
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

A. Appendix
A.1. Bootstrap Convergence
In this section we provide a high-level discussion of the
bootstrap procedure and its asymptotic validity. We refer the
readers to the works by (Cao, 1993; Hall, 1990) for a more
fine-grained analysis and convergence rates when estimating
MSE using statistical bootstrap. Individual treatment of
bias (Efron, 1990; Efron and Tibshirani, 1994; Hong, 1999;
Shi, 2012; Mikusheva, 2013) and variance (Chen, 2017b;
Gamero et al., 1998; Shao, 1990; Ghosh et al., 1984; Li and
Maddala, 1999) can also be found.

In the following, we will discuss the consistency of Â esti-
mated using bootstrap,

Âi.j −Ai,j
a.s.−→ 0.

Towards this goal, we will consider the following conditions
imposed on the set of the base estimators {θ̂i}ki=1,

• ∀i, θ̂i is uniformly bounded.

• ∀i, θ̂i
a.s.−→ ci.

• ∀i, θ̂i is smooth with respect to data distribution.

• ∃θ̂k : θ̂k
a.s.−→ ck = θ∗.

Recall from (2),

Ai,j = E
[(

θ̂i − θ∗
)(

θ̂j − θ∗
)]

= E
[(

θ̂i − E[θ̂i] + E[θ̂i]− θ∗
)

(
θ̂j − E[θ̂j] + E[θ̂j]− θ∗

)]
= E

[(
θ̂i − E[θ̂i]

)(
θ̂j − E[θ̂j]

)]
+ E

[(
E[θ̂i]− θ∗

)(
E[θ̂j]− θ∗

)]
.

Let Xn :=
(
θ̂i − E[θ̂i]

)
and Yn :=

(
θ̂j − E[θ̂j]

)
. As

θ̂i
a.s.−→ ci and θ̂i is uniformly bounded, using (Thomas and

Brunskill, 2016, Lemma 2), we have E[θ̂i]
a.s.−→ ci. Similarly,

we have E[θ̂j]
a.s.−→ cj as θ̂j

a.s.−→ cj . Then using continuous
mapping theorem,

XnYn
a.s.−→ (ci − ci)(cj − cj) = 0.

Now using (Thomas and Brunskill, 2016, Lemma 2),

E
[(

θ̂i − E[θ̂i]
)(

θ̂j − E[θ̂j]
)]

= E[XnYn]
a.s.−→ 0. (9)

Similarly,(
E[θ̂i]− θ∗

)(
E[θ̂j]− θ∗

)
a.s.−→ (ci − θ∗)(cj − θ∗)(10)

Therefore, using (9) and (10),

Ai,j
a.s.−→ 0 + (ci − θ∗)(cj − θ∗). (11)

Now we consider the asymptotic property of the bootstrap
estimate Â of A.

Âi,j = ED∗
n1

|Dn

[(
θ̂i(D

∗
n1
)− θ̂k

)(
θ̂j(D

∗
n1
)− θ̂k

)]
(12)

where θ̂k is known to be a consistent estimator, i.e., θ̂k
a.s.−→

θ∗. Here, θ̂k could be the WIS or IS or doubly-robust es-
timators that are known to provide consistent estimates of
θ∗ = J(π). For brevity, we drop the conditional notation
on the subscript, and write (12) as,

Âi,j = ED∗
n1

[(
θ̂i(D

∗
n1
)− θ̂k

)(
θ̂j(D

∗
n1
)− θ̂k

)]
(13)

Simplifying (13),

Âi,j = ED∗
n1

[(
θ̂i(D

∗
n1
)− ED∗

n1

[
θ̂i(D

∗
n1
)
]

+ ED∗
n1

[
θ̂i(D

∗
n1
)
]
− θ̂k

)
(
θ̂j(D

∗
n1
)− ED∗

n1

[
θ̂j(D

∗
n1
)
]

+ ED∗
n1

[
θ̂j(D

∗
n1
)
]
− θ̂k

)]

= ED∗
n1

[(
θ̂i(D

∗
n1
)− ED∗

n1

[
θ̂i(D

∗
n1
)
])

(
θ̂j(D

∗
n1
)− ED∗

n1

[
θ̂j(D

∗
n1
)
])]

+ ED∗
n1

[
θ̂i(D

∗
n1
)− θ̂k

]
ED∗

n1

[
θ̂j(D

∗
n1
)− θ̂k

]
(14)

Let Xn1
:=

(
θ̂i(D

∗
n1
)− ED∗

n1

[
θ̂i(D

∗
n1
)
])

and Yn1
:=(

θ̂j(D
∗
n1
)− ED∗

n1

[
θ̂j(D

∗
n1
)
])

. As the empirical distri-
bution D∗

n1
converges to the population distribution, i.e.,

Dn
a.s.−→ D, the resampled distribution D∗

n1
from Dn also

converges to the population distribution, i.e., D∗
n1

a.s.−→ D.
Therefore, when the estimator θ̂i(D∗

n1
) is smooth, using the

continuous mapping theorem,

∀i, lim
n1→∞

θ̂i(D
∗
n1
) = θ̂i

(
lim

n1→∞
D∗

n1

)
= θ̂i(D) = ci.

Therefore, similar to before,

Xn1Yn1

a.s.−→ (ci − ci)(cj − cj) = 0,

and subsequently,

ED∗
n1
[Xn1Yn1]

a.s.−→ 0. (15)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

Further, as θ̂k
a.s.−→ θ∗,

θ̂i(D
∗
n1
)− θ̂k

a.s.−→ ci − θ∗.

Therefore,

ED∗
n1

[
θ̂i(D

∗
n1
)− θ̂k

]
ED∗

n1

[
θ̂j(D

∗
n1
)− θ̂k

]
a.s.−→ (ci − θ∗)(cj − θ∗). (16)

Using (15) and (16) in (14),

Âi,j
a.s.−→ 0 + (ci − θ∗)(cj − θ∗). (17)

Finally, combining (11) and (17),

Âi.j −Ai,j
a.s.−→ 0.

which gives the desired result. It is worth highlighting that,
theoretically, this result relies upon assumptions that the
base estimators satisfy regularity conditions and are con-
sistent. In practice, such assumptions might not hold (for
e.g., when using FQE to do policy evaluation if the func-
tion approximation is under-parameterized). Nonetheless,
in Section 5 we empirically illustrate that even when these
assumptions are not directly satisfied, OPERA can be effec-
tive.

A.2. Proofs on Properties of OPERA
A.2.1. INVARIANCE

In the following, we illustrate an important property of
OPERA, that the resulting combined estimate ˆ̄θ is invariant
to the addition of redundant copies of the base estimators
{θ̂i}ni=1. Without loss of generality, let Θ̂β ∈ R(K+1)×1 be
the stack of unique estimators {θ̂i}ki=1 with θ̂k+1 being a
redundant copy of the θ̂k,

Theorem 4 (Invariance). If Â is positive definite, then ˆ̄θβ =
ˆ̄θ, where,

ˆ̄θβ :=

k+1∑
i=1

β∗
i θ̂i ∈ R, where, β∗ ∈ argmin

β∈R(k+1)×1

β⊤Bβ.

Proof. We prove this by contradiction. Recall that α̂ ∈ Rk

are the weights that minimize the bootstrap estimate of MSE
of ˆ̄θ consisting of k estimators.

M̂SE(α̂1θ̂1 + ...+ α̂kθ̂k) = α̂⊤Âα̂. (18)

As θ̂k+1 is a redundant copy of θ̂k,

M̂SE(β∗
1 θ̂1 + ...+ β∗

k θ̂k + β∗
k+1θ̂k+1)

= M̂SE(β∗
1 θ̂1 + ...+ (β∗

k + β∗
k+1)θ̂k) (19)

Finally, as β∗ ∈ Rk+1 is the weight that minimizes the
bootstrap estimate of MSE of ˆ̄θβ . Now, if (18) < (19), then
one could assign β∗

i := α̂i for i ∈ {1, ..., k}, and β∗
k+1 = 0

to make (19) = (18). Further, notice that as both α̂ and
β∗ are within the same feasible set of solutions, the above
reassignment is also within the feasible set of solutions.
Similarly, if (18) > (19), then one could assign α̂i := β∗

i

for i ∈ {1, ..., k − 1}, and α̂k = β∗
k + β∗

K+1 to make (19)
= (18). Hence, if (18) does not equal (19), then either α̂ or
β∗ is not optimal and that would be a contradiction. This
ensures that M̂SE(ˆ̄θβ) = M̂SE(ˆ̄θ).

As Â is positive definite, it implies that (8) is strictly convex
with linear constraints. Thus the minimizer α̂ of (8) is
unique, and ˆ̄θβ = ˆ̄θ. Note that due to redundancy, B will
not be PD despite Â being PD. This would imply that there
can be multiple values of β∗

k and β∗
k+1. Nonetheless, since

β∗
k + β∗

k+1 = α̂k, it implies that ˆ̄θβ = ˆ̄θ.

A.2.2. PERFORMANCE IMPROVEMENT

Theorem 5 (Performance improvement). If α̂ = α∗,

∀i ∈ {1, ..., k}, MSE(ˆ̄θ) ≤ MSE(θ̂i).

Proof. With a slight overload of notation, we make the de-
pendency of weights α explicit and let θ̄(α) =

∑k
i=1 αiθ̂i.

Let MSE(θ̄(α)) := α⊤Aα, where A is defined as in (2).

Now from (1) and (2), we know that for
∑k

i=1 αi = 1,

α∗ ∈ argmin
α∈Rk×1

MSE(θ̄(α)).

Therefore, for any λ ∈ Rk×1 such that
∑k

i=1 λi = 1,

MSE(θ̄(α̂)) = MSE(θ̄(α∗)) ∵ α̂ = α∗

≤ MSE(θ̄(λ)).

Notice that for ei := [0, 0, .., 1, .., 0], where there is a 1 in
the ith position and zero otherwise, θ̄(ei) = θ̂i. Therefore,

MSE(θ̄(α̂)) ≤ MSE(θ̄(ei)) ∀i

= MSE(θ̂i) ∀i.

Therefore, as ˆ̄θ = θ̄(α̂), we have the desired result that
∀i ∈ {1, ..., k}, MSE(ˆ̄θ) ≤ MSE(θ̂i).

A.3. OPERA Algorithm
We show an illustration of the OPERA algorithm in Figure 1
and we describe the pseudo-code below.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

Algorithm 1: OPERA Score Computation with
Bootstrap

Input: offline RL data D; evaluation policy π; a set
of OPE estimators
[OPE1,OPE2, ...,OPEk]; number of
bootstrap B; a subsample coefficient
η ∈ [0, 1].

Output: estimated π performance sOPERA

for i← 1...K do
s∗i = OPEi(D)
s̃i = ∅
for j ← 1...B do

ñ = |D|η
D̃j ← Bootstrap (D, ñ)
s̃i = s̃i ∪OPEi(D̃j)

end
end
M̃ ← [s̃1, s̃2, ..., s̃k] ∈ RK×B

M ← [s∗1, s
∗
2, ..., s

∗
k] ∈ RK×1

δ ← [(s̃1 − s∗1, s̃2 − s∗2, ..., s̃k − s∗k] ∈ RK×B

A← 1
B

ñ
nδδ

⊤ ∈ RK×K

α = argminα αAα⊤ s.t.
∑

α = 1
sOPERA = α⊤M
return sOPERA

A.4. Comparison to MAGIC
An important component of our algorithm is accurately es-
timating the MSE of each OPE estimator. In Sec 5.1, we
showed that our M̂SE(θ) is close to the MSE(θ). Here, we
discuss an alternative method of estimating an OPE estima-
tor’s MSE in a related work (Thomas and Brunskill, 2016).
In this work, the bias and variance of an OPE estimator are
computed through per-trajectory OPE scores. This leads
to several issues: most notably, this method cannot esti-
mate the MSE of self-normalizing estimators (such as WIS)
or minimax-style estimators (such as any estimator in the
DICE family (Yang et al., 2020)). We denote this estimator
as M̂SEMAGIC(θ).

In our experiment, we evaluate FQE and IS on Sepsis-
POMDP and Sepsis-MDP domains. We choose percentile
bootstrap to construct the CI around WIS and use it to com-
pute the bias of the other two estimators. We use a 50%
confidence interval to get an upper and lower bound on the
WIS estimates, and compute the bias of FQE and IS by sub-
tracting the average over trajectory with the closest upper
or lower bound of WIS. We show the comparison results in
Table A1. Our procedure is able to provide a consistently
better estimate for FQE’s MSE. We suspect that this is due
to MAGIC’s unique way of computing bias. Specifically,
MAGIC computes bias by comparing two estimates (in this
case, FQE and WIS); if these two estimators do not agree

with each other, then the bias will be large.

A.5. Different MSE Estimation Strategies
We explore two alternative strategies to estimate the MSE
of each estimator. The first strategy is, instead of using the
estimator’s own score as the centering variable Θ̂, we use a
consistent and unbiased estimator’s score as Θ̂. We call this
OPERA-IS. Another strategy is to use idea from MAGIC’s
guided importance sampling, where the bias estimate of
each estimator is an upper bound over the true bias. We
call this OPERA-MAGIC. The results on Sepsis domain is
presented in Table A2. While using an unbiased consistent
estimator as the cnetering variable can help further improve
OPERA’s estimate, sometimes it also hurts the performance
(MDP N=1000 setting). OPERA-MAGIC however almost
always performs worse than the best estimator in the ensem-
ble. Using an upper bound on bias is a good idea if we are
performing a conservative (safe) selection between different
OPEs – it is however a bad idea when we want to com-
bine OPE scores together, as an upper bound is inherently a
distorted estimate of the estimator bias.

A.6. D4RL Experiment
Setup D4RL (Fu et al., 2020) is an offline RL standardized
benchmark designed and commonly used to evaluate the
progress of offline RL algorithms. We use 6 datasets of dif-
ferent quality from three environments: Hopper, HalfChee-
tah, and Walker2d. We choose the medium and medium-
replay datasets. Medium dataset has 200k samples from
a policy trained to approximately 1/3 the performance of
a policy trained to completion with SAC. Medium-replay
dataset takes the transitions stored in the experience replay
buffer of policy – this dataset can be thought of as a dataset
sampled by a mixture of policies.

Policy Training We train 6 policies from these three al-
gorithms with 2 different hyperparameters for the neural
network, Q-learning (CQL) (Kumar et al., 2020), implicit
Q-learning (Kostrikov et al., 2021), and TD3+BC (Fujimoto
et al., 2018). We initialize all neural networks (including
both actor and critics, if the algorithm uses both) with the
hidden dimensions of [256, 256, 256]. We train with a
batch size of 512, with Adam Optimizer. We train for 100
epochs on each dataset. We only change one important
hyperparameter per algorithm. We report the discounted
return of each policy in Table A8,A7,A9. We report these
scores because they are the prediction target of the FQE al-
gorithm. We report the un-discounted return of each policy
in Table A12,A13,A14.

FQE Training We train Fitted Q learning for each policy.
As discussed in the main text, FQE has a few hyperparame-
ter choices. We choose 4 hyperparameters for Hopper and
HalfCheetah. We choose another 4 hyperparameters for

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

Table A1. We compare two styles of MSE estimations and how well they can estimate the true MSE of each estimator. We report averaged
results over 10 trials, with N=200.

Sepsis-POMDP Sepsis-MDP
MSE(θ) M̂SEMAGIC(θ) M̂SE(θ) MSE(θ) M̂SEMAGIC(θ) M̂SE(θ)

IS 0.0161 0.0281 0.0088 0.3445 0.0485 0.0056
FQE 0.0979 0.4953 0.0163 0.0077 0.0771 0.0011

Table A2. We report the Mean-Squared Error (MSE) for the Sepsis domain. We additionally present two variants of OPERA where we
experimented with different MSE estimation strategies.

Sepsis N OPERA OPERA-IS OPERA-MAGIC IS WIS FQE

MDP 200 0.2205 0.2181 0.2657 0.2753 0.2998 0.2448
MDP 1000 0.1705 0.1779 0.1848 0.1720 0.2948 0.2995

POMDP 200 0.2750 0.2768 0.2827 0.2804 0.2850 0.3931
POMDP 1000 0.2749 0.2720 0.2802 0.2799 0.3092 0.4078

Table A3. Root Mean-Squared Error (RMSE) of the FQE estima-
tors with different hyperparameter configurations.

Env/Dataset FQE 1 FQE 2 FQE 3 FQE 4

Hopper

medium-replay 30.2 15.5 133.5 153.4
medium 52.2 12.5 242.9 237.6

HalfCheetah

medium-replay 126.0 65.0 439.7 318.8
medium 158.6 111.8 491.6 386.5

Walker2d

medium-replay 185.8 167.4 301.6 167.7
medium 184.9 192.0 406.7 183.8

Walker2D. The reason is that we noticed the Q-value for
Walker2D exploded if we used the same hyperparameters
for the two other tasks. We should note that since OPERA
does not require OPEs to be the same across tasks. The
hyperparameter choices are around the Q-function neural
network’s hidden sizes and how many epochs we train each
Q-function. Generally, training too long / over-training leads
to exploding Q-values.

A.7. Sepsis and Graph Experiment Details
A.7.1. SEPSIS

The first domain is based on the simulator and works by
(Oberst and Sontag, 2019) and revolves around treating sep-
sis patients. The goal of the policy for this simulator is to
discharge patients from the hospital. There are three treat-
ments the policy can choose from antibiotics, vasopressors,

and mechanical ventilation. The policy can choose multiple
treatments at the same time or no treatment at all, creating 8
different unique actions.

The simulator models patients as a combination of four
vital signs: heart rate, blood pressure, oxygen concentration
and glucose levels, all with discrete states (for example, for
heart rate low, normal and high). There is a latent variable
called diabetes that is present with a 20% probability which
drives the likelihood of fluctuating glucose levels. When a
patient has at least 3 of the vital signs simultaneously out
of the normal range, the patient dies. If all vital signs are
within normal ranges and the treatments are all stopped,
the patient is discharged. The reward function is +1 if a
patient is discharged, −1 if a patient dies, and 0 otherwise.
We truncate the trajectory to 20 actions (H=20). For this
simulator, early termination means we don’t get to observe
a positive or negative return on the patient.

We follow the process described by (Oberst and Sontag,
2019) to marginalize an optimal policy’s action over 2 states:
glucose level and whether the patient has diabetes. This cre-
ates the Sepsis-POMDP environment. We sample 200 and
1000 patients (trajectories) from Sepsis-POMDP environ-
ment with the optimal policy that has 5% chance of taking a
random action. We also sample trajectories from the original
MDP using the same policy; we call this the Sepsis-MDP
environment.

FQE Training We use tabular FQE. Therefore, there is
no representation mismatch. We additionally use cross-
fitting, a form of procedure commonly used in causal infer-
ence (Chernozhukov et al., 2016). Cross-fitting is a sample-
splitting procedure where we swap the roles of main and
auxiliary samples to obtain multiple estimates and then av-

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

Alg Initial α

CQL 1 1.0
CQL 2 10

Table A4.

Alg Expectile

IQL 1 0.7
IQL 2 0.5

Table A5.

Alg Alpha

TD3+BC 1 0.7
TD3+BC 2 0.5

Table A6.

Policy
Hopper

(medium-replay)
Hopper

(medium)

CQL 1 193.47 242.24
CQL 2 123.76 243.57

IQL 1 239.20 246.26
IQL 2 239.85 240.05

TD3+BC 1 183.48 231.81
TD3+BC 2 208.16 234.19

Table A7. Discounted perf of different policies on Hopper
task.

Policy
Walker2D

(medium-replay)
Walker2D
(medium)

CQL 1 252.68 85.39
IQL 1 238.77 253.19

IQL 2 130.29 243.51
CQL 2 247.03 198.92

TD3+BC 1 211.28 247.22
TD3+BC 2 183.38 237.85

Table A8. Discounted perf of different policies on Walker2D
task.

erage the results. The main goal of cross-fitting is to reduce
overfitting. We notice significant performance improve-
ment of our FQE estimator after using cross-fitting. We
present the RMSE of each of our trained FQE estimator in
Table A3.

A.7.2. GRAPH

For the graph environment, we set the horizon H=4, with
either POMDP or MDP and ablate on the stochasticity of
transition and reward function. The optimal policy for the
Graph domain is simply the policy that chooses action 0.
All the experiments reported have 512 trajectories.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

OPERA: Re-weighted Aggregates of Multiple Offline Policy Evaluation Estimators

Policy
HalfCheetah

(medium-replay)
HalfCheetah

(medium)

CQL 1 363.35 601.59
IQL 1 394.06 436.52

IQL 2 362.65 423.37
CQL 2 354.23 539.03

TD3+BC 1 407.96 441.20
TD3+BC 2 318.22 422.65

Table A9. Discounted perf of different policies on HalfCheetah task.

Hopper/
HalfCheetah

Q-Function
Network

Training
Epochs

FQE 1 [256, 256, 256] 2

FQE 2 [256, 256, 256] 3

FQE 3 [512, 512] 1

FQE 4 [512, 512] 2

Table A10. FQE Hyperparameters. Training epochs were cho-
sen to be an early checkpoint and a late checkpoint (before
exploding Q-values).

Walker2D
Q-Function

Network
Training
Epochs

FQE 1 [128, 256, 512] 2

FQE 2 [128, 256, 512] 5

FQE 3 [512, 512] 1

FQE 4 [512, 512] 2

Table A11. FQE Hyperparameters. Training epochs were cho-
sen to be an early checkpoint and a late checkpoint (before
exploding Q-values).

Policy
Hopper

(medium-replay-v2)
Hopper

(medium-v2)

CQL 1 433.40 2550.03
CQL 2 439.56 2787.95

IQL 1 3144.02 1768.19
IQL 2 2177.90 2028.27

TD3 1 1104.04 1977.88
TD3 2 910.26 1751.87

Table A12. Undiscounted perf of different policies on Hopper
task.

Policy
Walker2D

(medium-replay-v2)
Walker2D

(medium-v2)

CQL 1 3732.01 145.25
IQL 1 2383.09 3044.03

IQL 2 776.79 3194.87
CQL 2 3073.49 1409.01

TD3 1 2250.07 3920.79
TD3 2 1656.82 3732.23

Table A13. Undiscounted perf of different policies on
Walker2D task.

Policy
HalfCheetah

(medium-replay-v2)
HalfCheetah
(medium-v2)

CQL 1 4053.04 7894.69
CQL 2 4192.01 6875.66

IQL 1 4995.02 5704.12
IQL 2 4657.00 5475.88

TD3 1 5324.46 5758.83
TD3 2 5002.90 5420.27

Table A14. Undiscounted perf of different policies on HalfCheetah task.

17

