 1.188 0.000 0.712 0.000 1.399 0.000
40 2.895 0.000 1.614 0.000 1.221 0.000 4.042 0.000
50 3.032 0.000 1.814 0.000 0.946 0.000 3.801 0.000
60 2.099 0.000 1.146 0.000 0.577 0.000 2.872 0.000
70 2.214 0.000 1.408 0.000 0.761 0.000 2.506 0.000
80 1.591 0.000 0.968 0.000 0.758 0.000 2.063 0.000

Weakly
Correlated

20 2.569 0.000 1.582 0.000 1.229 0.000 4.010 0.000
30 2.664 0.000 2.236 0.000 0.616 0.000 4.293 0.000
40 2.320 0.000 1.595 0.000 1.164 0.000 2.292 0.000
50 2.183 0.145 1.757 0.000 0.793 0.000 2.674 0.000
60 2.165 0.390 0.695 0.000 0.000 0.000 3.445 0.458
70 0.884 0.338 0.165 0.000 0.000 0.000 0.623 0.175
80 0.392 0.691 0.000 0.341 0.000 0.000 0.165 0.831

Almost
Strongly
Correlated

20 2.355 0.000 1.439 0.000 0.000 0.000 2.757 0.000
30 1.166 0.113 0.782 0.000 0.075 0.000 1.911 0.000
40 0.825 0.335 0.497 0.000 0.019 0.000 1.606 0.000
50 0.314 0.884 0.019 0.000 0.000 0.000 0.229 1.251
60 0.197 0.523 0.000 0.016 0.000 0.000 0.268 1.129
70 0.551 0.615 0.017 0.031 0.000 0.000 1.058 1.227
80 0.388 0.694 0.000 0.265 0.000 0.000 0.554 0.770

Strongly
Correlated

20 2.387 0.000 1.604 0.000 0.905 0.000 3.018 0.000
30 1.068 0.121 0.610 0.000 0.054 0.000 1.939 0.000
40 0.658 0.191 0.443 0.000 0.002 0.000 0.888 0.000
50 0.411 0.648 0.073 0.000 0.000 0.000 0.780 0.963
60 0.322 0.367 0.042 0.010 0.000 0.000 0.173 0.693
70 0.389 0.738 0.020 0.027 0.000 0.000 0.535 0.793
80 0.318 0.668 0.000 0.179 0.000 0.000 0.245 0.906

Table 3: Table of distributional information for knapsack. For each row, all RE statistics are com-
puted over 18 instances.

items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10

10 2.558 2.849 1.029 1.165 1.105 1.140 0.000 0.000 0.000 0.000 0.000 0.000 3.534 4.349 0.547 1.557
20 0.423 0.304 0.232 0.266 0.000 0.196 0.112 0.064 0.000 0.094 0.013 0.000 0.410 0.453 0.320 0.362
30 0.408 0.149 0.131 0.084 0.109 0.020 0.073 0.032 0.002 0.000 0.003 0.000 0.337 0.182 0.212 0.110
40 0.234 0.114 0.098 0.073 0.009 0.074 0.011 0.019 0.000 0.001 0.000 0.002 0.121 0.180 0.137 0.137
50 0.090 0.107 0.090 0.056 0.001 0.033 0.039 0.020 0.000 0.000 0.000 0.002 0.050 0.193 0.139 0.084

Table 4: Table of distributional information for capital budgeting. For each row, all RE statistics are
computed over 50 instances.

18

Published as a conference paper at ICLR 2024

20 30 40 50 60 70 80
Items

0

2

4

6

8

R
E

Neur2RO

BP

Figure 4: Boxplot of RE for baseline and Neur2RO on UN knapsack instances.

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 5: Boxplot of RE for baseline and Neur2RO on WC knapsack instances.

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

12

R
E

Neur2RO

BP

Figure 6: Boxplot of RE for baseline and Neur2RO on ASC knapsack instances.

H ABLATION

This section presents an ablation across two aspects of Neur2RO, namely, the formulation of the
MP and the method to obtain worst-case scenarios. Both results are presented on the knapsack
instances.

H.1 MAIN PROBLEM FORMULATION

As an alternative to the formulation using argmax over a set of scenarios. One more straightforward
formulation is to consider instead the max over all of the scenarios, which is given by

19

Published as a conference paper at ICLR 2024

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 7: Boxplot of RE for baseline and Neur2RO on SC knapsack instances.

10 20 30
Items

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
E

Neur2RO

k = 2

k = 5

k = 10

40 50
Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
E

Neur2RO

k = 2

k = 5

k = 10

Figure 8: Box plot of RE for baselines and Neur2RO on capital budgeting instances.

min
x∈X ,α

α (14a)

s.t. α ≥ NNΘ(x, ξi) ∀k ∈ {1, . . . ,K}. (14b)

Table 5 reports the MRE of the argmax and max formulations and the solving time. Table 5
demonstrates an improvement in solution quality, with argmax obtaining a lower MRE in every
case and a lower computing time in most cases.

H.2 WORST-CASE SCENARIO ACQUISITION

This section compares the adversarial approach for determining scenarios to a sampling and a linear
programming (LP) relaxation-based approach.

H.2.1 SAMPLING-BASED SCENARIO ACQUISITION

For sampling, as a baseline, we sample 100, 000 scenarios, and then to approximate the AP, we take
the maximizer over a forward pass. Table 6 demonstrates a clear trade-off between solution quality
and efficiency. Generally, sampling improves average solving time across all instances but leads to
worse solution quality as the instance size increases.

H.2.2 LP RELAXATION-BASED SCENARIO ACQUISITION

For 2RO, the uncertainty set is often polyhedral, which scenarios can be heuristically obtained via
a LP relaxation. For the LP relaxation, we compare the performance of the standard MILP-based
scenario acquisition (standard), i.e., solving the AP to optimality, to the relaxation (LP relaxation).
For both problems, we report the RE to the baselines. Tables 7 and 8 present the knapsack and

20

Published as a conference paper at ICLR 2024

Correlation # items Median RE Times
Type argmax max argmax max

Uncorrelated

20 0.000 1.167 5 11
30 0.000 0.945 7 14
40 0.000 1.931 9 24
50 0.000 1.634 10 33
60 0.000 0.452 17 29
70 0.000 0.801 19 28
80 0.000 2.227 13 35

Weakly
Correlated

20 0.000 3.515 6 13
30 0.000 2.405 11 22
40 0.000 0.502 26 42
50 0.000 0.254 24 39
60 0.000 1.528 77 58
70 0.000 1.769 18 35
80 0.000 3.492 27 75

Almost
Strongly
Correlated

20 0.000 2.042 5 12
30 0.000 1.433 6 14
40 0.000 1.739 11 33
50 0.000 3.161 8 20
60 0.000 2.449 15 30
70 0.000 2.497 18 35
80 0.000 1.824 17 30

Strongly
Correlated

20 0.000 1.154 5 11
30 0.000 0.967 7 15
40 0.000 1.928 16 28
50 0.000 3.613 10 21
60 0.000 2.005 20 26
70 0.000 2.657 16 33
80 0.000 2.051 16 28

Table 5: argmax and max formulations on knapsack instances. For each row, the median RE and
solving time are computed over 18 instances. All times in seconds.

capital budgeting results, respectively. In general, we can observe that the LP relaxation leads to
significantly faster solving time, with an overall decreased solution quality. That being said, for
capital budgeting in particular, Neur2RO with the LP relaxation still achieves a lower median RE
than the baselines on larger instances, while being roughly five times faster than results without the
relaxation.

H.3 PREDICTION TARGET

This section compares the prediction target. For capital budgeting, the coefficients of the first-stage
decisions in the objective contain uncertainty. As such, this presents a choice of either predicting the
sum of the first- and second-stage objectives, i.e., c(ξ)⊺x +miny∈Y

{
d(ξ)⊺y : W (ξ)y ≤ h(ξ) −

T (ξ)x
}

, or only the second-stage objective, i.e., miny∈Y
{
d(ξ)⊺y : W (ξ)y ≤ h(ξ) − T (ξ)x

}
.

Specifically, we compare the downstream optimization performance with respect to the resulting
formulations. The formulation for predicting the sum of the first- and second-stage objectives is
presented in Section 3. For predicting the second-stage objective only, the MP is given by

min
x∈X ,y∈Y,ξa∈Ξ

c(ξa)
⊺x+ d(ξa)

⊺y (15a)

s.t. W (ξa)y + T (ξa)x ≤ h(ξa), (15b)

ξa ∈ argmaxξ∈Ξ′

{
c(ξ)⊺x+NNΘ(x, ξ)

}
, (15c)

and the AP is given by
max
ξ∈Ξ

c(ξ)⊺x⋆ +NNΘ(x
⋆, ξ). (16)

The main difference with this formulation is that the objective coefficients c(ξ) can be utilized di-
rectly rather than requiring the ML model to predict them. Table 9 compares the two approaches on
the capital budgeting instances wherein the RE is computed with respect to the baselines. Empiri-
cally, we can see that predicting the sum of the first- and second-stage objectives yields significantly
better solutions. On the methodological side, when only the second stage is predicted each node in
the branch-and-bound tree being explored by a MIP solver will contain the exact first-stage and the
predicted second-stage objectives. As such, we speculate that the LP relaxation at each node will

21

Published as a conference paper at ICLR 2024

Correlation # items Median RE Times
Type adversarial sampling adversarial sampling

Uncorrelated

20 0.000 0.000 5 2
30 0.000 0.000 7 4
40 0.560 0.000 9 4
50 0.723 0.000 10 5
60 0.066 0.000 17 6
70 0.150 0.000 19 8
80 0.395 0.000 13 9

Weakly
Correlated

20 0.000 0.074 6 3
30 0.000 0.444 11 4
40 0.000 0.093 26 5
50 0.441 0.000 24 7
60 0.119 0.065 77 9
70 0.000 0.185 18 8
80 0.000 0.536 27 9

Almost
Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 6 6
40 0.000 0.000 11 10
50 0.000 0.000 8 7
60 0.000 0.000 15 14
70 0.000 0.000 18 13
80 0.000 0.000 17 12

Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 7 7
40 0.000 0.000 16 11
50 0.000 0.000 10 8
60 0.000 0.000 20 13
70 0.000 0.000 16 14
80 0.000 0.000 16 13

Table 6: Adversarial and sampling-based approaches for worst-case scenario acquisition on knap-
sack instances. For each row, the median RE and solving time are computed over 50 instances. All
times in seconds.

Correlation # items Median RE Times Correlation # items Median RE Times
Type standard LP relaxation standard LP relaxation Type standard LP relaxation standard LP relaxation

Uncorrelated

20 1.417 1.673 4 1

Almost
Strongly
Correlated

20 1.439 1.211 5 1
30 1.188 1.167 6 1 30 0.782 0.665 6 1
40 1.614 1.387 9 2 40 0.497 0.927 10 2
50 1.814 1.660 9 2 50 0.019 1.884 7 2
60 1.146 1.146 14 1 60 0.000 1.079 14 2
70 1.408 1.166 16 2 70 0.017 0.025 13 4
80 0.986 0.970 11 2 80 0.000 1.775 12 4

Weakly
Correlated

20 1.582 1.454 5 1

Strongly
Correlated

20 1.604 1.368 5 1
30 2.236 2.034 11 1 30 0.610 0.796 7 2
40 1.595 2.733 20 2 40 0.443 1.375 11 3
50 1.757 1.126 19 2 50 0.073 2.333 9 2
60 0.695 0.729 77 3 60 0.042 0.510 11 4
70 0.165 0.243 15 3 70 0.020 0.623 16 3
80 0.000 0.316 21 9 80 0.000 1.097 13 3

Table 7: Median RE and solving times for knapsack instances with LP relaxation. For each row, the
median RE and average solving time are computed over 18 instances. All times in seconds. The
smallest (best) values in each row/metric are in bold.

consist of two components that are on entirely different scales. Specifically, the first-stage objective
will be tight as it is being represented exactly while the second-stage objective requires the relax-
ation of the prediction model which will not be tight due to the big-M constraints. This means that
the maximization problem in the AP favors the second stage. This mismatch could lead to inaccurate
scenarios and undesirable downstream effects within branch-and-bound.

H.4 BASELINE SOLUTION QUALITY AT NEUR2RO TERMINATION TIME

In this section, we report the objective quality, i.e., the median relative error, for k-adaptability
baseline at the termination time of Neur2RO in Table 10. From the table, we can see that the
performance is median RE of Neur2RO is marginally better than when k-adaptability is given 3
hours, except n = 20, 40. Note that these tables are only be reproduced for capital budgeting as

22

Published as a conference paper at ICLR 2024

items Median RE Times
standard LP relaxation standard LP relaxation

10 1.105 2.663 59 4
20 0.000 0.060 324 142
30 0.109 0.071 602 141
40 0.009 0.007 739 226
50 0.001 0.001 1,032 231

Table 8: Median RE and solving times for capital budgeting instances with LP relaxation. For each
row, the median RE and average solving time are computed over 50 instances. All times in seconds.
The smallest (best) values in each row/metric are in bold.

items Median RE Times
sum second only sum second-only

10 1.105 2.424 20 233
20 0.000 0.192 324 1,823
30 0.109 0.151 602 3,823
40 0.009 0.010 739 4,062
50 0.001 0.005 1,032 7,424

Table 9: Sum and second-stage only predictions for capital budgeting instances. For each row, the
median RE and solving time are computed over 50 instances. Note that in these results, the RE is
calculated with respect to the k-adaptability and each respective ML-approach. All times in seconds.

we do not have the knapsack results throughout the solving process, given only the final objective
values are reported in Arslan & Detienne (2022).

items Median RE at 3 hours Median RE at Neur2RO termination
Neur2RO k = 2 k = 5 k = 10 Neur2RO k = 2 k = 5 k = 10

10 1.105 1.140 0.000 0.000 0.809 1.559 0.267 0.359
20 0.000 0.196 0.112 0.064 0.011 0.240 0.098 0.084
30 0.109 0.020 0.073 0.032 0.102 0.067 0.093 0.029
40 0.009 0.074 0.011 0.019 0.013 0.079 0.058 0.019
50 0.001 0.033 0.039 0.020 0.002 0.035 0.006 0.008

Table 10: Median RE for capital budgeting at 3 hour time limit and Neur2RO termination time.
For each row, the median RE and average solving time are computed over 50 instances. All times in
seconds. The smallest (best) values in each row/metric are in bold.

I MACHINE LEARNING MODEL DETAILS

I.1 FEATURES

Here we provide the features for each of the problems. In both cases, set-based architectures Zaheer
et al. (2017) with parameter sharing utilized, so we report the features for a single dimension of the
first-stage decision and scenario accordingly. Table 11 reports all of the features for each instance.

I.2 MODEL HYPERPARAMETERS

This section reports the hyperparameters for the neural networks for each problem. For both prob-
lems, we have the same architecture with slightly different hyperparameters. As the objective of
Neur2RO is to enable efficient optimization, we train small networks that can achieve a low mean
absolute error value to ensure that the main and adversarial problems are tractable. For this reason,
no systematic hyperparameter tuning was done. Hyperparameter optimization would likely only
further improve the already strong numerical results. For both problems, we train a model for 500

23

Published as a conference paper at ICLR 2024

Problem First-Stage Features Scenario Features

Knapsack xi, fi, p̄i, p̂i, ri, ci, ti, C ξi, fi, p̄i, p̂i, ri, ci, ti, C
Capital budgeting xi, ri, ci

(
1 +Φ⊺

i ξ/2
)
i
,
(
1 +Ψ⊺

i ξ/2
)
i
, ri, ci

Table 11: Features for first-stage decision and scenario embedding networks.

epochs and compute the mean absolute error on a validation set every 10 epochs. We then use the
model with the lowest reported mean absolute validation error during training for evaluation.

Table 12 reports the hyperparameters for each model. As our model generalizes across instances,
which requires invariance to the order and number of decision variables, both the first-stage and sce-
nario embedding networks are set-based architectures (Zaheer et al., 2017). We refer to Figure 3 for
a refresher on the overall architecture which has the following hyperparameters. The hyperparame-
ters “Φ̂x dimensions” and “Φx dimensions” correspond to the hidden and embedding dimensions of
the first-stage embedding network. Specifically, “Φ̂x dimensions” corresponds to the network with
shared parameters that embed the representation for each first-stage decision. The last dimension
of “Φ̂x dimensions” is that of the aggregated vector. The hyperparameter “Φx dimensions” cor-
responds to the network that takes the aggregated first-stage embedding vector as input. The last
dimension of “Φx dimensions” specifies the embedding dimension of the first-stage embedding net-
work. “Φ̂ξ dimensions” and “Φξ dimensions” are analogous for the scenario embedding network.
“Φ dimensions” correspond to the hidden dimensions of the value network. Finally, “aggregation
type” specifies the type of aggregation that combines the first-stage/scenario embeddings.

Hyperparameter Knapsack Capital budgeting

Feature scaling min-max min-max
Label scaling min-max min-max
epochs 500 500
Batch size 256 256
Learning rate 0.001 0.001
Dropout 0 0
Loss function MSELoss MSELoss
Optimizer Adam Adam
Φ̂x dimensions [32, 16] [16, 4]
Φx dimensions [64, 8] [32, 8]
Φ̂ξ dimensions [32, 16] [16, 4]
Φξ dimensions [64, 8] [32, 8]
Φ dimensions [8] [8]
Aggregation type sum sum

Table 12: Hyperparameters for neural networks.

I.3 TRAINING CURVES

Figures 9-10 plot the mean absolute error at every 10 epochs during training for the training and
validation data. Generally, the training and validation mean absolute error is very close, and in both
problems, a relatively low mean absolute error is achieved.

24

Published as a conference paper at ICLR 2024

0 100 200 300 400 500
Epoch

0.004

0.006

0.008

0.010

0.012

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 9: Training curve for knapsack.

0 100 200 300 400 500
Epoch

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 10: Training curve for capital budgeting.

25

