
A Appendix

In the Appendix, we provide details that complement the main text. Specifically, in Appendix A.1 and
A.2, we detail the learning algorithm of HC-EBMs and the learning objective these models optimize.
In Appendix A.3, we prove a necessary conditions for ZeroC to correctly discover the underlying
concept graph. In Appendix A.4, we provide the exact neural architecture used to parameterize
HC-EBMs. In Appendix A.5, we present further explanation on how hierarchical concepts acquired
in one domain may be transferred to different domain, as well as a note on time complexity of
inference. In Appendix A.6 and A.7, we present implementation details on the CADA-VAE baseline
for classifying hierarchical concepts and an analysis of its limited performance. In Appendix A.8, we
similarly present implementation details on the Mask R-CNN + Relation Classification baseline for
acquiring concepts. In Appendix A.9, we detail the generation process of our 2D and 3D grid-world
datasets. In Appendix A.10, we explain some limitations of our current work and propose several
future directions to explore. In Appendix A.11, we discuss our work’s broader social impact. In
Appendix A.12, we present additional experimental results on a CLEVR dataset to demonstrate the
potential of our framework to generalize to more real-world settings. In Appendix A.13, we further
discuss the generality of our framework to different sets of elementary concepts and relations and to
other datasets. In Appendix A.14, we explain the scalability of the framework with respect to task
complexity, inference time complexity, and image complexity. In Appendix A.15, we summarize
ZeroC’s computational complexity and our empirical observations.

A.1 Learning algorithm

Here we give the learning algorithm for HC-EBMs, which can be elementary or hierarchical. A
similar algorithm applies to R-EBMs, by simply replacing the m by m1,m2. Here we omit the
subscript of X,M,C for clarity.

In our experiments, we perform hyperparameter search over the coefficients, to optimize the av-
erage classification accuracy and detection IoU on the validation set that has the same type of
concepts/relations (not validating on the inference tasks in Section 3). For training HC-EBMs, we
use ↵pos-std = 0.1,↵neg = 0.05 and ↵em = 0.1. For training R-EBMs, we use ↵pos-std = 1,↵neg = 0.2
and ↵em = 0. We use learning rate 10�4, number of SGLD steps K = 60 for training and K = 150
for inference. During inference, we use an ensemble size of 64 to perform MAP estimation as in Eq.
(2), and use ensemble size of 256 for detection.

A.2 Learning objective

Here we detail the learning objective for ZeroC and provide explanations, complementing Sec. 2.4.
The Limproved

n is the objective proposed in [12], neglecting the entropy regularization term. In addition,
as explained in Sec. 2.4, we introduce three regularizations to inject the right inductive biases to
address the tasks of zero-shot concept recognition and acquisition:

8
><

>:

L(pos-std)
n = (Varn(E✓(x+

n ,m
+
n , c

+
n)))

1
2

L(em)
n =

���E✓(x
+
n ,m+

n ,c+n)+E✓(x
+
n ,m�

n ,c+n)
2 � E✓(x+

n ,m
(em)
n , c+n)

���
L(neg)
n = �E✓(x+

n ,m
(neg)
n , c+n)

(5)

The superscript “+” denotes positive examples from ground-truth, “�” denotes negative examples
generated from SGLD, “(em)” denotes an empty mask, and “(neg)” denotes algorithmically generated
negative examples. The additional regularizations are L(pos-std)

n for reducing energy variance for
positive examples, L(em)

n for empty-mask regularization, and L(neg)
n which is algorithmically generated

negative examples. Note that unlike standard image-only EBMs, the training needs to take multiple
modalities into account: image x, mask m and concept c. We perform conditional SGLD w.r.t. each
modality to generate negative examples. E.g., when generating negative examples for masks m�

n ,
we provide ground-truth of image and concept label x�

n x+
n , c�n c+n . Thus, (x�

n ,m
�
n , c

�
n) =

(x+
n ,m

�
n , c

+
n) is a negative tuple even though x�

n and c�n are from ground-truth. For each minibatch
we randomly sample the modality the conditional SGLD is performed on (steps 4-21 in Alg. 2).

14

Algorithm 2 Algorithm for learning HC-EBMs
Require: data dist. pD(x,m, c), HC-EBM E✓,
Require: step size �, number of steps K, random mask generator Ua, random embedding generator
Uc, coefficients ↵pos-std, ↵neg, and ↵em.
1: B ?
2: while not converged do
3: (x+

n ,m
+
n , c

+
n) ⇠ pD

// Generate samples from Langevin dynamics:
4: rand ⇠ U [0, 1]
5: if rand 2 [0, 1/4) do
6: (xn, m̃0

n, c
+
n) ⇠ B with 20% probability and m̃0

n ⇠ Ua otherwise
7: m̃K

n SGLDm̃(E✓;xn, m̃0
n, c

+
n)

8: (x�
n ,m

�
n , c

�
n) (xn, m̃K

n , c+n)
9: elseif rand 2 [1/4, 1/2) do
10: (xn,m+

n , c̃
0
n) ⇠ B with 20% probability and c̃0n ⇠ Uc otherwise

11: c̃Kn SGLDc̃(E✓;xn,mn, c̃0n)
12: (x�

n ,m
�
n , c

�
n) (xn,m+

n , c̃
K
n)

13: elseif rand 2 [1/2, 3/4) do
14: (xn, m̃0

n, c̃
0
n) ⇠ B with 20% probability and m̃0

n ⇠ Um, c̃0n ⇠ Uc otherwise
15: m̃K

n , c̃Kn SGLDm̃,c̃(E✓;xn, m̃0
n, c̃

0
n)

16: (x�
n ,m

�
n , c

�
n) (xn, m̃K

n , c̃Kn)
17: else do
18: (x̃n, m̃0

n, c̃
0
n) ⇠ B with 20% probability and x̃0

n ⇠ Ux otherwise
19: x̃K

n SGLDx̃(E✓; x̃0
n,mn, cn)

20: (x̃�
n ,m

�
n , c

�
n) (x̃K

n ,mn, cn)
21: end if

// Optimize objective for E✓ wrt ✓ with Eq. 4:
22: �✓ r✓

1
N

P
n

⇣
L(Improved)
n + ↵pos-stdL

(pos-std)
n + ↵emL(em)

n + ↵negL
(neg)
n

⌘

23: Update ✓ based on �✓ using Adam optimizer
24: B B [(x�

n ,m
�
n , c

�
n)

25: end while
26: return E✓

Algorithm 3 Stochastic Gradient Langevin Dynamics (SGLD)
Require: energy-based model E✓ with concept (relation) embedding c (r)
Require: SGLD target q̃, choose from m̃, c̃, (m̃, c̃) or x
Require: Input x
Require: step size �, number of steps K
1: for k = 1 to K do
2: q̃k q̃k�1 � �

2rqE✓(x; q̃k�1) + ✏k�1, where ✏k ⇠ N(0,�2), �2 = �
3: end for
4: return q̃K

Reducing variance of energy for positive examples. The use of only contrastive divergence in
typical EBM training, i.e. pushing down energy for positive examples and pushing up energy for
negative examples, is insufficient, since the composed HC-EBM needs to discover the masks of
all its constituent models. For example, with 2 objects in the image x+ with concepts c+1 and c+2 ,
respectively, we can use E(x+,m1, c

+
1) +E(x+,m2, c

+
2) according to our composition rule (Def.

2.1) to detect their respective masks. However, L(improved) only encourages (x+,m+
1 , c

+
1) to be lower

than (x+,m�
1 , c

+
1) locally, but it can still be higher than (x+,m�

2 , c
+
2) for a negative mask m�

2 for
concept c+2 . Then the composed energy model will favor discovering m�

2 instead of m+
1 . Thus,

we add L(pos-std) to encourage similar energy for positive examples, thus lower than the energy for
negative examples.

15

x

m1

m2

x

m1

x

m1

x

m1

x

m1

Training concepts: line

Training relations: parallel/perp-mid/perp-edge

Inference: classifying E-shape/F-shape/A-shape, given only x and the each of its concept graph

Inference: detecting E-shape from distractor, given x and E-shape’s concept graph

Inference: detecting F-shape from distractor, given x and F-shape’s concept graph

Inference: detecting A-shape from distractor, given x and A-shape’s concept graph

line line linec line line line line line

perp-edge parallel perp-edge

x

r perp-mid perp-edge perp-edge perp-edge perp-mid

m1

Figure 4: Samples examples from the HD-Letter dataset for training and inference of zero-shot concept
classification and detection. More detail in Appendix A.9. The models are trained with concept of “line” and
relations of “parallel”, “perp-mid”, “perp-edge”. At inference, the models are tasked to perform classification
and pixel-wise detection, on hierarchical concepts (w.r.t. trainnig) of “E-shape”, “F-shape” and “A-shape”.
We see that the concepts in inference is more complex than those in training. E.g. for detecting “Eshape” in
inference, a model will need to compose up to 4 nodes (of “line” concepts) and 6 edges of “parallel”, “perp-mid”,
“perp-edge” relations.

16

Empty-mask regularization. To properly perform parsing (Alg. 1) when there are more energy
terms than actual instances, we require that the redundant masks are empty instead of being some
random negative masks. in Appendix A.3, we prove that the necessary condition for Alg. 1 to
correctly discover the underlying concept graph is that the energy of the empty mask lies between
the energy of positive examples and negative examples. Intuitively, given the image x+

n and concept
c+n , the energy E(x+

n ,m
(em)
n , c+n) with empty mask m(em)

n should be between the positive energy
E(x+

n ,m
+
n , c

+
n) and negative energy E(x+

n ,m
�
n , c

+
n) for the empty mask to appear before random

negative masks appear. Therefore, in L(em)
n , we encourage E(x+

n ,m
(em)
n , c+n) to be near the average of

positive and negative energy. If there is redundant energy terms during parsing, the corresponding
masks will favorably become all-zero instead of some random negative mask.

Algorithmically generated negative examples. To encourage each mask to discover a single
concept instance instead of a partial instance, we randomly corrupt the tuple (x+

n ,m
+
n , c

+
n) and push

up the corresponding energy.

Reason to neglect the entropy regularization. The entropy term in [12] serves to increase the
diversity of the generated examples. And the computation of entropy requires many examples.
This is fine in [12] since the EBM there has the form of E(x) which only needs to generate images
unconditionally, and the entropy can be estimated using all previous generated images x. In our
work, our EBM are E(x,m, c) and E(x,m1,m2, c), and we need to generate the mask conditionally,
e.g. generate mask m conditioned on the image x and label c. The entropy term would need to be
a conditional entropy of m given x and c, where the pool of mask m should be different for each
individual image x and label c. This requires, e.g. for each x, c, we generate over 100 masks to
estimate the entropy which is computationally expensive, while currently we only need to sample 1
mask. Moreover, typically there are limited correct masks for a concept in an image, and encouraging
diversity may not help the model identify the correct mask. In fact, we have tried empirically with
keeping the entropy term and it results in a much worse accuracy, likely due to the above reason.

A.3 Proof for necessary condition for correctly parsing the graph

Here we provide the proof that the energy for an empty mask needs to lie between the positive energy
and negative energy, justifying the introduction of L(em)

n in Eq. (4). Specifically, we prove:

Theorem A.1. Let E+ = E✓(x+
n ,m

+
n , c

+
n) be the “positive energy” for all positive examples of

(x+
n ,m

+
n , c

+
n), and E� = E✓(x�

n ,m
�
n , c

�
n) be the “negative energy” for any negative examples8 of

(x+
n ,m

+
n , c

+
n). Let E(em) be the energy for an (x+

n ,m
(0), c+n) where m(0) = 0 is an empty mask. A

necessary condition for correctly discovering the underlying concept graph with Alg. 1 is that

E+ < E(em) < min(E�, E+ + E(overlap)) (6)

Here E(overlap) is the energy added in Alg. 1 to penalize the concept EBMs to discover overlapping
concepts.

Proof. Suppose that in the image there are in total m � 1 objects, and there are in total n � 1
concept EBMs. We want that only m EBMs have their masks enabled and all the rest n�m masks
are empty (if n � m), i.e. this configuration should have the lowest total energy. In other words
suppose that instead there are k masks that finds the objects (if will not overlap until k > m, and
n� k remains empty or have negative masks, then it should have a higher energy:

m · E+ + bn�mc · E(em)  k · E+ + bk �mc · E(overlap) + (n� k) · E(em) (7)

m · E+ + bn�mc · E(em) < k · E+ + bk �mc · E(overlap) + (n� k) · E� (8)

These two expressions should hold for any k,m.

8Here we make the simplifying assumption that all positive energies have the same value, and all negative
energies have the same value. In fact, the L(pos-std)

n encourages that the positive energies to be similar, to be able
to discover all relevant concepts.

17

Setting k = m in Eq. (8), we have

E(em) < E�

From Eq. (7), if n � k > m, and after re-arranging terms, we have

E(em) < E+ + E(overlap)

From Eq. (7), if n � m > k, and after re-arranging terms, we have

E+ < E(em)

Combining the above three conditions, we have

E+ < E(em) < min(E�, E+ + E(overlap)) (9)
which concludes the proof.

This justifies the L(em)
n =

���E✓(x
+
n ,m+

n ,c+n)+E✓(x
+
n ,m�

n ,c+n)
2 � E✓(x+

n ,m
(em)
n , c+n)

��� = | 12 (E
+ + E�) �

E(em)| in Eq. (4), where it encourages that the E(em) stays between E+ and E�, and penalizes the
deviation of E(em) to 1

2 (E
+ + E�).

A.4 Network architecture of ZeroC

For all experiments in the paper, we use the same architecture of concept and relation EBMs, with
the only difference being the number of input channels (10 for 2D images and 3 for 3D images). We
provide in Table 5 the architecture of a HC-EBM, which consists of several ResBlocks (Table 3).
Adding the residual to the final output is denoted as Skip(). When downsampling is performed, the
residual is the output of two fully-connected layers applied to a flattened input image; otherwise, the
residual is the input image. Chunk() splits an input vector into two equal-sized halves and expands
both halves along a 2d grid with the same dimensions as the input image. The C_Embed() architecture
is detailed in Table 4, with c_dim denoting the dimension of the concept embedding.

Table 3: ResBlock(x, c) Architecture

Type
c_embed_1, c_embed_2 Chunk(C_Embed(c))

Concat(x, c_embed_1)
3⇥ 3 Conv2d, 64, Spectral Norm

Activation()
Concat(out, c_embed_2)

3⇥ 3 Conv2d, 64, Spectral Norm
Activation()

Skip()

Table 4: C_Embed Architecture

Type
Dense(c_dim, 4· c_dim)

LeakyRelu(0.2)
Dense(4· c_dim, 4· c_dim)

LeakyRelu(0.2)
Dense(4· c_dim, 4)

A.5 Acquiring Hierarchical Concepts

We present details about the algorithm for acquiring hierarchical concepts across models and domains.
The algorithm works as follows (see also Alg. 4)

We first parse the image by decomposing it x1 into a graph G1 of concepts and relations previously
learned by HC-EBM1 and R-EBM1. Next, we copy G1 to G2 in domain 2. Finally, we compose a
new HC-EBM2(c) using G2, HC-EBM2 and R-EBM2 (Hierarchical Composition Rule, Def. 2.1).
The most complex step of this algorithm is parsing, the first step, which is described in detail in the
paper (see Alg. 1).

Note on time complexity. Note that in Alg. 1, although the relation EBM needs to perform classifi-
cation for each pair of discovered objects, which scales as n2 where n is the number of objects, the

18

Table 5: HC-EBM EX,M,C(x,m, c) Architecture
Type, # Channels Activation

Concat(x,m) (-)
3⇥ 3 Conv2d, 128 LeakyRelu(0.01)

ResBlock (Downsample), 128 LeakyRelu(0.01)
ResBlock, 128 LeakyRelu(0.01)

ResBlock (Downsample), 256 LeakyRelu(0.01)
ResBlock, 256 LeakyRelu(0.01)

ResBlock (Downsample), 256 LeakyRelu(0.01)
ResBlock, 256 LeakyRelu(0.01)

Global Average Pooling (-)
Dense()! 1 (-)

Algorithm 4 Acquiring Hierarchical Concepts Between Models and Domains
Require: HC-EBM1 and R-EBM1 in domain 1, HC-EBM2 and R-EBM2 in domain 2, with
prior-learned concepts or relations in their respective domain.
Require: Image x1 in domain 1, containing unseen hierarchical concept c.
1: G1 Parse(x1;HC-EBM1,R-EBM1) // Alg. 1
2: G2

channel ���� G1 // send G1 to domain 2
3: HC-EBM2(c) Compose(G2; HC-EBM2, R-EBM2)

// Using Hierarchical Composition Rule (Def. 2.1)

process is actually very fast, since we can batch all the pairs into a single minibatch, and can get the
classification result with a single SGLD run, which has the same runtime as doing inference with a
relation EBM on a single image.

A.6 Implementation Details for CADA-VAE

CADA-VAE [8] learns a common space latent space for image features and class embeddings,
by aligning modality specific variational autoencoders. Alignment is encouraged by adding two
regularization terms to the standard VAE loss. This enables discriminative latent features to be
sampled for unseen classes and a softmax classifier to be trained on top of such features.

To train VAE’s in encoding and decoding features in the image modality, we require a pretrained
backbone specific to our domain. We obtain this pretrained model by training train a network for
predicting object masks and either the concept or relation labels in a self-supervised manner [26].
Similar to the original work, we use a ResNet-12 as the backbone, which consists of 3 residual blocks
of 64, 160, 320 filters, each with 3⇥ 3 convolutions. A 2⇥ 2 max pooling operation is applied after
each of the first 3 blocks. Following the blocks, we have two mask prediction heads that have the
same architecture. The architecture is symmetric to the ResNet-12 backbone, with 3 blocks of 320,
160, 64 filters, each with 3 ⇥ 3 convolutions and an upsampling layer. For classification, a global
average pooling is applied after the last block. Additionally, a 4 neuron fully-connected layer is added
after the final classification layer. After training the network end-to-end, we use the ResNet backbone
as a pretrained feature extractor.

Class embeddings for the Hierarchical Concept corpus consist of slots for each atomic concept and
relation. The number of slots per concept / relation is equal to the maximum number of times it can
appear in a hierarchical concept. A single slot assignment (setting the value of a slot from 0 to 1)
corresponds to an instance of the slot’s concept / relation. Multiple slots are assigned if more than
one instance of the matching concept / relation is found in a class. During training, where the ground
truth label exists for only one concept / relation instance, we randomly sample at each minibatch to
determine which of the ground truth slot to assign. In this way, the class embedding VAE should
learn encodings that are invariant to permutations of assigned and non-assigned slots.

19

!"#$"

!"#$"

!"%$

&'()#

&'()#

*+
*,

*-

yes

no

no

Domain 1:
2D,10 color channels

Domain 2:
3D, RGB

ZeroC1 ZeroC2

Figure 5: Acquiring Hierarchical concepts between models and domains at inference time. ZeroC1 sees the
image in domain 1. It first parses it into a structure graph using Alg. 1, then sends the graph via a communication
channel to an independently trained ZeroC2 in domain 2. ZeroC2 can then directly classify the images in its
domain.

A.7 Investigation of CADA-VAE performance on HD-Letter dataset

In Table 1, we see that the classification accuracy of CADA-VAE is 18.0%, even lower than the
“Statistics” method of 46.5%. Here we investigate the reason.

Firstly, we want to see if the image encoder in CADA-VAE has enough power to differentiate the
different novel concept classes (“Eshape”, “Fshape” or “Ashape”) during inference. We perform
t-SNE on the embeddings of test images, with each color denoting a different class (the labels are
unseen to the algorithm). Fig. 6 shows the visualization. We see that the encoder is able to roughly
separate the unseen images into different clusters that roughly correspond to different unseen concept
classes. This shows that the image encoder of CADA-VAE has enough power and is not the reason
for its low performance in HD-Letter. The reason then lies in the distribution shift of the class
embedding, which is a multi-hot vector indicating the presence of individual concepts (“line”) or
relations (“parallel”, “perp-mid”, “perp-edge”). During training, the class encoder has only seen
the class embeddings where only one concept or relation is present. However, during inference, a
hierarchical concept (e.g. “Eshape”) may have up to 4 concept instances (e.g. 4 lines) and 6 relations,
thus the class embedding will have many hots activated. This constitutes a large distribution shift for
the class embedding, so that CADA-VAE does not know how to interpret it. Note that this cannot be
easily fixed with alternative class embedding schemes. No matter how we specify features for the
classes in training and inference, the nature of our challenging HD-Letter dataset will result in a large
distribution shift for the class embedding (up to 4 concept instance + 6 relation in inference vs. 1
concept/ 1 relation in training).

This shows the limitation of CADA-VAE and similar zero-shot learning methods, where they are
not equipped to handle zero-shot learning of hierarchical concepts that are more complex due to
the composition of learned concepts and relations. In contrast, our ZeroC naturally supports such
composition into concepts with more complex structure, which enables zero-shot recognition of
hierarchical concepts at inference time.

A.8 Implementation Details for Mask R-CNN + Relation Classification

Firstly, one may note that the performance of Mask R-CNN’s graph parsing accuracy (35.5%) is
seemingly low. In fact, this performance is very good. Note that we use the stringent metric of
isomorphism accuracy: the acc is 1 only if the inferred graph is isomorphic to ground-truth, and
0 otherwise. This metric presents a major challenge even for “simple” shapes. In the example of
parsing the graph for “E” shape with 4 nodes (lines), 6 edges (their relations), even if each node and
edge classification acc is 0.9, the isomorphism acc is 0.910 = 0.349, and 0.8 individual acc would

20

Figure 6: t-SNE visualization for the embedding of test images consisting of hierarchical concepts of “Eshape”,
“Fshape” or “Ashape”. We see that the image encoder is able to roughly cluster the unseen concepts into different
clusters.

result in 0.810 = 0.107. Thus to reach 35.5% isomorphism accuracy, a model has to have very high
accuracy for classifying individual concepts and relations.

We perform intensive hyperparameter tuning for the baseline Mask R-CNN + relation classification.
We first pretrain a Mask R-CNN [13] on the Hierarchical Concept corpus to minimize object
segmentation and object classification losses. We then fix the Mask R-CNN weights and use the
pretrained networks to output all objects in an image. Given the Mask R-CNN output for an image,
the relation head is trained to minimize the relation classification loss with respect to a ground truth
pair of objects and their corresponding relation.

Mask R-CNN: Instance segmentation is the task of precisely detecting objects through bounding-box
localization and precisely segmenting each object instance while correctly predicting its corresponding
class. We make use of a popular choice for instance segmentation, Mask R-CNN, which consists of a
branch for predicting segmentation masks within Region of Interests (RoI) in parallel with a branch
for classification and bounding box regression. The architecture for the segmentation branch consists
of four convolutional upsampling blocks, each with 256 filters.

A vanilla Mask R-CNN architecture with a ResNet50 and Feature Proposal Network (FPN) [27]
backbone achieves strong object localization and segmentation results on the COCO dataset [28]
when trained from scratch. As COCO is much larger in scale, in terms of image resolution, number
of object instances, and number of object classes, we modify the vanilla architecture to suit the
Hierarchical Concept corpus’s smaller image size. We use a ResNet18-FPN backbone for feature
extraction, with the FPN having anchor boxes with side lengths of 4, 8, 16, 32. During training, we
consider the top 2000 object proposals and reduce these to the top 1000 through NMS with a IoU
threshold of 0.7. During inference, the top 20 object proposals are kept before and after NMS. We
train on one GPU with a batch size of 2 for 176k iterations (equivalent to 8 epochs), with a learning
rate of 0.0025.

To tune the standard Mask R-CNN architecture that works on much larger image resolutions, we
decreased the size of the backbone ResNet, decreased the size of anchor boxes, and increased the
scales for the RoIPooler relative to the input image. We found that decreasing the number of proposals
before NMS did not improve performance, nor did decreasing the size of the mask upsampling head.
We also tuned the learning rate across values in the set {0.005, 0.001, 0.0025, 0.05}, with 0.0025
yielding the best performance. Our Mask R-CNN performance for detecting lines on a subset of
1000 training images is 97.4 mIoU. We found that this performance is not significantly affected by
increases in learning rate warmup length or by increases in the number of iterations before learning
rate decay.

Relation Head: The architecture of the relation classifier consists of three residual blocks, followed
by a fully-connected network with two hidden layer. Each residual block consists of 3x3 convolutions
with spectral normalization, followed by downsampling. The relation head predicts the relation
between all pairs of object masks outputted by the Mask R-CNN. To train the relation head, we obtain

21

Concept Description
line an object represents a solid line

rectangle an object represents a hollow rectangle
rectangleSolid an object represents a solid rectangle

L-shape an object represents a shape that is “L” like
C-shape an object represents a shape that is “C” like
A-shape an object represents a shape that is “A” like
E-shape an object represents a shape that is “E” like
T-shape an object represents a shape that is “T” like

rand-Shape an object that is randomly constructed
Relation Description

inside object x is inside of object y
enclose objects x is enclosed by object y
parallel objects x is parallel with object y

perp-mid object x is perpendicular with object y,
and touch object y in its middle.

perp-edge object x is perpendicular with object y,
and touch object y in its edge.

non-overlap objects x and y are not overlapped in
both x and y axes.

Table 6: Supported primitive concepts and relations in our Hierarchical-Concept corpus.

the predicted object masks that are closest (in terms of IoU) to the pair of ground truth masks and
compute the loss on the predicted relation for the corresponding Mask R-CNN object masks. We
tuned the learning rate of the relation head across values in the set {5e-5, 2.5e-5, 1e-5} and found
that 2.5e-5 gave the best performance. We found that fixing the Mask R-CNN weights was essential
to stable training of the relation head. The accuracy of our relation classifier is 94.5% on the training
set.

A.9 The Hierarchical Concept Corpus

In this section, we describe our Hierarchical-Concept corpus for our experiments and how it is
generated. Our data generation framework is designed for generating large-scale datasets for concept
and relation learning in a grid-world setting. Specifically, it samples pixel-level arbitrary objects, and
places on to grid-world with predefined relations between objects. The task format is inspired by the
Abstract Reasoning Corpus (ARC) proposed by [9].

Figure 4 to Figure 8 shows examples for concepts and relations used in our experiments, for the
HD-Letter and HD-Concept datasets, and a dataset of 2D to 3D concept transfer that tests acquiring
hierarchical concepts between domains at inference time. For both HD-Letter and HD-Concept, there
are 44000 examples of concepts, split 10:1 for train and validation, and 44000 examples for relations,
split 10:1 for train and validation. At inference time for hierarchical concepts, the classification task
has 200 examples, and detection task has 600 examples, 200 for each of the hierarchical concepts.
The 2D to 3D transfer dataset has 200 tasks. We define our primitive objects and relations in Table 6.

To generate the datasets9, our engine consists of the following components:

Concept (Object) As shown in Table 6, we define several shape primitives such as line, reactangle,
L-shape, and random shape. Our data generation framework allows configurations such as color,
width, height and orientation. We allow nine different colors, and four different orientations at
maximum. In addition, we have composite objects as well. For instance, the “Lshape” consists of two
lines with a fixed relation between them. We evaluate our models with these composite objects during
inference time to evaluate their performance on recognizing composite objects based on primitive
concepts.

9The code for generating the dataset can be found at project website http://snap.stanford.edu/zeroc/.

22

http://snap.stanford.edu/zeroc/

Relation As shown in Table 6, we define several relation primitives such as “inside”, “enclose”,
and “parallel”. We use these relations to define the spatial relations between objects. For example,
“inside” means one object is inside of the other object. A pair of objects may formulate multiple
relations between them. Likewise, a pair of objects may be unrelated as well giving there is no
primitive relation between them.

Canvas Each of our examples in the corpus consists a canvas, where objects are positioned with
relations between them. Our canvas is a n⇥ n grid world, where each pixel in the grid world is a
colored pixel. Our data generation framework can place objects onto the canvas with desired relations.
For example, our framework can generate two objects where one of them is inside of the other. In
the process, our framework samples a rectangle, and sample another object to be placed inside the
rectangle. In the meantime, the framework allows multiple object pairs to be defined when placing
objects. In addition, the framework allows objects to be specified with pre-defined attributes including
shape, color, width, height and orientation. We also allow other configurations such as whether we
allow objects to touch each other, and whether objects have unified color.

Generation Process and Artifacts To generate training and evaluation sets for our experiments,
we specify configurations of the canvas and repeatedly randomly generate canvas till we have enough
examples. In addition, we allow distractor sampling, where we specify the number and the shape of
distractors. Then, our data generation framework places distractors at random on the canvas. Our
framework parses the canvas and the relations between objects after all objects are placed onto the
canvas. Notice that the set of the relations between objects after the placement is a superset of the
pre-defined configuration when creating the canvas. For example, if we sample two objects sharing
the same color along with another random distractor. The relation between the distractor and one
of the object can be free-formed. We disallow non-flatten configuration when creating canvas. For
example, if there are three objects to be placed, we disallow circular relations specified between
them (i.e., there exist a relation between each two objects). We disallow two objects touching each
other share the same color. To generate 3D images, we first generate the 2D images, and then use a
standard tool of povray10 to build 3D scenes based on the contour of the 2D image. We make sure
that in the 2D to 3D transfer dataset, there is no overlap between the generated 2D images and the
images used to generate 3D images by using a distinct seed.

Design of dataset HD-Concept The main goal of this dataset is to test whether our method can
detect different relational graph structure given the same number of concept nodes. Concretely,
given 2 “rectangle” concept instances and one “E-shape” instance, there are limited ways to form a
compositional concept with different relational graph structures: Concept1 is where “E-shape” is
not inside any of the “rectangle”. Concept2 is “E-shape” and “rectangle”1 are both inside the other
“rectangle”2, and “E-shape” not inside “rectangle”1. Concept3 is that “Eshape” is enclosed by one
“rectangle” which is also enclosed by another “rectangle”. All three compositional concepts have the
same number of constituent concepts but different relation graphs.

Example images datasets are shown in Fig. 4, Fig. 7 and Fig. 8.

A.10 Limitations of current work

In this work, we have demonstrated the zero-shot concept recognition and acquisition capability
of ZeroC, with experiments in a grid-world domain. We focus on grid-world since it provides a
systematic and challenging testbed to evaluate the above two capabilities of models, similar to many
other pioneering works that evaluate their models in grid-world that captures the essence of the
problem (e.g. RL in early days [29], PrediNet [3], program synthesis evaluated with Karel dataset
[30], BabyAI [31], Machine Learning Theory of Mind [32], etc.) Nevertheless, the fact that our main
experiment is in grid-world is a limitation of current work. In the main Sec 3.2, we train ZeroC2 with
3D images, and the fact that ZeroC2 is able to zero-shot classify and detect in its domain demonstrate
that ZeroC is able to handle more complex 3D images. Moreover, in Appendix A.12, we perform
additional zero-shot classification with a variant of CLEVR, which shows that our ZeroC is able to
handle more realistic 3D images, and out-perform strong baseline of CADA-VAE.

10
https://github.com/POV-Ray/povray/tree/latest-stable

23

https://github.com/POV-Ray/povray/tree/latest-stable

Another limitation of current work is that we have only considered one hierarchy of composition,
without considering more hierarchies. Although more hierarchies is in principle possible with the
ZeroC method, it is out of scope of this work, since in this work we focus on demonstrating whether
zero-shot recognition and acquisition of concepts are possible with our model. It is an exciting future
work to build on current work, to explore zero-shot recognition with multiple levels of hierarchies.

Our ZeroC architecture naturally supports continued expansion or compression of the EBM pool, as
newly learned compositional concept EBMs can be dynamically added to the pool. Independently
trained EBMs on new concepts/relations can also be added to the pool and composed together with
existing EBMs. This is an exciting future direction, but is out-of-scope of the present paper, since
here we focus on proposing the framework and demonstrate the zero-shot recognition and acquisition
capability of ZeroC.

A.11 Broader social impact

Here we discuss the broader social impact of our work, including its potential positive and negative
aspects. On the positive side, the capability of ZeroC enables will improve the generalization
capability of deep learning models, allowing them to acquire concepts and address more diverse tasks
at inference time. This provides a possible method to address the long-standing problem that deep
learning models has limited generalization capability and mainly learn via examples. Our ZeroC
also improves interpretability of models, since we can know exactly the structure of the concepts the
model learns, allowing us to know how the model makes such decision.

We see no obvious negative social impact of this work. In its current state, ZeroC’s capability is still
very limited, not nearly addressing any of the tasks as good as human level. It will only improve the
interpretability and versatility of the models, which can be used to better address challenging tasks in
society.

A.12 Additional experiments

Here we perform additional experiments with a CLEVR dataset to explore whether ZeroC can
generalize to more realistic images. The models are trained with basic concepts of “Red”, “Cube”,
“Large” and relations of “SameColor”, “SameShape”, “SameSize” (See Fig. 9), where the models are
provided with tuples of (image, mask(s), label) for concept or relation. During inference, given
only symbolic specification of three hierarchical concepts, the model needs to zero-shot classify
whether an image contains an instance of such concept. For example, HConcept1 is defined as three
objects where one object is red, the second object has the same color as the first object and the third
object has the same shape as the second object. The other two hierarchical concepts have a similar
structure of specification. We used 100K images for training and 200 for inference (evaluation).
The table below shows the results of our model and comparison with CADA-VAE and the statistics
baseline. We see that ZeroC achieves significantly higher performance on the task than the baselines,
and able to zero-shot classify more realistic images.

Model Classification acc (%)
Statistics 33.4

CADA-VAE 45.3
ZeroC (ours) 56.0

A.13 Generality of ZeroC approach

The ZeroC framework is quite general. The generality lies in the following two folds:

Generality of learning the elementary concepts and relations The EBMs in the ZeroC frame-
work can learn general primitives as long as labeled data is provided to demonstrate the concept or
the relation, even if that concept or relation is a range that contains some intrinsic variation. For
example, to learn the “acute angle” relation between two lines (with varying angles), ZeroC only
needs a dataset that contains many (image, mask1, mask2, “accute-angle”) tuples where the mask1
and mask2 identify the two lines in the image that form an acute angle, with different examples

24

containing different angles. In other words, as long as the dataset contains enough data that identifies
a concept/relation in a certain range, the ZeroC can learn such primitives. This is also shown in the
HD-Concept dataset in Section 3.1, where “inside”, “outside”, “non-overlap” relation primitives are
learned, and each relation has intrinsic variation. For example, the two masks for “inside” relation
can have different positions, relative positions, and sizes.

Generality to different datasets and scenarios Our architecture is general to learn diverse con-
cepts and relations. For all our experiments, we use the same network architecture (Appendix A.4), for
the (1) dataset HD-Letter, (2) dataset HD-Concept (that contains more complex concepts and relations
e.g. “rectangles”, “Eshape”, “inside”, “enclose”), (3) Section 3.2 “Acquiring Novel Hierarchical
Concepts Across Domains”, and (4) CLEVR experiment in Appendix A.12. This shows that the
algorithm is very general, not tuned toward specific concepts or scenarios. The architectures only
differ in the number of input channels (since the 2D images have 10 channels and 3D images have 3
RGB channels). For future work, we can also experiment with using a single model to learn concepts
or relations across datasets, which is out-of-scope of current work.

A.14 Scalability of ZeroC

Scalability to task complexity We have demonstrated that even for larger images like the 3D
image (32x32x3) in Section 3.2 and CLEVR in Appendix A.12 (64x64x3), our approach achieves
reasonable accuracy, significantly outperforming baselines. This shows the scalability of our methods
to larger images and realistic use cases. In addition, downsampling the images to lower resolution
can be performed to reduce the complexity of the inference and learning.

Scalability in terms of time complexity In terms of time complexity, the SGLD inference algo-
rithm (Alg. 3) uses a fixed number of iteration steps K. We find that K = 60 is enough for reasonable
detection accuracy for larger images. For larger images, a single step of SGLD make take slightly
longer to run due to the larger image size. For parsing hierarchical concept from image (Alg. 1), the
detection of all concept instances can be obtained for a single SGLD run, and for the classification of
relations, we can concatenate all pairs of concept masks into a single minibatch and feed into the
relation-EBM, which only requires one relation-EBM forward run, which is instant. Thus we see
that the time complexity is fairly constant for increasing number of objects in the images and larger
image size, measured in terms of a single forward or SGLD step.

Potential application to real world images In order to scale to recognizing real-world objects, the
ZeroC architecture and pipeline will be able to do that in principle. The main bottleneck is presented
by labeled data, as we need to have detailed labels for many elementary concepts and relations that
constitute real world objects. For example, the CUB-200-2011 dataset [33] provides annotations for
elementary concepts for birds, e.g. beak, belly, tail, etc. This dataset lacks relation annotations, so is
unsuitable for our pipeline. A suitable dataset for our pipeline can be like an augmented dataset to
the above CUB-200-2011 dataset that also has relation annotations like “connect-to”, “up”, “down”,
“extend”, etc. With such annotations, we can learn both concept EBMs and relation EBMs and
compose together to recognize compositional concepts like different species of birds.

A.15 Computational complexity of ZeroC

The computational complexity of the inference is detailed in Appendix A.14. In summary, the
run time remains fairly constant increasing number of objects in the images and larger image size,
measured in terms of a single forward or SGLD step. Since learning take the inference as an inner
loop, it also remains fairly constant for the same model structure. For increasing EBM model size,
the increased number of parameters will definitely require more time to train, as is typical for deep
learning models. Empirically, we observe that for the same model architecture, it takes similar
number of epochs to learn reasonably for different datasets.

25

Training concepts: rectangle/E-shape

Inference: Detecting Concept3 from distractor, given x and concept3’s concept graph

Inference: Detecting Concept2 from distractor, given x and concept2’s concept graph

Training relations: non-overlap/inside/enclose

Inference: Classifying Concept1/Concept2/Concept3, given only x and the each of its concept graph

Inference: Detecting Concept1 from distractor, given x and concept1’s concept graph

x

m1

x

m1

m2

x

m1

x

m1

x

m1

x

m1

E-shape E-shape E-shape E-shape E-shape rectangle rectangle E-shape

non-overlap non-overlap inside non-overlap inside inside inside non-overlap

c

r

concept3 concept2 concept1 concept3 concept3 concept3 concept2 concept2c

Figure 7: Samples examples from the HD-Concept dataset for training and inference. The models are trained
with concept of “E-shape” and “rectangle”, and relations of “non-overlap”, “inside”, “enclose” (inverse in
“inside”, if exchanging two masks). At inference, the models are tasked to perform classification and pixel-wise
detection, on hierarchical concepts (w.r.t. training) of “Concept1”, “Concept2” and “Concept3” (see the bottom
3 panel). In this dataset, during training relation, the pair of objects does not appear in inference, testing if the
relation can generalize to new objects. 26

2D
 c

on
ce

pt
3D

 im
ag

e
2D

 c
on

ce
pt

3D
 im

ag
e

2D
 c

on
ce

pt
3D

 im
ag

e
2D

 c
on

ce
pt

3D
 im

ag
e

2D
 c

on
ce

pt
3D

 im
ag

e
2D

 c
on

ce
pt

3D
 im

ag
e

2D
 c

on
ce

pt
3D

 im
ag

e
2D

 c
on

ce
pt

3D
 im

ag
e

task#1 task#2

task#3 task#4

task#5 task#6

task#7 task#8

Figure 8: Examples from our Hierarchical-Concept corpus for experiments of acquiring hierarchical concepts
between domains. In each panel, the upper three images demonstrate the concepts in domain 1, and after
communicating high-level knowledge, independently trained models in domain 2 need to perform classification
and detection on its own domain.

27

Red: Cube: Large:

SameColor: SameShape: SameSize:tra
in

In
fe
re
nc
e G
iv

en
C

la
ss

ify

?

(gt: HConcept2)

Hconcept2 =
Large SameSize

SameColor

HConcept1 =
Red

SameShape
SameColor

Hconcept3 =
Cube

SameSize
SameShape

?

(gt: HConcept1) (gt: HConcept3)

?

Figure 9: Zero-shot classification task based on CLEVR. Here during training, the models are given only tuples
of (image, mask(s), label) for elementary concepts (Red, Cube, Large) or elementary relations (SameColor,
SameShape, SameSize). In inference, the models are asked to perform zero-shot classification of a hierarchical
concept. For example, in lower left figure, the models are asked to classify whether an image contains HConcept1
(True if the image contains three objects where one object is red, the second object has the same color as the
first object and the third object has the same shape as the second object, and False otherwise.) HConcept2 and
HConcept3 have similar form of interpretation. This is a challenging task since in inference, the concepts to
classify are more complicated than that in training.

28

	Introduction
	Method
	An Overview of ZeroC Architecture
	Zero-shot Concept Recognition and Acquisition
	Zero-shot Concept Acquisition at Inference Time
	Learning

	Experiments
	Zero-shot Classification and Detection of Novel Concepts
	Acquiring Novel Hierarchical Concepts Across Domains

	Related Work
	Conclusion
	Appendix
	Learning algorithm
	Learning objective
	Proof for necessary condition for correctly parsing the graph
	Network architecture of ZeroC
	Acquiring Hierarchical Concepts
	Implementation Details for CADA-VAE
	Investigation of CADA-VAE performance on HD-Letter dataset
	Implementation Details for Mask R-CNN + Relation Classification
	The Hierarchical Concept Corpus
	Limitations of current work
	Broader social impact
	Additional experiments
	Generality of ZeroC approach
	Scalability of ZeroC
	Computational complexity of ZeroC

