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Semi-supervised Visible-Infrared Person Re-identification via
Modality Unification and Confidence Guidance

Anonymous Authors

ABSTRACT
Semi-supervised visible-infrared person re-identification (SSVI-
ReID) aims to match pedestrian images of the same identity from
different modalities (visible and infrared) while only annotating vis-
ible images, which is highly related to multimedia and multi-modal
processing. Existing works primarily focus on assigning accurate
pseudo-labels to infrared images, but overlook the two key chal-
lenges: erroneous pseudo-labels and large modality discrepancy.
To alleviate these issues, this paper proposes a novel Modality-
Unified and Confidence-Guided (MUCG) semi-supervised learning
framework. Specifically, we first propose a Dynamic Intermediate
Modality Generation (DIMG) module, which transfers knowledge
from labeled visible images to unlabeled infrared images, enhanc-
ing the pseudo-label quality and bridging the modality discrepancy.
Meanwhile, we propose a Weighted Identification Loss (WIL) that
can reduce the model’s dependence on erroneous labels by using
confidence weighting. Moreover, an effective Modality Consistency
Loss (MCL) is proposed to narrow the distribution of visible and
infrared features, further narrowing the modality discrepancy and
enabling the learning of modality-unified features. Extensive exper-
iments show that the proposed MUCG has significant advantages
in improving the performance of the SSVI-ReID task, surpassing
the current state-of-the-art methods by a significant margin. The
code will be available.

CCS CONCEPTS
• Information systems→ Information retrieval.

KEYWORDS
Modality unification, Confidence guidance, Semi-supervised learn-
ing, VI-ReID

1 INTRODUCTION
Traditional person re-identification (ReID) [15, 17, 63] refers to
matching pedestrian images with the same identity captured from
non-overlapping visible cameras. Existing cameras include two
modalities: visible and infrared. In low-light scenarios, cameras
will automatically switch from visible modality to infrared modal-
ity. However, in nighttime or low-light environments, the pedes-
trian images captured by visible cameras cannot obtain effective
appearance information, which hinders the applicability of ReID
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Large Modality 
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Figure 1: Illustration of two critical factors affecting the per-
formance of SSVI-ReID: erroneous pseudo-labels and large
modality discrepancy.

in practice. Therefore, [40] propose a challenging cross-modality
visible-infrared ReID (VI-ReID) task.

The cross-modality VI-ReID task [10, 23, 50] solves the problem
of person ReID under poor lighting conditions, aiming to match
nighttime infrared person images captured by infrared cameras
with visible person images. At present, significant progress has been
made in VI-ReID. Some widely used VI-ReID techniques [35, 40]
strive to identify distinct embedding spaces that minimize the gap
between different modalities at the embedding level. Nevertheless,
the significant modality gap poses a challenge for these methods
in locating appropriate embedding spaces. Alternatively, there are
image-level approaches [9, 56] that aim to transform images from
one modality to another, effectively bridging the modality gap
between visible and infrared images. Despite their success in re-
ducing the modality gaps, the generated cross-modality images
are usually accompanied by some noises. An important factor for
the above methods to achieve good results is their well-annotated
cross-modality training sets. However, annotating cross-modality
ReID data is extremely time-consuming and requires extremely
high costs. Additionally, the lack of color information in infrared
images makes it more difficult to annotate cross-modality images
manually. These problems motivate us to train a cross-modality
ReID model using labeled visible data and unlabeled infrared data.

Therefore, the investigation of the semi-supervised VI-ReID
(SSVI-ReID) task holds significant importance. It aims to learn
modality-invariant knowledge from labeled visible data and unla-
beled infrared data, thereby achieving cross-modality pedestrian
image retrieval. However, existing single-modality UDA-ReIDmeth-
ods (using labeled visible images as the source domain and un-
labeled infrared images as the target domain) suffer from cross-
modality discrepancy, making it difficult to directly learn modality
invariant features. Besides, the current semi-supervised VI-ReID

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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methods [33, 37] primarily focus on how to correctly assign pseudo-
labels. OTLA [37] focuses on the assignment of infrared pseudo-
labels. DIPS [33] generates pseudo labels dependently on multi-
model collaboration, which might lead to reduced efficiency. They
often neglect the negative impact of noisy pseudo-labels and modal-
ity discrepancy. Therefore, as shown in Figure 1, how to eliminate
the negative impact of noisy pseudo-labels and transfer the learned
knowledge from visible modality to infrared modality under semi-
supervised settings is the key to the SSVI-ReID task.

In this paper, we propose a newModality-Unified andConfidence-
Guided (MUCG) semi-supervised method for VI-ReID without the
labels of infrared images. To address the issue of noisy labels and
the modality discrepancy between the labeled visible and unlabeled
infrared images, we propose the following three modules. Firstly,
we propose a Dynamic Intermediate Modality Generation (DIMG)
module that generates intermediate modality features by mixing
the features of visible and infrared modalities. Using intermediate
modality features to improve the discriminative ability of the model
for unlabeled infrared images. Secondly, to reduce the negative im-
pact of noisy pseudo-labels, we propose a Weighted Identification
Loss (WIL) to calculate the confidence of pseudo-labels. By assign-
ing different weights to different pseudo-labels, the WIL can ensure
that the model pays more attention to reliable labels during the
training process, while reducing dependence on unreliable labels.
Finally, to address the issue of cross-modalities discrepancy, we
propose an effective Modality Consistency Loss (MCL) to minimize
the distances between visible and infrared modalities. The three
modules, DIMG, WIL, and MCL focus on enhancing the model’s
adaptability to modality differences, reducing the impact of noisy
labels, and enhancing feature alignment, respectively, thus solving
the issues of noisy labels and modality discrepancies. The proposed
method significantly improves the overall performance of the model
in the SSVI-ReID task. Specifically, the MUCG method achieves a
Rank-1 accuracy of 68.8% on the SYSU-MM01 dataset, 86.9% on
the RegDB dataset, and 51.9% on the LLCM dataset, surpassing the
current state-of-the-art semi-supervised methods.

The main contributions can be summarized as follows:
(1) We propose a novel modality-unified and confidence-guided

semi-supervised VI-ReID framework that exclusively relies on the
annotation of visible images, offering a cost-effective solution.

(2) We design a dynamic intermediate modality generation mod-
ule, which can effectively enhance themodel’s discriminative ability
of unlabeled infrared images.

(3) We propose a weighted identification loss and a modality
consistency loss, alleviating the negative impact of noisy pseudo-
labels and narrowing the modality gap between visible and infrared.

(4) The proposed method outperforms other state-of-the-art
methods for the semi-supervised VI-ReID task on three challenging
datasets, as demonstrated by extensive experiments.

2 RELATEDWORK
2.1 Supervised Visible-Infrared Person ReID
Supervised visible-infrared person ReID (SVI-ReID) aims to match
infrared images with visible images of pedestrians under non-
overlapping cameras. Recently, some works [21, 42, 57] try to mine

modality-invariant information by using complex network struc-
tures or generation methods to alleviate modality discrepancy. [40]
starts the first attempt by proposing a zero-padding one-stream
network toward automatically evolving modality-specific nodes.
[11] utilize the modality-sharing layer to develop shared knowl-
edge and improve the modality invariance of deep representation.
Additionally, a channel enhancement (CA) method is introduced in
[47] to uniformly generate color-independent images by randomly
swapping color channels.

Although the supervised VI-ReID methods mentioned above
have achieved good results, they require a large amount of cross-
modality identity annotations, which hinders the rapid deployment
of new scenes.Manual annotation requires a high cost, especially for
infrared images. In this work, we investigate the semi-supervised
visible-infrared person ReID task, which does not require infrared
identity annotation and is of great significance for deploying VI-
ReID in the real world.

2.2 Unsupervised Domain Adaptation Person
ReID

The goal of unsupervised domain adaptation (UDA) is to enhance
learning of the unlabeled target domain through labeled source
domains. It can be roughly divided into three categories, i.e. fine-
tuning [2, 5], GAN transferring [8, 18, 39], and joint training [6,
13, 60]. Fine-tuning methods first train the model using labeled
source data and then fine-tune the pre-trained model on the target
data using pseudo-labels [58]. GAN transfer methods disentangle
features into id-related and id-unrelated features [64] or use GAN
to transfer the style of images [8]. Joint training methods combine
the source data and target data and use the ImageNet network to
train from scratch [20]. However, these methods ignore the bridging
between two domains, that is, using the similarity between the two
domains to learn domain invariant information.

The task of this paper is similar to unsupervised domain adap-
tive ReID [37, 43]. Labeled visible images are the source domain
and unlabeled infrared images are the target domain. UDA-VI-ReID
aims to transfer learned knowledge from labeled visible images to
unlabeled visible infrared images and match images of the same
person captured by both visible and infrared cameras. In addition,
the unsupervised domain adaptation ReID task is a homogeneous
retrieval task, while the semi-supervised VI-ReID task is a hetero-
geneous retrieval task. The domain difference between visible and
infrared images is greater than that in the UDA ReID task, making
it a significant challenge.

2.3 Pseudo-labels in Semi-supervised Learning
The pseudo-labeling method is a supervised paradigm that learns
from both unlabeled and labeled data simultaneously which uses
the class with the highest prediction probability as the pseudo-
label. According to the assumption of semi-supervised learning
[1, 24, 25], the decision boundary should pass through areas with
sparse data to avoid dividing dense sample data points on both
sides of the decision boundary. This means that the model needs to
make low entropy predictions on unlabeled data, i.e. minimizing
entropy. Pseudo-labels can effectively reduce class overlap, leading
to clearer class boundaries and more compact learned classes.
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Figure 2: Framework of the proposed MUCG. MUCG adopts independent blocks in stage-0 to extract low-level visible and
infrared features and the remaining stages are utilized as modality-shared ResBlocks. The DIMG module is used to generate
intermediate modality features, serving as an intermediate bridge between visible and infrared features, and improving the
model’s recognition ability for infrared images. The proposed method utilizes the original visible and infrared features as well
as intermediate features during training, and incorporates them into our objective function consisting of 𝐿𝐵𝐴𝑆𝐸 , 𝐿𝑊𝐼𝐿 , and
𝐿𝑀𝐶𝐿 . “DConv” means depth-wise convolution. “GAP” means global average pooling. “MLP” refers to multilayer perceptron.

UPS [32] proposal of high confidence pseudo-labels may not nec-
essarily be correct, while low confidence pseudo-labels are basically
incorrect. Based on the above content, when selecting a subset of
pseudo-label predictions, we choose high-confidence predictions
as positive examples and low-confidence predictions as negative
examples. Self-tuning method [38] proposes using a pseudo-label
group comparison mechanism to mitigate the impact of noisy la-
bels. FixMatch [34], ConMatch [22], and FlexMatch [52] all use
thresholds to select high-confidence pseudo-labels for training.

In addition, [37] formulates the label assignment task as an op-
timal transportation (OT) problem, treating unlabeled samples as
suppliers and pseudo-labels as demands. Through the optimal trans-
portation plan, the supplier samples are transported to the demand
side at the lowest cost. In this paper, we apply OT to the infrared data
label allocation problem. This method can force infrared samples
to be assigned to equally sized subsets, avoiding grouping samples
together. Furthermore, the quality of pseudo-labels is closely related
to the calibration error (i.e. the predictive ability) of the model. This
paper proposes an effective WIL to reduce the impact of erroneous
pseudo-labels on the model.

3 METHODOLOGY
In this section, we first introduce the model architecture of the
proposed Modality-Unified and Confidence-Guided (MUCG) semi-
supervised VI-ReID. Then, we elaborate on the design of the Dy-
namic IntermediateModality Generation (DIMG)Module,Weighted
Identification Loss (WIL), and Modality Consistency Loss (MCL) in
detail. Finally, we adopt a multi-loss strategy to jointly optimize
the proposed semi-supervised VI-ReID method.

3.1 Model Architecture
Figure 2 provides an overview of the proposed MUCG method. The
inputs of MUCG are labeled visible images and unlabeled infrared

images, which are fed into the DIMG module to generate interme-
diate modality features. Under the semi-supervision setting, we can
only access the labels Y𝑣 of visible images. For unlabeled infrared
images, we initially randomly generate pseudo-labels for them.
Then, we introduce the optimal transport assignments [37, 58] to
update pseudo-labels,

P∗ = diag(𝛼)P𝛾diag(𝛽), (1)

where diag(·) denotes the square diagonal matrix with the elements
of vector on the main diagonal, P is the softmax output of the in-
frared image classifier,𝛾 is a parameter that controls the smoothness
of the mapping, 𝛼 and 𝛽 represent class prior uniform distribution
vector and sample prior uniform distribution vector respectively.
Through them, it is possible to force the assignment of infrared
samples to equally sized subsets. The infrared pseudo-labels Y𝑟 are
as follows,

Y𝑟 = argmax(P∗), (2)
where argmax(·) is used to find the index of the maximum value in
each row of P∗, determine the most likely category of each sample,
thereby generating an infrared pseudo-label Y𝑟 .

Inspired by the work of PCB [36] in extracting discriminative
features, we horizontally divide the feature map F𝑔 into three parts{
F𝑝1, F𝑝2, F𝑝3

}
, each of which is fed into the classifier to learn lo-

cal knowledge. In addition, to reduce the modality discrepancy
and eliminate the negative impact of noisy pseudo-labels, we pro-
pose a novel Weighted Identification Loss (WIL) and a Modality
Consistency Loss (MCL).

3.2 Dynamically Intermediate Modality
Generation Module

Unlike unsupervised visible ReID problems, visible and infrared
images have significant appearance discrepancies in the SSVI-ReID
task. We draw inspiration from works [6, 62], which show that
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adding an intermediate domain as the bridge can better transfer
knowledge from the source domain to the target domain. There-
fore, we introduce an intermediate modality as a bridge to transfer
labeled visible modality knowledge to the unlabeled infrared modal-
ity, improving the model’s ability to distinguish infrared images.

As shown in Figure 2, we generate intermediate modality fea-
tures by mixing visible and infrared features. The DIMG module
we proposed can be inserted after the hidden stage in the backbone
network . This module takes the output features (F𝑣, F𝑟 ) of visible
and infrared images (X𝑣,X𝑟 ) in stage-3 as input and generates
two weight factors (W𝑣,W𝑟 ). We can mix visible and infrared fea-
tures with these two weighting factors to dynamically generate
intermediate modality features.

In each mini-batch during the training stage, we combine sam-
ples into n sample pairs based on labels. For each sample pair
(X𝑣,X𝑟 ), both samples have the same label (pseudo-label). After
obtaining their feature maps F𝑣, F𝑟 ∈ Rℎ×𝑤×𝑐 , we use the large
convolution kernel of depth-wise convolution to extract discrimina-
tive features from the visible and infrared modalities. Following [4],
we set the kernel size to 63. Then, we apply average-pooling to both
features, resulting in 1 × 1 × 𝑐 dimensional features (F𝑣𝑎𝑝 , F𝑟𝑎𝑝 ), and
their output feature vectors are summed and inputted into 𝑀𝐿𝑃
consisting of two fully connected layers to generate two weighting
factors:

[W𝑣,W𝑟 ] = 𝛿 (𝑀𝐿𝑃 (F𝑣𝑎𝑝 + F𝑟𝑎𝑝 )), (3)

where 𝛿 (·) is a softmax function,W𝑣 andW𝑟 are weighting factors
for visible and infrared features, respectively. Weighting factors are
used to dynamically fuse the features of two modalities. Therefore,
the formula for generating intermediate modality features can be
written as follows:

F𝑖 = W𝑣 × F𝑣 +W𝑟 × F𝑟 . (4)

Then, the intermediate modality features and original features are
fed together into the network.

Our proposed DIMG module can learn in an effective joint train-
ing scheme, rather than undergoing arduous training on GANs or
reconstructed images. By utilizing appropriate intermediate modal-
ities to connect the visible and infrared domains, visible knowledge
can be better transferred to the infrared domain and improve the
discriminative ability of the model in the infrared domain. However,
relying solely on the DIMG module is not enough to fully address
all the challenges in the SSVI-ReID task. Especially in small datasets,
the problem of noisy labels during training has become a challenge
that we must face. To address this challenge, we further propose
weighted identification loss.

3.3 Weighted Identification Loss
Unlike other semi-supervised learning methods [22, 34, 52] that
only select high-confidence samples during the sample selection
stage, we use all samples for training due to the small size of the
VI-ReID datasets. However, the inevitable inclusion of noisy labels
in pseudo-labeled samples can significantly reduce model perfor-
mance. To alleviate this issue, we propose a Weighted Identification
Loss (WIL) that utilizes confidence weighting to mitigate the impact
of incorrect labels. Drawing inspiration from work [44], we utilize
the memory effect of deep neural networks (DNN) to calculate the

correct labeling confidence for each sample by simulating the loss
distribution. The loss distribution of each sample in all training data
is fitted by a two-component Gaussian mixture model, as shown
below:

𝑝 (𝐿𝑖𝑑 |𝜃 ) =
𝐾∑︁
𝑘=1

𝜂𝑘𝜑 (𝐿𝑖𝑑 |𝑘), (5)

where 𝜂𝑘 and 𝜑 (𝐿𝑖𝑑 |𝑘) are the mixture coefficient and probability
density of the 𝑘-th component, respectively. 𝐿𝑖𝑑 is the identification
(cross-entropy) loss. Based on the memory effect of DNN, we can
calculate the correct annotation confidence𝑤𝑘 for each sample 𝑘 :

𝑤𝑘 = 𝑝 (𝑚 |𝐿𝑖𝑑
𝑘
), (6)

where𝑚 is the posterior probability over the small mean value com-
ponent. Therefore, the proposed WIL can be expressed as follows:

𝐿𝑊𝐼𝐿− = − 1
𝐾

𝐾∑︁
𝑘=1

𝑤𝑘𝑙𝑜𝑔(𝑝 (𝑦𝑘 |𝑥𝑘 )), (7)

where 𝑥𝑘 is the input image feature, 𝑦𝑘 is the corresponding label,
and 𝑝 (𝑦𝑘 |𝑥𝑘 ) is the prediction probability that 𝑥𝑘 is recognized as
class 𝑦𝑘 . However, as pointed out in [32], low-confidence pseudo-
labels are largely incorrect, so we set a certain threshold. When
the confidence is below this threshold, the sample is treated as a
negative sample for learning. So, the proposed WIL is as follows:

𝐿𝑊𝐼𝐿 =−
1
𝐾

𝐾∑︁
𝑘=1

(𝑤𝑝
𝑘
𝑙𝑜𝑔(𝑝 (𝑦𝑘 |𝑥𝑘 ))+𝑤𝑛𝑘 𝑙𝑜𝑔(1−𝑝 (𝑦𝑘 |𝑥𝑘 ))), (8)

where {
𝑤
𝑝

𝑘
= 𝑤𝑘 , 𝑤𝑛

𝑘
= 0, 𝑤𝑘 > 𝜏

𝑤
𝑝

𝑘
= 0 , 𝑤𝑛

𝑘
= 1, otherwise

, (9)

𝜏 is a threshold for positive and negative labels, and we set it to
0.1. 𝑤𝑝

𝑘
is the positive learning weight, and 𝑤𝑛

𝑘
is the negative

learning weight. For visible images, since their labels are known
and correct, we set𝑤𝑘 to 1. For infrared images, the proposed WIL
can enable all pseudo-label samples to play a role in the training
process while more accurately evaluating the confidence of pseudo-
labels and weighting the loss function accordingly, reducing the
negative impact of noisy labels on model training.

3.4 Modality Consistency Loss
Despite WIL’s ability to optimize the model’s handling of noisy
labeled samples, the inherent differences between visible and in-
frared modalities continue to hinder the model’s feature extraction
and matching capabilities. Consequently, in this section, we delve
deeper into strategies to mitigate the discrepancies between these
modalities, aiming to enhance the model’s performance in SSVI-
ReID tasks. To alleviate the impact of cross-modality on model
performance, we can reduce the distance between each visible-
infrared image pair with the same identity. Specifically, 𝑁 identities
are randomly sampled from the dataset, and 𝑃 visible images and 𝑃
infrared images are sampled for each identity to form a mini-batch
with 2 × 𝑁 × 𝑃 images. Then, to enhance the similarity between
visible and infrared features, we define the following loss function:

𝐿𝑀𝐶𝐿− =
1
𝑁

1
𝑃

𝑁∑︁
𝑛=1

𝑃∑︁
𝑝=1




𝐹 𝑣𝑛,𝑝 − 𝐹𝑟𝑛,𝑝



 , (10)
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Figure 3: Illustration of the proposed MCL effects. The pro-
posed method effectively reduces the distance between vis-
ible and infrared feature centers of the same identity by
aligning them, thereby alleviating the impact of modality
discrepancy on model performance. Different colors repre-
sent different identities. Different shapes represent different
modality features.

where 𝐹 𝑣𝑛,𝑝 and 𝐹𝑟𝑛,𝑝 represent the normalized feature of the 𝑝-th
visible image and infrared image of 𝑛-th identity respectively in
each mini-batch.

However, due to semi-supervised settings, there are incorrect
infrared pseudo-labels. Paired narrowing of the distance between
visible and infrared images will further reduce the distance between
indistinguishable erroneous infrared images and visible images,
affecting model performance. What’s more, although this paired
loss will reduce the modality gap of cross-modality images, it may
lead the network to focus more on some details, such as posture
and accessories, rather than identity features. Based on this, we
calculate the centers of the visible and infrared features of the same
identity,

𝐶𝑣𝑛 =
1
𝑃

𝑃∑︁
𝑝=1

𝐹 𝑣𝑝 , 𝐶𝑟𝑛 =
1
𝑃

𝑃∑︁
𝑝=1

𝐹𝑟𝑝 , (11)

where 𝐶𝑣𝑛 and 𝐶𝑟𝑛 represent the centers of the visible and infrared
features of the 𝑛-th identity respectively. By narrowing the distance
between their centers, the modality gap between visible and in-
frared modalities can be narrowed, while avoiding the negative
impact of a small amount of incorrectly labeled features. Therefore,
the proposed modality consistency loss can be written as follows:

𝐿𝑀𝐶𝐿 =
1
𝑁

𝑁∑︁
𝑛=1



𝜙 (𝐶𝑣𝑛) − 𝜙 (𝐶𝑟𝑛)

 , (12)

where 𝜙 (·) is a linear kernel, variables are mapped to vectors in
Hilbert Space through kernel functions. We project features onto
Hilbert Space to measure the distance between them.

As shown in Figure 3, it is obvious that the optimization of MCL
would make two modality features similar by bridging the modality
gap by reducing the distance between the visible-infrared feature
centers of the same identity. The proposed modality consistency
loss not only reduces the modality discrepancy between visible and
infrared images, but also narrows the feature gap within the same
modality, encouraging the compact distribution of features with
the same identity within each modality.

3.5 Optimization
The original visible and infrared images are fed together into the
two-stream ResNet50 [14] backbone network, along with the gen-
erated intermediate features, to help optimize the network. In the
proposed MUCG, in addition to the proposed 𝐿𝑊𝐼𝐿 and 𝐿𝑀𝐶𝐿 , we
also combined the triplet loss 𝐿𝑇𝑅𝐼 [16] and the adversarial loss 𝐿𝐷
[37] to jointly optimize the network together.

𝐿𝐵𝐴𝑆𝐸 = 𝐿𝑇𝑅𝐼 + 𝐿𝐷 , (13)

𝐿𝑇𝑅𝐼 is used in VI-ReID tasks, as it helps to minimize intra-class
similarity and maximize inter-class similarity in metric learning. 𝐿𝐷
is an adversarial loss in domain adaptation, assisting the model in
learning modality-invariant features. The total loss of the proposed
MUCG is defined as:

𝐿𝑀𝑈𝐶𝐺 = 𝐿𝐵𝐴𝑆𝐸 + 𝜆𝑊𝐼𝐿𝐿𝑊𝐼𝐿 + 𝜆𝑀𝐶𝐿𝐿𝑀𝐶𝐿, (14)

where 𝜆𝑊𝐼𝐿 and 𝜆𝑀𝐶𝐿 are two trade-off hyper-parameters. Overall,
the proposed method provides a comprehensive solution for SSVI-
ReID, utilizing multiple loss functions and modalities to enhance
the performance of the model.

4 EXPERIMENTS
4.1 Datasets
The proposed method is evaluated on three challenging VI-ReID
datasets, i.e., SYSU-MM01 [40], RegDB [30], and LLCM [55]. The
SYSU-MM01 dataset consists of 491 pedestrians with 287,628 visible
images and 15,792 infrared images, captured by four visible and two
infrared cameras. In addition, there are two searchmodes: all-search
and indoor-search. The RegDB dataset consists of 412 pedestrian
images captured by binocular cameras, each containing 10 thermal
infrared images and 10 visible images. RegDB includes two testing
settings: thermal to visible (IR to VIR) and visible to thermal (VIR
to IR). The LLCM dataset consists of 1,064 identities captured by
nine cameras deployed in low-light environments. Similar to the
RegDB dataset, both the VIS to IR mode and the IR to VIS mode are
used to evaluate the performance of the VI-ReID models.
Evaluation Metrics. The standard Cumulative Matching Charac-
teristics (CMC) and the mean Average Precision (mAP) are used as
the performance evaluation metrics in our experiments. For SYSU-
MM01 and LLCM, we strictly follow the existing methods to select
the gallery set for ten experiments [46, 55] and calculate the average
performance value. For RegDB, We report the average result by
randomly splitting of training and testing set 10 times [45].

4.2 Implementation Details
The proposed method is implemented with PyTorch. The model is
trained for 80 epochs in total. We use ResNet-50 [14] pre-trained
on the ImageNet [7] as the backbone to extract image features.
Following [55, 56], for the SYSU-MM01 dataset, the input images
are resized to 384 × 192. In each mini-batch, we randomly select 4
visible images and 4 infrared images from 6 identities for training.
For the RegDB and LLCM datasets, the input images are resized
to 288 × 144. In each mini-batch, we randomly select 4 visible
images and 4 infrared images from 8 identities for training. In the
training stage, the input images are randomly flipped and erased
with 50% probability [61], while visible images are extra randomly
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Table 1: Comparisons with state-of-the-art methods in different label-efficient VI-ReID on SYSU-MM01 (single-shot) and RegDB,
i.e., fully-supervised VI-ReID (SVI-ReID), unsupervised domain adaptation ReID (UDA-ReID), and semi-supervised VI-ReID
(SSVI-ReID). All methods are measured by CMC (%) and mAP (%).

Settings SYSU-MM01 RegDB
All Search Indoor Search VIS to IR IR to VIS

Type Method Venue R-1 mAP R-1 mAP R-1 mAP R-1 mAP

SVI-ReID

DDAG [48] ECCV’20 54.8 53.0 61.0 68.0 69.3 63.5 68.1 61.8
AGW [49] TPAMI’21 47.5 47.7 54.2 63.0 70.0 66.4 70.5 65.9
NFS [3] CVPR’21 56.9 55.5 62.8 69.8 80.5 72.1 78.0 69.8
MID [19] AAAI’22 60.3 59.4 64.9 70.1 87.5 84.9 84.3 81.4

FMCNet [54] CVPR’22 66.7 62.5 68.2 74.1 89.1 84.4 88.4 83.9
DCLNet [35] MM’22 70.8 65.2 73.5 76.8 81.2 74.3 78.0 70.6
PMT [27] AAAI’23 67.5 65.0 71.7 76.5 84.8 76.6 84.2 75.1

ProtoHPE [53] MM’23 71.9 70.6 77.8 81.3 88.7 83.7 88.7 82.0
DEEN [55] CVPR’23 74.7 71.8 80.3 83.3 91.1 85.1 89.5 83.4
CAL [41] ICCV’23 74.7 71.7 79.7 83.7 94.5 88.7 93.6 87.6
SAAI [9] ICCV’23 75.9 77.0 83.2 88.0 91.1 91.5 92.1 92.0

PartMix [23] CVPR’23 77.8 74.6 81.5 84.4 85.7 82.3 84.9 82.5

UDA-ReID

MEB-Net [51] ECCV’20 7.3 6.9 20.4 11.7 5.6 6.9 14.9 14.0
D-MMD [29] ECCV’20 12.5 10.4 19.0 15.4 2.2 3.7 2.0 3.6
MMT [12] ICLR’20 13.9 8.4 21.0 15.3 5.3 7.1 11.0 12.1

SpCL (UDA) [13] NIPS’20 15.1 6.5 19.5 12.1 3.3 4.3 8.4 9.5
GLT [59] CVPR’21 7.7 9.5 12.1 18.0 2.9 4.5 6.3 7.6

OTLA (UDA) [37] ECCV’22 29.9 27.1 29.8 38.8 32.9 29.7 32.1 28.6
TAA with ResNet-50 [43] TIP’23 40.6 33.3 41.5 47.1 58.5 53.2 57.5 52.0
TAA with AGW [43] TIP’23 48.8 42.4 50.1 56.0 62.2 56.0 63.8 56.5

SSVI-ReID

MAUM-50 [26] CVPR’22 28.8 36.1 - - - - - -
MAUM-100 [26] CVPR’22 38.5 39.2 - - - - - -

OTLA [37] ECCV’22 48.2 43.9 47.4 56.8 49.9 41.8 49.6 42.8
DIPS [33] ICCV’23 58.4 55.6 63.0 70.0 62.3 53.2 61.5 52.7

MUCG (ours) - 68.8 65.9 77.4 81.0 86.9 76.7 83.7 74.1

grayscale with 50% probability. Themodel is optimized by the Adam
optimizer with an initial learning rate of 3.5 × 10−3. The learning
rate is incorporated with a warm-up strategy [28] and decayed 10
times at epoch 20 and epoch 50 [37]. The hyper-parameter 𝜆𝑊𝐼𝐿 is
set to 0.1. The hyper-parameter 𝜆𝑀𝐶𝐿 is set to 5 on the SYSU-MM01
and LLCM datasets, and to 100 on the RegDB dataset.

4.3 Comparison with State-of-the-Art Methods
under Various Settings

We compare our method with three related VI-ReID settings to
demonstrate its effectiveness, i.e., fully-supervised VI-ReID (SVI-
ReID), unsupervised domain adaptation ReID (UDA-ReID), and
semi-supervised VI-ReID (SSVI-ReID). Following [37], for UDA-
ReID methods [12, 13, 29, 59], we use ground-truth labeled visible
data as the source domain and unlabeled infrared data as the target
domain. Following [43], for visible-infrared UDA-ReID methods
[37, 43], we use other labeled visible data as the source domain and
unlabeled VI-ReID data as the target domain. The experimental
results on the SYSU-MM01 and RegDB datasets are reported in
Table 1 and the results on the LLCM dataset are reported in Table 2.
Comparison with Fully-supervised Methods: The proposed
MUCG only with ground-truth visible data outperforms several
fully supervised VI-ReID methods on the SYSU-MM01 and RegDB

Table 2: Comparisons with state-of-the-art methods in dif-
ferent label-efficient VI-ReID on the LLCM dataset, i.e., fully-
supervised VI-ReID (SVI-ReID) and semi-supervised VI-ReID
(SSVI-ReID). All methods are measured by CMC (%) and mAP
(%). Method marked by † denotes re-implementations based
on public code.

Settings VIR to IR IR to VIS
Type Method Venue R-1 mAP R-1 mAP

SVI-ReID

DDAG [48] ECCV’20 48.0 52.3 40.3 48.4
AGW [49] TPAMI’21 51.5 55.3 43.6 51.8
LbA [31] ICCV’21 50.8 55.6 43.8 53.8
CAJ [47] ICCV’21 56.5 59.8 48.8 56.6
MMN [56] MM’21 59.9 62.7 52.5 58.9
DART [44] CVPR’22 60.4 63.2 52.2 59.8
DEEN [55] CVPR’23 62.5 65.8 54.9 62.9

SSVI-ReID OTLA† [37] ECCV’22 44.2 48.2 36.2 42.2
MUCG (ours) - 51.9 55.2 43.8 49.8

datasets and achieves comparative results on the LLCM dataset.
The results indicate that the proposed MUCG can effectively utilize
unlabeled infrared image information to improve model perfor-
mance. However, there remains a certain gap between the proposed
MUCG and the state-of-the-art fully supervised results.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Semi-supervised Visible-Infrared Person Re-identification via Modality Unification and Confidence Guidance ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Influence of each component on the performance of
the proposed MUCG.

Method SYSU-MM01 RegDB
Order DIMG WIL MCL R-1 mAP R-1 mAP
1 43.6 42.5 66.2 59.6
2 ✓ 48.6 47.0 79.1 68.7
3 ✓ ✓ 53.8 50.8 80.8 70.6
4 ✓ 64.4 61.5 73.9 67.8
5 ✓ ✓ 64.9 62.4 84.0 75.5
6 ✓ ✓ ✓ 68.8 65.9 86.9 76.7

Table 4: Influences of different weighted identification loss
and different modality consistency loss.

Method SYSU-MM01 RegDB
R-1 mAP R-1 mAP

𝐿𝑊𝐼𝐿− 67.5 64.0 86.6 75.4
𝐿𝑊𝐼𝐿 68.8 65.9 86.9 76.7
𝐿𝑀𝐶𝐿− 67.0 64.0 74.0 66.8
𝐿𝑀𝐶𝐿 68.8 65.9 86.9 76.7

Comparison with Unsupervised Domain Adaptation Meth-
ods: As we can see, the state-of-the-art UDA-ReID methods [12, 13]
cannot achieve good results under semi-supervised VI-ReID settings
due to the huge modality discrepancy. Although some UDA-ReID
methods use stronger monitoring signals than ours, the accuracy
is far lower than our method. On the other hand, UDA-VI-ReID
[37] and [43] achieve better results than the traditional UDA-ReID
[12] and [13]. This is because the traditional UDA-ReID method
heavily relies on the labeled source domain, making the model less
distinguishable for infrared data. Our MUCG can help the model
alleviate modality gaps and achieve excellent performance. Specif-
ically, compared to TAA [43], mAP gains of 23.5% and 20.7% are
achieved on the SYSU-MM01 and RegDB datasets, respectively.
Comparison with Semi-supervised Methods: In the same ex-
perimental setting (SSVI-ReID), our method outperforms existing
methods [48, 49]. Both OTLA [37] and DIPS [33] focus on han-
dling infrared pseudo-labels, while neglecting the handling of the
modality gap, and their handling of pseudo-labels is not compre-
hensive enough. OTLA focuses on generating pseudo-labels while
neglecting the calibration of noisy labels. DIPS focuses on the cali-
bration of noisy pseudo-labels. Compared with OTLA, our MUCG
achieved 20.6% and 22.0% gains on the SYSU-MM01 dataset, 37.0%
and 34.9% gains on the RegDB dataset, and 7.7% and 7.0% gains on
the LLCM dataset, respectively in Rank-1 and mAP. MAUM-50 and
MAUM-100 use 50 and 100 IR identities respectively to train the
VI-ReID model. Our MUCG does not require IR data annotation
and performs better than MAUM.

4.4 Ablation Studies
The Influence of Different Components: To evaluate the con-
tribution of each component to MUCG, we conduct some ablation
studies on the SYSU-MM01 dataset. The overall settings remain
the same, while only the module under demonstration is added
or removed from MUCG. As shown in Table 3, by incorporating

Table 5: Effectiveness on which stage of ResNet-50 to plug
DIMG into.

Method SYSU-MM01
R-1 R-10 R-20 mAP

DIMG after stage-1 66.0 93.0 96.9 62.9
DIMG after stage-2 66.2 93.2 97.1 63.1
DIMG after stage-3 68.8 94.7 97.8 65.9
DIMG after stage-4 68.0 94.4 97.7 64.4
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Figure 4: Influence of different 𝜆𝑊𝐼𝐿 and 𝜆𝑀𝐶𝐿 on the SYSU-
MM01 dataset.

the proposed DIMG module into the backbone network, we can
effectively enhance the ability to extract discriminative features
and alleviate the visible-infrared modality discrepancy(see 1𝑠𝑡 row
and 2𝑛𝑑 row, 5𝑡ℎ row and 6𝑡ℎ row). The weighted processing of
pseudo-labels by the WIL module greatly alleviates the negative
impact of incorrect pseudo-labels on the model (see 1𝑠𝑡 row and
4𝑡ℎ row). The MCL module can further reduce the modality discrep-
ancy between visible and infrared features, ultimately improving
the performance of the SSVI-ReID task (see 2𝑛𝑑 row and 3𝑟𝑑 row,
4𝑡ℎ row and 5𝑡ℎ row). Compared with the baseline, the proposed
MUCG achieves gains of 25.2% and 23.4% in Rank-1 and mAP on
the SYSU-MM01 dataset, respectively.
The Influence of Different Weighted Identification Loss and
Modality Consistency Loss: To demonstrate that using low-
confidence samples as negative samples can improve the WIL mod-
ule, we conduct experiments to compare the results of using 𝐿𝑊𝐼𝐿−
and 𝐿𝑊𝐼𝐿 . As shown in Table 4, it can be observed that when
optimizing by 𝐿𝑊𝐼𝐿 , the network achieves the best performance,
surpassing the 𝐿𝑊𝐼𝐿− by 1.3% and 1.9% on the SYSU-MM01 dataset,
respectively in Rank-1 and mAP. To demonstrate that using feature
centers of the same identity to measure the distribution of visible
and infrared modalities is more effective than using one-to-one
corresponding visible-infrared features to measure the distribution,
we conduct experiments to compare the results of using 𝐿𝑀𝐶𝐿−
and 𝐿𝑀𝐶𝐿 . As shown in Table 4, it can be observed that the net-
work achieves the best performance when optimizing by 𝐿𝑀𝐶𝐿 ,
surpassing the 𝐿𝑀𝐶𝐿− by 1.8% and 1.9% on the SYSU-MM01 dataset,
respectively in Rank-1 and mAP.

4.5 Further Analysis
The Influence of Plugging DIMG Module at Different Stages
of ResNet-50: The proposed DIMG can be integrated into any stage
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Figure 5: The frequency of intra-class and inter-class distances between the cross-modality features of SYSU-MM01. The
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Figure 6: Comparison of pseudo-label accuracy between the
proposedMUCG and OTLA on the SYSU-MM01 dataset under
the semi-supervised setting.

of the backbone network. In our experiments, we use ResNet-50 as
the backbone. We plug DIMG after different stages of the ResNet-50
to investigate how it affects the overall performance. As shown
in Table 5, DIMG after stage-3 can achieve the best performance,
which indicates that after stage-3, the proposed DIMG can better
transfer visible knowledge to the infrared domain.
The Influence of the Hyper-parameters 𝜆𝑊𝐼𝐿 and 𝜆𝑀𝐶𝐿 : To
evaluate the influence of the two hyper-parameters, we give quan-
titative comparisons and report the results in Figure 4. As we can
see, the best performance is achieved when 𝜆𝑊𝐼𝐿 is set to 0.1 and
𝜆𝑀𝐶𝐿 is set to 5, respectively.
Pseudo-label Analysis: We conduct an analysis experiment to
evaluate the accuracy of pseudo-labels. As shown in Figure 6,
as the training continues, the pseudo-label accuracy of the semi-
supervised setting is iteratively improved. It can achieve an accu-
racy of 83.6% on the SYSU-MM01 dataset, surpassing OTLA’s [37]
54.8%. Compared with OTLA, we penalize noisy labels while im-
proving the model’s discrimination ability for infrared images. As
pseudo-labels are generated through model prediction, enhancing
the performance of the model will significantly boost the accuracy
of these labels.

4.6 Visualization
To investigate the reasons for the effectiveness of MUCG, we visual-
ize inter-class and intra-class distances on the SYSU-MM01 dataset,
as shown in Figure 5. Comparing Figure 5 (b-d) with (a), the means
of inter-class and intra-class distances (i.e., vertical lines) are pushed
away by DIMG, MCL, and WIL, where 𝛿1 < 𝛿2 < 𝛿3 < 𝛿4. Figure

(b) MUCG Distribution(a) Baseline Distribution

Figure 7: The distribution of feature embeddings in the 2D
feature. A total of 20 persons are selected from the test set.
The samples with the same color are from the same person.
The circle represents the visible modality and the triangle
represents the infrared modality.

5 shows that the intra-class distances of MUCG are significantly
smaller compared to the distances of baseline features. Therefore,
MUCG can effectively reduce the distances between visible and in-
frared images. To further validate the effectiveness of the proposed
MUCG, we plot the t-SNE distribution of the MUCG feature repre-
sentations in the 2D feature space for visualization. As shown in
Figure 7 (a) and 7 (b), the proposed MUCG method can significantly
shorten the distance between images corresponding to the same
identity in visible and infrared modalities, and effectively reduce
modality discrepancy.

5 CONCLUSION
In this paper, we investigate the semi-supervised visible-infrared
re-identification (SSVI-ReID) task, which can reduce the cost of
cross-modality annotation. We propose a novel modality-unified
and confidence-guided semi-supervised VI-Reid learning frame-
work. We have also proposed three modules: DIMG, WIL, and MCL.
DIMG can dynamically generate appropriate intermediate modality
features, which helps improve the model’s discrimination ability in
the infrared domain and reduce modality discrepancies between vis-
ible and infrared modalities. In addition, we use the WIL to reduce
the negative impact of incorrect labels on the model, and we use the
MCL to narrow the distance between visible and infrared modality
features. Extensive experiments have shown that MUCG outper-
forms the state-of-the-art semi-supervised methods and some fully
supervised methods.
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