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ABSTRACT

The persistent challenge of medical image synthesis posed by the scarcity of an-
notated data and the need to synthesize “missing modalities” for multi-modal
analysis, underscored the imperative development of effective synthesis methods.
Recently, the combination of Low-Rank Adaptation (LoRA) with latent diffusion
models (LDMs) has emerged as a viable approach for efficiently adapting pre-
trained large language models, in the medical field. However, the direct applica-
tion of LoRA assumes uniform ranking across all linear layers, overlooking the
significance of different weight matrices, and leading to sub-optimal outcomes.
Prior works on LoRA prioritize the reduction of trainable parameters, and there ex-
ists an opportunity to further tailor this adaptation process to the intricate demands
of medical image synthesis. In response, we present SeLoRA, a Self-Expanding
Low-Rank Adaptation module, that dynamically expands its ranking across layers
during training, strategically placing additional ranks on crucial layers, to allow
the model to elevate synthesis quality where it matters most. Our analysis shows
that SeLoRA strikes the best balance between synthesis quality and training effi-
ciency. The proposed method not only enables LDMs to fine-tune on medical data
efficiently but also empowers the model to achieve improved image quality with
minimal ranking. The code of our SeLoRA method is publicly available at this
link.

1 INTRODUCTION

Foundation models Tu et al. (2024); Huang et al. (2023); Zhou et al. (2023) are increasingly gaining
traction in medical imaging, offering a new paradigm for data processing and analysis. While most
foundational models are trained with large natural-image datasets Tu et al. (2024), such as ImageNet,
the shortage of medical images is increasingly problematic (Deng et al., 2009). Medical image syn-
thesis presents a valid approach to address this issue by generating synthetic images to expand and
enhance scarce image datasets. Challenges in medical image synthesis have been widely explored,
leading to various proposed methods. These models are typically trained from scratch for a single
modality like brain MRI Dalmaz et al. (2022), lung CTsMendes et al. (2023), cataract surgery sam-
ples Frisch et al. (2023), and others. However, training models from scratch requires long training
times and can lead to performance limitations due to dataset size.

Recognizing the success of pre-trained foundational models on natural images, recent works have
shifted towards adapting these models, such as stable diffusion Rombach et al. (2022), to enable
more efficient training for medical image synthesis. For example, leveraging text-based radiology
reports as a condition to incorporate detailed medical information, and fine-tuning latent diffusion
models has achieved significant performance gains (Chambon et al., 2022a;b). Further exploration
involves the incorporation of parameter-efficient fine-tuning (PEFT) methods, which not only makes
fine-tuning more efficient but also demonstrates superior performance compared to full fine-tuning
(Dutt et al., 2023). In this context, we place a particular emphasis on applying the Low Rank
Adaptation (LoRA) Hu et al. (2022) method, a type of PEFT method, for fine-tuning stable diffusion
in medical image synthesis.
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Figure 1: Training illustration of a single SeLoRA. SeLoRA behaves similarly to a basic LoRA during
training. However, it is tested for the expanded rank every t step and is progressively expanded if
the FI-Ratio exceeds the desired threshold.

Originally designed for adapting large language models, LoRA hypothesizes that the weight matrix
updated during fine-tuning exhibits a low ‘intrinsic rank’. Therefore, it proposed to use the multipli-
cation of two trainable low-rank decomposition matrices to mimic the weight update for a specific
task, expressed as follows:

W = W0 +AB, (1)

The weight matrix, W din×dout , is updated by adding the product of trainable low-rank decomposi-
tion matrices, A ∈ Rdin×r and B ∈ Rr×dout to the frozen original weight matrix W din×dout

0 . The
rank, r, is deliberately chosen to be significantly smaller than the dimension of the original weight.
Consequently, the trainable parameters under this configuration constitute a fraction of W0’s param-
eter count, achieving parameter-efficient fine-tuning.

The design of LoRA introduced the challenge of selecting optimal rank. Small ranks yield sub-
optimal performance, while large ranks escalate parameter count, and searching for the optimal rank
for each individual LoRA on different layers is computationally expensive. In most large language
models, where LoRA is primarily applied, the Transformer-like architecture typically have similar-
sized weights across layers. Therefore, LoRA proceeds with having uniform rank across all layers,
assuming that the updated weights also have similar ranks throughout. This simplifies the challenge
of selecting optimal by reducing it from searching an optimal rank for each layer to selecting a
single rank for the entire model. However, given our context of applying LoRA to Stable Diffusion,
the bottleneck structure of the Denoising U-Net within Stable Diffusion introduces a diverse range
of weight matrix shapes. Using a uniform rank becomes problematic, as the inherent rank of these
weight matrices can vary significantly - larger matrices may require higher ranks, while smaller ones
may need lower ranks. Consequently, selecting a uniform rank for LoRAthat is applied on LDMs
may lead to suboptimal results, ultimately compromising the quality of synthesized images.

In addressing the challenge of rank selection and aiming to achieve superior synthesized image
quality with minimal trainable parameters, we draw inspiration from the concept of self-expanding
neural network Mitchell et al. (2024). Departing from approaches of setting a predefined uniform
rank, our approach advocates for dynamically expanding the rank of LoRA to better align with the
unique needs of each layer. As a result, in our work, we present Self-Expanding Low-Rank Adap-
tation (SeLoRA), akin to LoRA’s structure but distinguished by the dynamic growth of ranks guided
by Fisher information during training. This enables SeLoRA to flexibly adapt to the inherent char-
acteristics of each layer, guaranteeing enhanced medical image synthesis quality while minimizing
challenges related to rank adjustments.

2 RELATED WORK

Low-rank adaptation has gained significant attention due to its memory-efficient nature, enabling a
broader community to fine-tune increasingly large models. Building upon LoRA, several research
directions have emerged, primarily focusing on reducing the number of trainable parameters through
techniques such as quantization, random weights, various product operations, and adaptive rank
selection. These methods are relevant to our work, as we aim not only to enable adaptive rank in
LoRA but also to minimize the overall parameter count.
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QLoRA, for example, reduces the memory of LoRA weights by quantizing them to 4 bits using two
methods: 4-bit NormalFloat quantization and Double Quantization. This results in a fourfold re-
duction in memory usage for LoRA weights (Dettmers et al., 2023). VeRA replaced the trainable
low rank matrices with an frozen random matrices, and uses two trainable scaling vectors between
and after these frozen random matrices to adapt to the fine-tuning tasks, further reducing the param-
eter count (Kopiczko et al., 2024). Tied LoRA builds on VeRA by exploring various combinations
of shared and frozen weights for both scaling vectors and low-rank matrices (Renduchintala et al.,
2024). Other approaches replace the original low-rank matrix multiplication with alternative opera-
tions to reduce the parameter count even further. KronA, for instance, uses the Kronecker product to
substitute the standard matrix multiplication in LoRA (Edalati et al., 2022), while LyCORIS incorpo-
rates both the Kronecker and Hadamard products to create a its variant of LoRA (Yeh et al., 2024).
All of these methods aim to reduce LoRA’s memory requirements through different techniques. Its
important to note that these approaches are complementary to our proposed methods, suggesting
greater efficiency when our approaches combined with these existing techniques.

Adaptive Rank Selection A particularly relevant line of research to our method is adaptive rank
selection, which aims to dynamically select the optimal rank for LoRA during training. This is
especially pertinent as it addresses the critical issue of rank selection problem. Noah directly injects
LoRA, adapter, and bitfit into an attention layer, using evolutionary search to identify the optimal
rank and configuration (Zhang et al., 2022; Zaken et al., 2022; Houlsby et al., 2019). Similarly,
Generalized LoRA introduces a super-net that can mirror the structure of LoRA, scalar weights,
or bias weights, forming a generalized version of LoRA. It also pursues adaptive rank selection
through through evolutionary search during training (Chavan et al., 2023). While these approaches
can effectively find an optimal rank through evolutionary search, they come with trade-offs. The
repeated search process can significantly extend training time, and in some cases, the search explores
high-rank matrices, which inherently have a large number of parameters. This increased parameter
count can lead to higher memory usage, counteracting LoRA’s original goal of memory efficiency.

Rank Pruning Rank pruning first sets an upper bound to the rank of LoRA, and gradually prunes
the rank of each LoRA adapter during training to reduce the parameter count and search for the op-
timal rank. DyLoRA uses a nested dropout loss to sort and train the rows of the low rank matrices,
placing higher-information rows at lower row indices. After training, the low-rank matrices can be
pruned to a user-defined rank without losing significant information, since the most informative rows
at the lower row indices are preserved (Valipour et al., 2022). AdaLoRA assigns an importance score
for each row of the weight matrix, evaluated based on the magnitude of singular values, thereby
allows pruning of less important ranks during training (Zhang et al., 2023). SoRA introduces a spe-
cially designed gating function that zeros out redundant ranks during training, effectively reducing
the rank and improving efficiency.(Ding et al., 2023). While these pruning-based methods effec-
tively achieve adaptive rank across layers, the fundamental challenge of rank selection remains only
partially addressed. By introducing a fixed upper bound as the initial rank for the trainable low-rank
matrices, these methods may limit the exploration of more optimal configurations.

To address the limitations of fixed upper bounds while selecting optimal rank across layers, we chose
to explore the possibility of rank expansion during training. A parallel work, ALoRA, also introduces
rank expansion but with different rules, expanding rank only when pruning is not triggered Liu et al.
(2024). Our approach, however, places greater emphasis on how to increase the rank strategically.
By using Fisher information as a guideline, we aim to expand the rank in each layer more effectively,
ensuring that the rank growth aligns with the specific needs of the model.

3 SELORA

In addressing the challenge of rank selection and maintaining superior performance with minimum
rank, we propose Self-Expanding Low-Rank Adaptation (SeLoRA). The general idea of SeLoRA is to
initialize the trainable low-rank decomposition matrices with rank r = 1 and dynamically expand its
rank individually during training to adapt to varying layer needs. Now, to facilitate adaptive growth,
we address two key research questions: (1) How can to expand the rank without perturbing the
output? (2) At what juncture should the expansion occur?

3
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3.1 HOW TO EXPAND?

When SeLoRA expands itself by adding a new rank, the model’s final prediction should remain
constant. Hence, to prevent perturbations in the model’s output when introducing a new rank, a
straightforward approach is to force the product of the expanded rank to be 0. However, simple
all-zero initialization poses a challenge as it hinders gradient flow through the expanded rank during
initial back-propagation. Consequently, utilizing methods e.g., Fisher information to assess the
expansion is not applicable. Therefore, we propose to initialize the expanded rank of matrix B to
be 0, and the expanded sub-matrix, K, of matrix A to be randomly initialized. Hence, the expanded
form of SeLoRA can be expressed as follows:

f(x) = xW0 + x [A K]

[
B
0

]
+ b0, (2)

where K ∈ Rdin×1 is a vector initialized with Kaiming uniform initialization. Now, the expanded
SeLoRA maintains the desired output while allowing the gradient to propagate through A.

3.2 WHEN TO EXPAND?

To determine when an expansion could enhance the model, a crucial criterion is evaluating the poten-
tial improvement introduced by the rank addition. In assessing the viability of an expanded SeLoRA
without excessive training, we employ Fisher information to measure the information conveyed by
SeLoRA weights from the datasets. The conceptualisation of using Fisher information for expansion
decision, stems from prior works on model selection procedures (using Fisher information), such
as the Akaike information criterion, the Bayesian information criterion, and later work on low-rank
approximation on neural network’s weights Akaike (1974); Raftery (1995); Hsu et al. (2022). Here
we utilized the empirically estimated Fisher information, introduced in Equation 3, as deriving an
exact value is generally intractable due to the need for marginalization over the entire dataset.

Îw =
1

|B|

|B|∑
i=1

(
∂

∂w
L(bi;w)

)2

, (3)

where |B| is the batch size, and bi is a sample in the batch. To quantify the information carried by
a single SeLoRA, we introduce the Fisher information score (FI-Score), which sums over all Fisher
information of the weight matrices A,B in SeLoRA, as shown in Equation 4:

FI-Score =

din∑
i=1

r∑
j=1

ÎAi,j
+

r∑
i=1

dout∑
j=1

ÎBi,j
. (4)

Here, while the FI-Score is calculated by back-propagating gradients, it is important to note that
the optimizer does not update the parameters during this calculation for the expanded SeLoRA. To
further assess whether the expanded SeLoRA is superior to the previous unexpanded version, we
introduce the Fisher information Ratio (FI-Ratio). The ratio between the Fisher information score
of the expanded and original SeLoRA is calculated, as shown in Equation 5:

FI-Ratio =
FI-Scoreorig
FI-Scoreexp

. (5)

Equation 5 provides a metric to evaluate the information gained when SeLoRA is expanded. This
ratio is measured at each SeLoRA module, and it undergoes expansion when the FI-Ratio exceeds
a desired threshold λ. An aggressive threshold, such as λ = 1, accepts any improvement to the
model. Alternatively, a conservative threshold, such as λ = 1.3 or a larger value, could result in a
more cautious expansion. Additionally, to ensure each expansion is beneficial, a hyperparameter t
is introduced. Testing of SeLoRA’s expansion is conducted at each t training step, allowing the pre-
vious expanded rank to learn and converge before testing the new expansion. The detailed training
procedure is shown in Algorithm 1.

4
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Algorithm 1 SeLoRA Training Procedure

Initialization: Initialize W = W0 +AB for each linear layer with A, B at rank r = 1.
Training:
While s < Total Steps:

Forward pass h = x(W0 +AB) + b0.
Update A and B with gradients∇AL and∇BL.
If s mod t = 0:

For each SeLoRA module:
Compute original and expanded FI-Scores for A, B and A′, B′.
A′ = [A K], B′ =

[
BT 0

]T
.

FI-Ratio =
FI-Scoreorig

FI-Scoreexp
.

IF FI-Ratio ≥ λ then Update A← A′, B ← B′.
EndIf

EndFor
EndIf
s← s+ 1.

EndWhile

3.3 ON CONVERGENCE OF RANK EXPANSION ALGORITHM

While SeLoRA can dynamically expand its rank and determine the timing of expansion, a question
arises: Will SeLoRA continue to grow indefinitely without ever converging to an optimal rank?
To address this concern, we demonstrate the existence of a theoretical upper-bound for the rank
determined by the rank expansion algorithm. To analyze the behavior of the rank expansion, we let
c be the average fisher information across a SeLoRA module. Now, the FI-Ratio can be approximated
as:

FI-Ratio =
(rank + 1)× (in size + out size)× cexpand

rank× (in size + out size)× coriginal
,

where rank is the current rank of SeLoRA at the layer being examined, and in size and out size are
the input and output dimensions of the layer being examined, respectively.

When the rank of a SeLoRA is small, it tends to favor expansion due to the influence of the terms
associated with rank. This behaviour is advantageous because, at lower ranks, the parameter count
remains minimal, and the potential performance gains far outweigh the minor cost of adding ad-
ditional parameters. As the rank grows, the FI-Ratio strikes a balance between (rank + 1) / rank
term and any notable Fisher information figures in the expanded SeLoRA that significantly increase
cexpand.

Once the rank reaches a sufficiently large value, the boost in FI-Ratio from the (rank + 1)/rank
ratio diminishes. As a result, further expansion will only occur if there is a substantial difference
between the mean of expanded and original FI-Score, cexpand and coriginal. This mechanism natu-
rally discourages unnecessary expansion at higher ranks, thereby preventing overfitting and ensuring
parameter efficient fine tuning.

Hence, the FI-Ratio is modulated by both the rank and the significance of the update, ensuring a
balance between expansion and avoiding overfitting. To further mitigate the risk of overfitting, a
larger expansion threshold can be chosen.

3.4 DATASETS FOR EVALUATION

IU X-RAY Dataset Yang et al. (2022), collected by Indiana University, consists of 3,955 radiology
reports paired with Frontal and Lateral chest X-ray images, each accompanied by text findings. For
our experiments, we arbitrarily chose to exclusively focus on frontal projections, considering the
substantial dissimilarities between frontal and lateral images. The dataset is partitioned into training,
validation, and testing sets, with 80%/16%/4% of the datasets, respectively.

5
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Table 1: Quantitative results of IU X-RAY dataset. The best results are highlighted in pink.

METHODS FID ↓ CLIP Score ↑ FID 64 ↓ FID 192 ↓
LoRA 113.37± 7.88 27.11± 0.18 0.778± 0.165 5.993± 1.878

AdaLoRA 184.25± 53.05 26.90± 0.33 1.155± 0.440 12.288± 5.186

DyLoRA 116.03± 10.29 26.89± 0.05 1.018± 0.484 116.032± 10.289

SeLoRA 113.04 ± 16.79 27.26±0.22 0.536 ± 0.332 5.004 ± 3.211

Table 2: Quantitative results of CXR dataset. The best results are highlighted in pink.

METHODS FID ↓ CLIP Score ↑ FID 64 ↓ FID 192 ↓
LoRA 461.80± 14.10 24.34± 0.71 29.002± 7.485 161.126± 42.672

AdaLoRA 489.24± 14.28 22.47± 0.23 45.448± 3.499 246.048± 12.454

DyLoRA 475.42± 7.84 22.93± 0.27 42.629± 3.155 245.815± 14.100

SeLoRA 205.54 ± 9.56 26.38 ± 0.04 2.673 ± 0.196 10.732 ±0.674

Montgomery County CXR Dataset is relatively compact, consisting of 138 frontal chest X-rays
(Demner-Fushman et al., 2015). Each entry in the dataset includes an X-ray image, along with
details about the patient’s sex, age, and medical findings. Among the 138 cases, 80 are labeled as
‘normal,’ with the remaining cases describing specific patient illnesses. The patient’s sex, age, and
findings are concatenated as prompt. The dataset is then divided into training and testing sets with
a split ratio of 80%/20%. Omitting a validation set ensures a sufficient number of samples for both
the training and testing phases.

3.5 IMPLEMENTATION DETAILS

The experiments utilize the base Stable Diffusion model weights from ‘runwayml/stable-diffusion-
v1-5’ in Hugging Face (Rombach et al., 2022). The Stable Diffusion model consists of three compo-
nents: variational autoencoder (VAE), denoising U-Net, and the text encoder. When applying LoRA
and its variants to Stable Diffusion, we injected them into every linear layer of the denoising U-Net
and the text encoder. Injection into the VAE was omitted, as previous work has shown that fine-
tuning the VAE component of the Stable Diffusion model does not yield significant performance
improvements on medical images (Chambon et al., 2022b). Additionally, to accommodate the text
encoder of stable diffusion, any text finding longer than 76 tokens is truncated, as outlined in the
CLIP approach (Radford et al., 2021).

In our experiments, we compared LoRA, DyLoRA, and AdaLoRA to our proposed methods. We fine-
tuned the model using a mean squared error (MSE) loss, evaluating it on the validation set after each
epoch, and kept the best-performing model for testing. The models were fine-tuned for 10 epochs on
the IU X-RAY dataset and 100 epochs on the Montgomery County CXR dataset, due to its smaller
size. For our method, we selected a threshold of λ = 1.1 and t = 40 training steps. Although
these parameter choices are somewhat arbitrary, a relatively large t is preferred to allow SeLoRA
to fully converge before evaluating expansion. For LoRA and DyLoRA, we set the rank to r = 4,
while AdaLoRA was initialized with r = 6and reduced to the target rank of r = 4. The choice of
r = 4 ensures a comparable number of trainable parameters to our trained SeLoRA, enabling a fair
comparison.

3.6 EVALUATION METRIC

We assessed the synthetic images based on both the fidelity and their alignment with the provided
prompts. To assess the alignment with prompt, CLIP score is used, which measures text-to-image
similarity (Radford et al., 2021).

To measure fidelity, we’ve used Fréchet Inception Distance (FID), which calculates the similarity
between the distribution of synthetic datasets and the distribution of the original datasets (Heusel
et al., 2017).
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Figure 2: Qualitative comparison results obtained on the IU X-RAY data, generated by fine-tuning
stable diffusion models injected with various LoRA variants. Prompt used: ‘‘Heart size
and vascularity normal. These contour normal. Lungs clear. No
pleural effusions or pneumothoraces.’’ More sample results are presented in the
Appendix.

The original FID score is computed using the output of the final layer of a trained Inception v3
model, which produces a 2048-dimensional vector. To further evaluate the model’s quality and
ensure consistent results, we also examined the FID score using lower-dimensional latent repre-
sentations of the synthetic images obtained from intermediate layers of the Inception v3 model.
Specifically, we chose layers with latent vector dimensions of 64 and 192.

All metric results are averaged across three random seeds and summarized in Table 1 and 2 for IU
X-RAY and Montgomery County CXR Datasets, respectively.

4 RESULTS

Our results clearly highlight the superior performance of the proposed method, SeLoRA, in terms of
both fidelity and alignment with the prompt (text condition). In Tables 1 and 2, SeLoRA consistently
outperforms all other methods across evaluation metrics for these relatively small datasets. This
demonstrates SeLoRA’s potential and suggests it is a promising candidate for further exploration
and application in various medical image synthesis tasks, especially given the inherent scarcity of
medical datasets Papanastasiou et al. (2023).

Notably, SeLoRA achieves superior performance on the IU X-RAY dataset while utilizing only small
fractions of the trainable parameters, averaging 0.121% of total parameter for the text encoder and
0.368% of total parameter for U-net part. In contrast, other LoRA methods with rank r = 4 use
nearly double the trainable parameters (0.216% and 0.803% of total parameter, respectively) but
still achieve lower scores. This efficiency highlights SeLoRA’s effectiveness in parameter efficient
training, particularly in memory-constrained environments.

To verify the robustness of SeLoRA, we also assessed FID scores using lower-dimensional image
representations obtained from intermediate layers of the Inception v3 model. The results, shown in
the rightmost two columns of Tables 1 and 2, align with previous findings, reaffirming that SeLoRA
consistently outperforms other methods. Additionally, we observed a noticeable improvement in
FID scores for the IU X-Ray dataset when evaluated with lower dimension. While the original
FID scores were nearly tied with LoRA for the IU X-Ray dataset, our method demonstrates clear
superiority when assessed across varying dimensions of FID score. This further highlights SeLoRA’s
robustness and its suitability for medical image synthesis, especially in scenarios where traditional
methods may struggle to maintain performance.

Qualitative Results Furthermore, synthetic images generated by a model trained on the IU X-
RAY dataset are displayed in Figure 2. Notice that, although all synthetic images achieved similar
quality, in comparison, SeLoRA is the only method that captures the distinct pathology (represented
as a black circle) in the lower part of the right lung, closely resembling the original image. More
sample images are shown in appendix Figure 7 and 9.

4.1 RANK ALLOCATION ANALYSIS

Figure 3 and 4 illustrates the final rank results of SeLoRA across stable diffusion model layers after
training on the IU X-RAY dataset. For both figure, each cell within the figure represents a layer in

7
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Figure 3: The final rank of SeLoRA in text encoder fine-tuned on stable diffusion with IU X-RAY
Dataset. The x-axis labels correspond to the layer indices, while the y-axis labels denote different
attention weights within the model. Each element represents the rank assigned to the corresponding
attention weight in a specific layer. Note that SeLoRA places more rank on crucial layers.

Figure 4: The final rank of SeLoRA in Unet encoder fine-tuned on stable diffusion with IU X-RAY
Dataset. The x-axis labels correspond to the layer indices, while the y-axis labels denote different
attention weights within the model. Each element represents the rank assigned to the corresponding
attention weight in a specific layer. Note that SeLoRA places more rank on crucial layers.

Table 3: Ablation study on performance of SeLoRA trained with different, threshold λ ∈
{1, 1.1, 1.3}, on IU X-RAY Dataset.

Threshold FID ↓ CLIP Score ↑
1 76.442 27.265
1.1 113.042 27.256
1.3 122.752 26.835

the model, and the displayed number indicates the final learnt SeLoRA rank. The layers are arranged
from input to output, top to bottom and left to right.

In figure 3 , q, k, and v represent the query, key, and value sections of the attention weights, respec-
tively. out, fc1, and fc2 denote the output, first fully connected layer, and second fully connected
layer of the text encoder part. Similarly, for figure 4, q, k, and v represent the query, key, and value
sections of the attention weights. attn1 and attn2 refer to the first and second attention layers, where
the first is self-attention and the second is cross-attention between text and image embedding.

In the text encoder part, large ranks for SeLoRA lie at the q and k parts of the attention weights. For
the U-net part, large ranks are allocated to the q and k parts of the second attention layer, namely the
cross-attention layer. The rank allocation aligns with the intuition that weight updates would change
most dramatically at locations where the latent representations of text and image intersect (where
conditioning is more apparent). Hence, it validates our hypothesis that our proposed expansion
method allows SeLoRA to focus and place more rank on crucial layers.
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(a) Rank of SeLoRA in Text Encoder. (b) Rank of SeLoRA in Denoising U-Net.

Figure 5: The final rank of each SeLoRA fine-tuned on stable diffusion with threshold of λ = 1 for
IU X-RAY dataset. The x-axis represents the layer index, and the y-axis indicates the corresponding
attention’s weight name. SeLoRA focuses and places more rank on crucial layers.

(a) Rank of SeLoRA in Text Encoder. (b) Rank of SeLoRA in Denoising U-Net.

Figure 6: The final rank of each SeLoRA fine-tuned on stable diffusion with threshold of λ = 1.3 for
IU X-RAY dataset. The x-axis represents the layer index, and the y-axis indicates the corresponding
attention’s weight name. SeLoRA focuses and places more rank on crucial layers.

4.2 ABLATION STUDY - THE IMPACT OF λ

Further results obtained by experimenting with different λ value are displayed in Table 3. These re-
sults indicate that a smaller λ leads to a more aggressive expansion of all layers in SeLoRA, resulting
in improved synthesis quality, albeit at the cost of a more expensive training process.

The final learned rank results of SeLoRA for λ = 1 and 1.3 are shown in Figures 5 and 6, respectively.
The critical layers that SeLoRA emphasizes remain consistent with our observations in Section 4.1.
Note that although the ranks in Figure 6 are spread out and appear quite large, when averaged across
different layers, the q and k layers in the text encoder and the attn2 q and attn2 k layers still have
the largest ranks. This further confirms the consistency of our method, aligning with our analysis in
Section 4.1.

The significant discrepancies in the ranks assigned to each layer of the model, as shown in Figures
3, 4, 5, and 6, are expected. This phenomenon arises from the substantial differences in expansion
thresholds used in the experiments. For Figure 5, the expansion ratio was set to λ = 1 for ablation,
which almost always allows for rank expansion, naturally leading to higher ranks across the model’s
layers. In contrast, the experiment for Figure 6 used a larger threshold of λ = 1.3, which suppresses
rank expansion across layers.

5 CONCLUSION

This work introduces a novel parameter-efficient method named SeLoRA, designed to effectively
fine-tune stable diffusion models for generating X-ray images based on text (radiology) prompts.
Our method enables progressive expansion in the rank of LoRA, enabling more precise image syn-
thesis with minimal added rank. Through exploratory analysis, we demonstrate that the proposed
FI-Ratio is capable of effectively guiding SeLoRA to expand its rank and allocate more rank to cru-
cial layers. We believe that SeLoRA, when combined with stable diffusion, can be easily employed
to adapt to various medical datasets containing text-image pairs, and potentially being applicable for
clinical text synthesis. Moreover, given the increasing work on segmentation and detection in 3D
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(tomographic, e.g., magnetic resonance imaging, computed tomography, and other) medical imaging
data and the emergence of prompt-to-3D models, in our future work, we aspire to explore SeLoRA
adaptations on fine-tuning prompt-to-3D models for 3D medical image synthesis.
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synthesis using gans. Expert Systems with Applications, 215:119350, 2023. ISSN 0957-4174.

Rupert Mitchell, Robin Menzenbach, Kristian Kersting, and Martin Mundt. Self-expanding neural
networks, 2024.

Giorgos Papanastasiou, Nikolaos Dikaios, Jiahao Huang, Chengjia Wang, and Guang Yang. Is
attention all you need in medical image analysis? a review. IEEE Journal of Biomedical and
Health Informatics, pp. 1–14, 2023. ISSN 2168-2208.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. CoRR,
abs/2103.00020, 2021.

Adrian E. Raftery. Bayesian model selection in social research. Sociological Methodology, 25:
111–163, 1995. ISSN 00811750, 14679531.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter effi-
ciency of lora with weight tying, 2024. URL https://arxiv.org/abs/2311.09578.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Masayuki Tsuneki and Fahdi Kanavati. Inference of captions from histopathological patches, 2022.
URL https://arxiv.org/abs/2202.03432.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang,
Andrew Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai.
NEJM AI, 1(3):AIoa2300138, 2024.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. ArXiv,
abs/2210.07558, 2022.
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A APPENDIX

A.1 ADDITIONAL QUALITATIVE RESULTS

Figure 7: Qualitative comparison between real and synthetic images on the Montgomery County
CXR data, generated by fine-tuning frozen stable diffusion models injected with LoRA variants.

Prompt: “ age:32, gender:Male, findings:extensive infiltrates bilaterally with large cavity in
RUL and a moderate pleural effusion on the left. AFB smears and RNA probes pos for MTB. Active
TB, cavitary.”

Figure 8: Qualitative comparison between real and synthetic images on the IU-Xray data, generated
by fine-tuning frozen stable diffusion models injected with LoRA variants.

Prompt: “ The heart and lungs have XXXX XXXX in the interval. Both lungs are clear and
expanded. Heart and mediastinum normal.”

B TRAINING PROTOCOL

B.1 DATA ENGINEERING

To accommodate varying image sizes, we first rescaled the images so that the shortest side measured
224 pixels. Center cropping was then applied to standardize all images to a size of 3× 224× 224 (3
channels, 224 pixels height, and 224 pixels width).
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Figure 9: Qualitative comparison between real and synthetic images on the IU X-Ray dataset
at 384 × 384 resolution, generated by fine-tuning frozen stable diffusion models injected with
LoRA variants. Our method shows the most consistent match with the findings of “minimal patchy
bibasilar airspace opacities” at the circled area.

Prompt: “Minimal patchy bibasilar airspace opacities, XXXX atelectasis or evolving pneu-
monia. The heart pulmonary XXXX appear normal. Is minimal blunting of the pleural spaces,
XXXX XXXX effusions.”

Figure 10: Qualitative comparison between real and synthetic images on the PatchGastricADC22
dataset, generated by fine-tuning frozen stable diffusion models injected with LoRA variants. Our
method shows the most consistent match with the findings of “cells are highly columnar” at the
annotated area.

Prompt: “On the superficial epithelium, tumor tissue with densely growing medium to large,
round tubules is observed. Tumor cells are highly columnar, with nuclei aligned basolaterally and
polarized. Well differentiated tubular adenocarcinoma”

B.2 TRAINING DETAILS

Table 4: Training Configuration

CONFIGURATION VALUE
Optimizer Adam
Base Learning Rate 1× 10−4

Weight Decay 0
Optimizer Momentum β1 = 0.9, β2 = 0.999
Batch Size 8
Training Epochs 10 (IU X-RAY), 100 (CXR)
λ 1.1
t 40
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Table 5: Quantitative performance results on the IU X-Ray dataset at 384×384 resolution. The best
results are highlighted in pink.

METHOD FID ↓ FID 64 ↓ FID 192 ↓

LoRA 69.936 0.445 3.068
AdaLoRA 153.804 0.520 5.681
DyLoRA 89.765 0.580 4.982
SeLoRA 65.780 0.344 2.412

C EVALUATION AT HIGHER RESOLUTIONS AND ACROSS MODALITIES

C.1 EXPERIMENT ON IU X-RAY DATASET AT 384× 384 RESOLUTION

To further validate our approach, we trained and tested the method on 384× 384 resolution images
from the IU X-Ray dataset. For robust evaluation, the dataset was repartitioned into a 70%-10%-
20% split for training, validation, and testing, respectively.

All experimental setup parameters, except for the batch size, remained consistent with those outlined
in Section 3.5. The batch size was reduced to 6 to address GPU memory constraints. Frechet
Inception Distance (FID) scores were computed across various embedding dimensions: original, 64,
and 192. The results are summarized in Table 5.

As shown in Table 5, SeLoRA consistently achieves the lowest FID across all configurations, outper-
forming other methods significantly. These results demonstrate the robustness and superior perfor-
mance of SeLoRA when evaluated at higher resolutions.

C.2 ADDITIONAL EXPERIMENT ON PATCHGASTRICADC22 DATASET

To further strengthen our evaluation, we conducted additional experiments on a different modality.
Specifically, we experimented on the PatchGastricADC22 dataset (Tsuneki & Kanavati, 2022),
a dataset comprising 262,777 image patches derived from 991 H&E-stained gastric slides. This
dataset features adenocarcinoma subtypes and corresponding captions extracted from medical re-
ports, representing a completely different modality from X-ray images. This experiment highlights
the robustness and versatility of our method.

For our experimental setup, we used 384 × 384 image patches. Due to the class imbalance in the
dataset, we randomly selected five subclasses: (1) Moderately differentiated tubular adenocarci-
noma, (2) Well-differentiated tubular adenocarcinoma, (3) Moderately to poorly differentiated ade-
nocarcinoma, (4) Poorly differentiated adenocarcinoma, solid type, and (5) Poorly differentiated
adenocarcinoma, non-solid type.

From each subclass, we sampled 1,000 image-text pairs, creating a balanced subset. This subset
was split into training, validation, and testing sets with a 70%-10%-20% partition. We evaluated
the FID across various embedding dimensions (original, 64, and 192). The experimental setup and
hyper-parameters, except for the number of images per batch, were consistent with Section 3.5. The
number of images per batch was reduced to 6 to accommodate the GPU memory limitations. The
results are shown in Table 6.

On the original dimension, we can notice that SeLoRA ranks second, behind LoRA by only 0.5,
while significantly outperforming AdaLoRA and DyLoRA. On dimensions 64 and 192, SeLoRA sur-
passes LoRA but slightly under performs compared to DyLoRA. However, given DyLoRA’s worst
performance in the original dimension, we believe SeLoRA demonstrates greater stability across
embedding dimensions.
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Table 6: Quantitative performance results on the PatchGastricADC22 dataset at 384×384 resolution.
The best results are highlighted in pink.

METHODS FID ↓ FID 64 ↓ FID 192 ↓
LoRA 75.006 6.078 16.762
AdaLoRA 80.106 9.878 37.627
DyLoRA 93.083 5.002 14.376
SeLoRA 75.586 6.001 16.487

Table 7: The average training GPU memory usage recorded during experiments on each dataset at
384× 384 resolution with a batch size of 6. The best results are highlighted in pink.

METHODS PatchGastricADC22 IU X-Ray
LoRA 21.591 20.508
AdaLoRA 20.908 19.644
DyLoRA 20.921 18.995
SeLoRA 20.751 19.179

D TRAINING EFFICIENCY ANALYSIS

For both the IU X-Ray and PatchGastricADC22 dataset trained on 384× 384 resolution. We have
recorded the GPU memory usage and training time for training efficiency analysis.

D.1 GPU MEMORY USAGE DURING TRAINING

During the training of the IU X-Ray and PatchGastricADC22 datasets at 384×384 resolution with
a batch size of 6, we recorded the GPU memory usage for all methods every 40 steps. The details
are shown in Figures 11 and 12.

Figure 11: GPU memory usage recorded during experiments on the IU X-Ray dataset at 384× 384
resolution with a batch size of 6. GPU memory usage was monitored and recorded every 40 steps.
The upper and lower limits of the y-axis represent the maximum available GPU memory and the
memory used for loading the model, respectively.

In both plots, the memory usage of SeLoRA is, in most cases, the lowest and was never the highest.
To provide a clearer perspective, we computed the average memory usage across all timestamps and
present the results in Table 7.

We observe that SeLoRA have the lowest average training GPU memory usage on the PatchGas-
tricADC22 dataset. This advantage may compensate for the slight 0.5-point disadvantage in FID
when compared to LoRA method. On the IU-XRay dataset, although our method ranked second in
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Figure 12: GPU memory usage recorded during experiments on the PatchGastricADC22 dataset at
384× 384 resolution with a batch size of 6. GPU memory usage was monitored and recorded every
40 steps. The upper and lower limits of the y-axis represent the maximum GPU memory available
and the memory used for loading the model, respectively.

Table 8: The average training time recorded during experiments on each dataset at 384× 384 reso-
lution with a batch size of 6.

METHODS PatchGastricADC22 IU X-Ray
LoRA 2:40:15 1:44:43
AdaLoRA 2:37:42 1:49:44
DyLoRA 2:44:01 1:41:30
SeLoRA 2:36:56 1:47:01

GPU memory usage, behind DyLoRA, it significantly outperformed DyLoRA in terms of FID, with a
23-point difference. This indicates that, despite a modest increase in memory usage, SeLoRA deliv-
ers superior FID performance, thus offering a highly effective balance between memory efficiency
and overall performance.

D.2 TRAINING TIME

We also recorded the training times for both the IU X-Ray and PatchGastricADC22 datasets, as
shown in Table 8.

On PatchGastricADC22 dataset, we observed a similar pattern as in training memory GPU Us-
age, with SeLoRA having the lowest training time on PatchGastricADC22. For IU X-Ray dataset,
SeLoRA ranked the third. SeLoRA exhibits a slightly longer training time compared to LoRA and
DyLoRA; however, the difference is minimal and does not diminish its advantages in model perfor-
mance as in 5. This additional training time arises from the rank increment testing step, which is
performed every 40 training steps as specified in the experimental setup.

D.2.1 ESTIMATED WORST-CASE TRAINING TIME FOR SeLoRA

To provide a clear estimate of the worst-case training time for SeLoRA relative to the standard
LoRA method, we assume that LoRA operates with a fixed rank equivalent to the average final
rank achieved by SeLoRA. Denoting the total training time for LoRA as LoRA time, and the in-
terval between rank increment tests in SeLoRA as t steps, the total training time for SeLoRA can be
approximated as:

SeLoRA Time =

(
1 +

1

t

)
× LoRA time. (6)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Here, t represents the frequency of rank testing, and the term 1
t reflects the proportionate overhead

incurred by performing rank testing during training. This equation models the worst-case scenario,
where every rank test incurs an additional step, slightly increasing the overall training time.

Notably, this estimate is conservative, as SeLoRA typically operates with lower ranks than LoRA
during most of the training process, leading to reduced computational costs. As a result, the actual
training time for SeLoRA is often below this calculated worst-case threshold.

In our experiments, the training time for LoRA was approximately 104.71 minutes, with rank testing
performed every t = 40 steps. Substituting these values into the formula, the estimated training time
for SeLoRA is:

SeLoRA Time =

(
1 +

1

40

)
× 104.71 = 107.32minutes. (7)

This estimate closely matches the experimentally observed training time for SeLoRA, confirming the
validity of the approximation. Importantly, the additional overhead of approximately 2.6 minutes
(or 2.5%) is minimal and predictable, making it a reasonable trade-off for the significant gains in
adaptability and performance achieved by SeLoRA.

In summary, this analysis highlights that SeLoRA maintains computational efficiency while intro-
ducing dynamic rank adjustments, with only a slight increase in training time compared to LoRA.

E NOTE ON DATASET SIZES FOR LoRA FINE-TUNING

As a reference for the size of datasets typically used to fine-tune LoRA on Stable Diffusion, a prior
ICLR paper on LoRA adaptation for Stable Diffusion utilized around 45–200 images per class, total-
ing approximately 1,706 images, as noted by Yeh et al. (2024). Previous studies have employed the
MIMIC-CXR dataset for fine-tuning, which is significantly larger, with 40,000 images per class. We
believe that fine-tuning on smaller datasets is a more appropriate and practical application of LoRA-
based methods, particularly in scenarios like ours, as opposed to training on the full 377,000-image
MIMIC-CXR dataset.
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