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ABSTRACT

In few-shot recognition, a classifier that has been trained on one set of classes is
required to rapidly adapt and generalize to a disjoint, novel set of classes. To that
end, recent studies have shown the efficacy of fine-tuning with carefully-crafted
adaptation architectures. However this raises the question of: How can one design
the optimal adaptation strategy? In this paper, we study this question through the
lens of neural architecture search (NAS). Given a pre-trained neural network, our
algorithm discovers the optimal arrangement of adapters, which layers to keep
frozen, and which to fine-tune. We demonstrate the generality of our NAS method
by applying it to both residual networks and vision transformers and report state-
of-the-art performance on Meta-Dataset and Meta-Album.

1 INTRODUCTION

Few-shot recognition (Lake et al., 2011; Miller et al., 2000; Wang et al., 2020b) aims to learn novel
concepts from few examples, often by rapid adaptation of a model trained on a disjoint set of la-
bels. Many solutions adopt a meta-learning perspective (Finn et al., 2017; Lee et al., 2019; Ravi &
Larochelle, 2017; Snell et al., 2017), or train a powerful feature extractor on the source classes (Tian
et al., 2020; Wang et al., 2019) – both of which assume that the training and testing classes are drawn
from the same underlying distribution e.g., written characters (Lake et al., 2015), or ImageNet cat-
egories (Vinyals et al., 2016). Later work considers a more realistic and challenging setting of
few-shot adaptation not only across visual categories, but also across diverse visual domains (Tri-
antafillou et al., 2020; Ullah et al., 2022). In this cross-domain problem variant, customising the
feature extractor for novel domains is important, and several studies address this through dynamic
feature extractors (Bateni et al., 2020; Requeima et al., 2019) or ensembles of features (Dvornik
et al., 2020a; Li et al., 2021; Liu et al., 2021a). Another group of studies employ heuristically-
motivated fine-tuning strategies for adaptation (Dhillon et al., 2020; Hu et al., 2022; Li et al., 2022;
Xu et al., 2022). Thus, an important question that arises from previous work is: How can one design
the optimal adaptation strategy? In this paper, we take a step towards answering this question.

Fine-tuning approaches to few-shot adaptation must manage a trade-off between adapting a large
or small number of parameters. The former allows for better adaptation, but risks overfitting on
a few-shot training set. The latter reduces the risk of overfitting, but limits the capacity for adap-
tation to novel categories and domains. The recent PMF (Hu et al., 2022) manages this trade-off
through careful tuning of learning rates while fine-tuning the entire feature extractor. TSA (Li et al.,
2022) and ETT (Xu et al., 2022) manage it by freezing the feature extractor weights, and insert-
ing some parameter-efficient adaptation modules, lightweight enough to be trained in a few-shot
manner. FLUTE (Triantafillou et al., 2021) manages it through selective fine-tuning of a tiny set
of FILM (Perez et al., 2018) parameters, while keeping most of them fixed. Despite this progress,
the best way to manage the adaptation/generalisation trade-off in fine-tuning approaches to few-shot
learning (FSL) is still an open question. For example, which layers should be fine-tuned? What
kind of adapters should be inserted, and where? While PMF, TSA, ETT, FLUTE, and others provide
some intuitive recommendations, we propose a more systematic approach to answer these questions.

In this paper, we advance the adaptation-based paradigm for FSL by developing a neural architecture
search (NAS) algorithm to find the optimal adaptation architecture. Given an initial pre-trained
feature extractor, our NAS determines the subset of the architecture that should be fine-tuned, as
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well as the subset of layers where adaptation modules should be inserted. We draw inspiration from
recent work in NAS (Cai et al., 2020; Chen et al., 2021; Chu et al., 2021; Guo et al., 2020; Zhang
et al., 2022) that proposes revised versions of the stochastic Single-Path One-Shot (SPOS) (Guo
et al., 2020) weight-sharing strategy. Specifically, given a pre-trained ResNet (He et al., 2016) or
Vision Transformer (ViT) (Dosovitskiy et al., 2021), we consider a search space defined by the
inclusion or non-inclusion of task-specific adapters per layer, and the freezing or fine-tuning of
learnable parameters per layer. Based on this search space, we construct a supernet (Brock et al.,
2018) that we train by sampling a random path in each forward pass (Guo et al., 2020). Our supernet
architecture is illustrated schematically in Figure 1b, where the aforementioned decisions are drawn
as decision nodes (⋄), and possible paths are marked in dotted lines.

While supernet training remains somewhat similar to standard NAS, the subsequent search poses
new challenges in the FSL setting. Specifically, as cross-domain FSL considers novel do-
mains/datasets at test time, the mainstream NAS paradigm of searching for a single neural archi-
tecture (Cai et al., 2019; Li et al., 2020b; Liu et al., 2019; Wang et al., 2021) is sub-optimal, as
diverse downstream datasets likely prefer different architectures. On the other hand, conducting
full-blown NAS per few-shot episode is too slow and would likely overfit to the small support set.
Motivated by these challenges, we propose a novel NAS algorithm that shortlists a small number of
architecturally diverse configurations at training time, but defers the final selection until the dataset
and episode are known at test time. We empirically show that this is not only computationally effi-
cient, but also improves results noticeably, especially when only one domain is available at training
time. We term our method Neural Fine-Tuning Search (NFTS). NFTS defines a search space that
is relevant to both convolutional and transformers architectures, and the choice of which specific
adapter modules to consider is a hyperparameter, rather than a hard constraint.

Our contributions are summarised as follows: (i) We provide the first systematic Auto-ML approach
to finding the optimal adaptation strategy to trade off adaptation flexibility and overfitting in multi-
domain FSL. (ii) Our novel NFTS algorithm automatically determines which layers should be frozen
or adapted, and where new adaptation parameters should be inserted for best few-shot adaptation.
(iii) We advance the state-of-the-art in the well-established and challenging Meta-Dataset (Triantafil-
lou et al., 2020), and the more recent and diverse Meta-Album (Ullah et al., 2022) benchmarks.

2 NEURAL FINE-TUNING SEARCH

2.1 FEW-SHOT LEARNING BACKGROUND

Let D = {Di}Di=1 be the set of D classification domains, and D̄ = {X,Y } ∈ D a task containing
n samples along with their designated true labels {X,Y } = {xj , yj}nj=1. Few-shot classification is
defined as the problem of learning to correctly classify a query set Q = {XQ, YQ} ∼ D̄ by training
on a support set S = {XS , YS} ∼ D̄ that contains very few examples. This can be achieved by
finding the parameters θ of a classifier fθ with the objective

argmax
θ

∏
D

p(YQ|fθ(S, XQ)). (1)

In practice, if θ is randomly initialised and trained using stochastic gradient descent on a small sup-
port set S, it will overfit and fail to generalise toQ. To address this issue, one can exploit knowledge
transfer from some seen classes to the novel classes. Formally, each domain D̄ is partitioned into
two disjoint sets D̄train and D̄test, which are commonly referred to as “meta-train” and “meta-test”,
respectively. The labels in these sets are also disjoint, i.e., Ytrain ∩ Ytest = ∅. In that case, θ is trained
by maximising the objective in Eq. 1 using the meta-train set, but the overall objective is to perform
adequately when transferring knowledge to meta-test.

The knowledge transferred from meta-train to meta-test can take various forms (Hospedales et al.,
2022). As discussed earlier, we aim to generalise a family of few-shot methods (Hu et al., 2022; Li
et al., 2022; Xu et al., 2022) where parameters θ are transferred before a subset of them ϕ ⊂ θ are
fine-tuned; and possibly extended by attaching additional “adapter” parameters α that are trained for
the target task. For meta-test, Eq. 1 can therefore be rewritten as

argmax
α,ϕ

∏
Dtest

p(YQ|fα,ϕ(S, XQ)), (2)
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Our focus is on finding the optimal adaptation strategy in terms of (i) the optimal subset of parame-
ters ϕ ⊂ θ that need to be fine-tuned, and (ii) the optimal task-specific parameters α to add.

2.2 DEFINING THE SEARCH SPACE

Let gϕk
be the minimal unit for adaptation in an architecture. We consider these to be the repeated

units in contemporary deep architectures, e.g., a convolutional layer in a ResNet, or a self-attention
block in a ViT. If the feature extractor fθ comprises of K such units with learnable parameters ϕk,
then we denote θ =

⋃K
k=1 ϕk, assuming all other parameters are kept fixed. For brevity in notation

we will now omit the indices and refer to every such layer as gϕ. Following the state-of-the-art (Hu
et al., 2022; Li et al., 2022; Triantafillou et al., 2021; Xu et al., 2022), let us also assume that task-
specific adaptation can be performed either by inserting additional adapter parameters α into gϕ, or
by fine-tuning the layer parameters ϕ.

This allows us to define the search space as two independent binary decisions per layer: (i) The
inclusion or exclusion of an adapter module attached to gϕ, and (ii) the decision of whether to use
the pre-trained parameters ϕ, or replace them with their fine-tuned counterparts ϕ′. The size of the
search space is, therefore, (22)K = 4K . For ResNets, we use the proposed adaptation architecture
of TSA (Li et al., 2022), where a residual adapter hα, parameterised by α, is connected to gϕ

gϕ,ϕ′,α(x) = gϕ,ϕ′(x) + hα(x), (3)

where x ∈ RW,H,C . For ViTs, we use the proposed adaptation architecture of ETT (Xu et al., 2022),
where a tuneable prefix is prepended to the multi-head self-attention module Aqkv , and a residual
adapter is appended to both Aqkv and the feed-forward module z in each decoder block

gϕ,ϕ′,α(x) = z(Aqkv[q ; gϕ,ϕ′(x)] + hα1) + hα2, (4)

where x ∈ RD and [· ; ·] denotes the concatenation operation. Note that in the case of ViTs the
adapter is not a function of the input features, but simply an added offset.

Irrespective of the architecture, every layer gϕ,ϕ′,α is parameterised by three sets of parameters, ϕ,
ϕ′, and α, denoting the initial parameters, fine-tuned parameters and adapter parameters respectively.
Consequently, when sampling a configuration (i.e., path) from that search space, every such layer
can be sampled as one of the variants listed in Table 1.

2.3 TRAINING THE SUPERNET

Following SPOS (Guo et al., 2020), our search space is actualised in the form of a supernet fθ,α,ϕ′ ;
a “super” architecture that contains all possible architectures derived from the decisions detailed in
Section 2.2. It is parameterised by: (i) θ, the frozen parameters from the backbone architecture fθ,
(ii) α, from the adapters hα, and (iii) ϕ′, from the fine-tuned parameters per layer gϕ,ϕ′,α.

We use a prototypical loss L(f, S,Q) as the core objective during supernet training and the subse-
quent search and fine-tuning.

L(f,S,Q) = 1

|Q|

|Q|∑
i=1

log
e−dcos(CQi

,f(Qi))∑|C|
j=1 e

−dcos(Cj ,f(Qci))
, (5)

where CQi
denotes the embedding of the class centroid that corresponds to the true class of Qi,

and dcos denotes the cosine distance. The class centroids C are the mean embeddings of support
examples that belong to the same class: Cl =

1
|Sy=l|

∑|S|
i=1 f(S

y=l
i ).

ϕ , − ϕ , α ϕ′, − ϕ′, α

ResNet gϕ(x) gϕ(x) + hα(x) gϕ′(x) gϕ′(x) + hα(x)
ViT z(Aqkv[q ; gϕ(x)]) z(Aqkv[q ; gϕ(x)] + hα1) + hα2 z(Aqkv[q ; gϕ′(x)]) z(Aqkv[q ; gϕ′(x)] + hα1) + hα2

Table 1: The search space, as described in Section 2.2. A layer gϕ,ϕ′,α can be sampled in one of
the following variants: (i) ϕ: fixed pre-trained parameters, no adaptation, (ii) α: fixed pre-trained
parameters, with adaptation, (iii) ϕ′: fine-tuned parameters, no adaptation, (iv) ϕ′, α fine-tuned-
parameters, with adaptation.

3



Published as a conference paper at ICLR 2024

Meta-training Meta-testing

ImageNet pre-trained 
backbone architecture

Trained supernet

...
Top N diverse 
architectures

Adapter parameters α
Frozen parameters φ
Fine-tuned parameters φ'

Supernet training
Best architecture selection

Evolutionary search
Evaluation

Support set 

Query set

(a) After a supernet is trained, evolutionary search finds
the top-performing candidates (validation set). During
a new test episode, the shortlisted candidates are evalu-
ated on the support set (Eq. 11), and the best architec-
ture for that test episode is selected.

++ +

(b) The dotted lines represent possible paths that
can be sampled during SPOS training. Every
adaptable layer in the architecture (gi) has its own
pre-trained (ϕi ⊂ θ), fine-tuned (ϕ′

i), and adapter
(αi) parameters.

Figure 1: Our proposed NAS paradigm for few-shot adaptation. (a) Overall meta-train/meta-test
workflow. (b) The supernet architecture. f denotes the feature extractor, which is composed of
many layers, g, which are the minimal unit for adaptation in our search space.

For supernet training, let P be a set of size 4K , enumerating all possible sequences of K layers that
can be sampled from the search space. Denoting a path sampled from the supernet as fp

θ,α,ϕ′ , we
minimise the loss in Eq. 5 over multiple episodes and paths, so the final objective becomes:

argmin
α,ϕ′

Ep∼PES,Q L(fp
θ,α,ϕ′ ,S,Q). (6)

In Appendix C, we summarise the supernet training algorithm in pseudocode (Algorithm 1).

2.4 TWO-STAGE SEARCH FOR AN OPTIMAL PATH

A supernet fθ,α,ϕ′ trained with the method described in Section 2.3 contains 4K models, intertwined
via weight sharing. As explained in Section 1, our goal is to search for the best-performing one,
but the main challenge is related to the fact that we do not know what data is going to be used for
adaptation at test time. One extreme approach would be to search for a single solution during training
and simply use it throughout the entire test, regardless of the potential domain shift. Another, would
be to defer the search and perform it from scratch each time a new support set is given to us at test
time. However, both have their shortcomings. As such, we propose a hybrid, where searching is
split into two phases – one during training, and a subsequent one during testing.

Meta-training time The search is responsible for pre-selecting a set of N models from the entire
search space. Its main purpose is to mitigate potential overfitting that can happen at test time, when
only a small amount of data is available, while providing enough diversity to successfully adjust
the architecture to the diverse set of test domains. Formally, we search for a sequence of paths
(p1, p2, ..., pN ) where:

pk = argmax
p∈P

ES,QA(fp
θ,α∗,ϕ′∗ ,S,Q), s.t. (7)

α∗, ϕ′∗ = argmin
α,ϕ′

L(fp
θ,α,ϕ′ ,S,S) (8)

∀j=1,...,k−1 dcos(pk, pj) ≥ T, (9)
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where T denotes a scalar threshold for the cosine distance between paths pk and pj , and A is the
classification accuracy of a nearest centroid classifier (NCC) (Snell et al., 2017),

A(f,S,Q) = 1

|Q|

|Q|∑
i=1

[argmin
j

dcos(CQj
, f(Qi)) = YQi

]. (10)

We measure accuracy of a solution using a query set, after fine-tuning on a separate support set
(Eq. 8), then average across multiple episodes to avoid overfitting to a particular support set (Eq. 7).
We also employ a diversity constraint, in the form of cosine distance between binary encodings of
selected paths (Eq. 9), to allow for sufficient flexibility in the following test time search.

To efficiently obtain sequence {p1, ..., pN}, we use evolutionary search to find points that maximise
Eq. 7, and afterwards select the N best performers from the evolutionary search history that sat-
isfy the constraint in Eq. 9. In Appendix C, we summarise the training-time search algorithm in
pseudocode (Algorithm 2).

Meta-testing time For a given meta-test episode, we decide which one of the pre-selected N
models is best-suited for adaptation on the given support set data. It acts as a failsafe to counteract the
bias of the initial selection made at training time in cases when the support set might be particularly
out-of-domain. Formally, the final path p∗ to be used in a particular episode is defined as:

p∗ = argmin
p∈{p1,...,pN}

L(fp
θ,α∗,ϕ′∗ ,S,S), s.t. (11)

α∗, ϕ′∗ = argmin
α,ϕ′

L(fp
θ,α,ϕ′ ,S,S). (12)

We test each of the N models by fine-tuning it on the support set (Eq. 12) and scoring its loss on the
same support set (Eq. 11). This is because the support set is the only source of data we have at test
time and we cannot extract a disjoint validation set from it without risking the fine-tuning quality.
It is important to note that, while this step risks overfitting, the pre-selection of models at training
time, as described previously, should already limit the subsequent search to only models that are
unlikely to overfit. Since N is kept small in our experiments, we use a naive grid search to find p∗.

This approach is a generalization of the existing NAS approaches, as it recovers both when N = 1
or N = 4K . Our claim is that intermediate values of N are more likely to give us better results
than any of the extremes, due to the reasons mentioned earlier. In particular, we would expect
pre-selecting 1 < N ≪ 4K models to introduce reasonable overhead at test time while improving
results, especially in cases when exposure to different domains might be limited at training time. In
our evaluation we compare N = 3 and N = 1 to test this hypothesis. We do not include comparison
to N = 4K as it is computationally infeasible in our setting (performing equivalent of training time
search for each test episode would require us to fine-tune ≈ 14× 106 models in total).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Evaluation on Meta-Dataset We evaluate NFTS on the extended version of Meta-Dataset (Re-
queima et al., 2019; Triantafillou et al., 2020), currently the most commonly used benchmark for
few-shot classification, consisting of 13 publicly available datasets: FGVC Aircraft, CU Birds, De-
scribable Textures (DTD), FGVCx Fungi, ImageNet, Omniglot, QuickDraw, VGG Flowers, CIFAR-
10/100, MNIST, MSCOCO, and Traffic Signs. There are 2 evaluation protocols: single domain (SD)
learning and multi-domain (MD) learning. In the single domain setting, only ImageNet is seen dur-
ing training and meta-training, while in the multi-domain setting the first eight datasets are seen
(FGVC Aircraft to VGG Flower). For meta-testing, 600 episodes are sampled for each domain,
following the evaluation protocol proposed by Triantafillou et al. (2020).

Evaluation on Meta-Album Further, we evaluate NFTS on the more recent Meta-Album (Ul-
lah et al., 2022), which is more diverse than Meta-Dataset. We use the currently available Sets
0-2, which contain over 1000 unique labels across 30 datasets spanning 10 domains including mi-
croscopy, remote sensing, manufacturing, plant disease, character recognition, human action recog-
nition tasks, etc. Unlike Meta-Dataset, in which the default evaluation protocol is variable-way

5



Published as a conference paper at ICLR 2024

Method Aircrafts Birds DTD Fungi ImageNet Omniglot QuickDraw Flowers CIFAR10 CIFAR100 MNIST MSCOCO Tr. Sign Average

R
es

N
et

-1
8

FLUTE (Liu et al., 2021a) 48.5 47.9 63.8 31.8 46.9 61.6 57.5 80.1 65.4 52.7 80.8 41.4 46.5 52.6
ProtoNet (Snell et al., 2017) 53.1 68.8 66.6 39.7 50.5 60.0 49.0 85.3 - - - 41.0 47.1 56.1
BOHB (Saikia et al., 2020) 54.1 70.7 68.3 41.4 51.9 67.6 50.3 87.3 - - - 48.0 51.8 59.2
FO-MAML (Triantafillou et al., 2020) 63.4 69.8 70.8 41.5 52.8 61.9 59.2 86.0 - - - 48.1 60.8 61.4
TSA (Li et al., 2022) 72.2 74.9 77.3 44.7 59.5 78.2 67.6 90.9 82.1 70.7 93.9 59.0 82.5 73.3
NFTS 74.9 76.5 81.6 50.5 62.7 80.2 67.2 94.5 83.0 71.5 94.0 59.7 81.9 75.2

V
iT

-S

∗PMF (Hu et al., 2022) 76.8 85.0 86.6 54.8 74.7 80.7 71.3 94.6 - - - 62.6 88.3 77.5
ETT (Xu et al., 2022) 79.9 85.9 87.6 61.8 67.4 78.1 71.3 96.6 - - - 62.3 85.1 77.6
NFTS 83.0 85.5 87.6 62.2 71.0 81.9 74.5 96.0 79.4 72.6 95.2 62.6 87.9 79.2

Table 2: State-of-the art methods on Meta-Dataset. Single domain setting: only ImageNet is seen in
meta-train. Mean acc. over 600 episodes. ∗ Additional data used for training.

Method Aircrafts Birds DTD Fungi ImageNet Omniglot QuickDraw Flowers CIFAR10 CIFAR100 MNIST MSCOCO Tr. Sign Average

R
es

N
et

-1
8

CNAPS (Requeima et al., 2019) 83.7 73.6 59.5 50.2 50.8 91.7 74.7 88.9 - - - 39.4 56.5 66.9
Smpl. CNAPS (Bateni et al., 2020) 82.0 74.8 68.8 46.6 58.4 91.6 76.5 90.5 74.9 61.3 94.6 48.9 57.2 69.5
Smpl. CNAPS [Ext.] (Bateni et al., 2022) 84.1 76.8 69.0 48.8 58.8 93.9 78.6 91.6 75.7 62.9 95.7 48.7 76.1 73.9
SUR (Dvornik et al., 2020b) 85.5 71.0 71.0 64.3 56.2 94.1 81.8 82.9 66.5 56.9 94.3 52.0 51.0 71.4
tri-M (Liu et al., 2021b) 82.8 75.3 71.2 48.5 58.6 92.0 77.3 90.5 75.4 62.0 96.2 52.8 78.0 73.9
URT (Liu et al., 2021a) 85.8 76.2 71.6 64.0 56.8 94.2 82.4 87.9 67.0 57.3 90.6 51.5 48.2 71.8
FLUTE (Triantafillou et al., 2021) 82.8 75.3 71.2 48.5 58.6 92.0 77.3 90.5 75.4 62.0 96.2 52.8 63.0 72.7
URL (Li et al., 2021) 89.4 80.7 77.2 68.1 58.8 94.5 82.5 92.0 74.2 63.5 94.7 57.3 63.3 76.6
TSA (Li et al., 2022) 89.9 81.1 77.5 66.3 59.5 94.9 81.7 92.2 82.9 70.4 96.7 57.6 82.8 78.4
2LM+TSA (Qin et al., 2023) 89.3 82.1 78.2 69.5 58.4 95.4 82.8 92.4 76.5 67.7 97.3 57.3 88.4 79.5
SSA+TSA (Sreenivas & Biswas, 2023) 90.0 82.2 77.6 66.6 58.9 95.6 82.7 93.0 82.9 70.8 98.5 58.1 84.9 80.1
NFTS 90.1 83.8 82.3 68.4 61.4 94.3 82.6 92.2 83.0 75.1 95.4 58.8 81.9 80.7

V
iT

-S †CTX (Doersch et al., 2020) 79.4 80.6 75.5 51.5 62.7 82.2 72.7 95.3 - - - 59.9 82.6 74.2
∗PMF (Hu et al., 2022) 88.3 91.0 86.6 74.2 74.6 91.8 79.2 94.1 - - - 62.6 88.9 83.1
NFTS 89.1 92.5 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.8 87.2 83.4

Table 3: State-of-the art methods on Meta-Dataset. Multi-domain setting: the first 8 datasets are
seen in meta-train. Mean acc. over 600 episodes. † Different backbone. ∗ Additional training data.

variable-shot, Meta-Album evaluation follows a 5-way variable-shot setting, where the number of
shots is typically 1, 5, 10 and 20. For meta-testing, results are averaged over 1800 episodes.

Architectures We employ two different backbone architectures, a ResNet-18 (He et al., 2016) and
a ViT-small (Dosovitskiy et al., 2021). Following TSA (Li et al., 2022), the ResNet-18 backbone
is pre-trained on the seen domains with the knowledge-distillation method URL (Li et al., 2021)
and, following ETT (Xu et al., 2022), the ViT-small backbone is pre-trained on the seen portion of
ImageNet with the self-supervised method DINO (Caron et al., 2021). We consider TSA residual
adapters (Li et al., 2022; Rebuffi et al., 2017) for ResNet and Prefix Tuning (Li & Liang, 2021;
Xu et al., 2022) adapters for ViT. This is mainly to enable direct comparison with prior work on
the same base architectures that use exactly these same adapter families, without introducing new
confounders in terms of mixing adapter types (Li et al., 2022; Xu et al., 2022). However, our
framework is flexible, meaning it can accept any adapter type, or even multiple types in its search
space.

3.2 COMPARISON TO THE STATE-OF-THE-ART

Meta-Dataset The results on Meta-Dataset are shown in Table 2 and Table 3 for the single domain
and multi-domain training settings respectively. We can see that NFTS obtains the best average
performance across all the competitor methods for both ResNet and ViT architectures. The margins
over prior state-of-the-art are often substantial for this benchmark with +1.9% over TSA in ResNet-
18 single domain, +2.3% in multi-domain and +1.6% over ETT in VIT-small single domain. The
increased margin in the multi-domain case is intuitive, as our framework has more data with which
to learn the optimal path(s).

We re-iterate that PMF, ETT, and TSA are special cases of our search space corresponding respec-
tively to: (i) Fine-tune all and include no adapters, (ii) Include ETT adapters at every layer while
freezing all backbone weights, and (iii) Include TSA adapters at every layer while freezing all back-
bone weights. We also share initial pre-trained backbones with ETT and TSA (but not PMF, as
they use a stronger pre-trained model with additional data). Thus, the margins achieved over these
competitors are attributable to our systematic approach to finding suitable architectures, in terms of
where to fine-tune and where to insert new adapter parameters.

Meta-Album The results on Meta-Album are shown in Table 4 as a function of number of shots
within the 5-way setting, following Ullah et al. (2022). We can see that across the whole range of
support set sizes, our NFTS dominates all of the well-tuned baselines from Ullah et al. (2022). The
margins are substantial, greater than 5% at 5-way/5-shot operating point, for example. This result
confirms that our framework scales to even more diverse datasets and domains than those considered
previously in Meta-Dataset.
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From Scratch Fine Tuning Matching Net ProtoNet FO-MAML NFTS

1-shot 30.42 40.43 34.49 38.07 33.94 43.76
5-shot 38.31 50.87 44.32 51.17 44.50 57.59
10-shot 39.58 53.42 49.23 55.18 48.62 60.10
20-shot 39.83 55.12 52.99 59.67 51.35 60.97

Table 4: Comparison of our method against Meta-Album baselines, as reported in Fig. 2b of their
paper (Ullah et al., 2022). The setting is cross-domain 5-way [1, 5, 10, 20]-shot, and accuracy scores
are averaged over 1800 tasks drawn from Set0, Set1 and Set2.

ResNet-18 ViT-S
Method SD MD SD MD

ϕ ,− 67.8 67.8 71.8 71.8
ϕ , α 70.4 76.5 73.8 77.3
ϕ′,− 70.2 76.3 74.0 77.5
ϕ′, α 70.8 76.9 74.4 78.9
NFTS-1 73.6 80.1 78.7 83.1
NFTS-N 75.2 80.7 79.2 83.4

N=1 N=3 N=10 N=100

Test acc. (Support) 96.5 97.1 99.9 99.8
Test acc. (Query) 72.8 72.9 71.5 71.4
S/Q Pearson r 0.31 0.35 0.28 0.18

Table 5: Ablation study on Meta-Dataset. Left: Comparing four special cases of the search space in
terms of average accuracy: (i) ϕ,−: No adaptation, no fine-tuning, (ii) ϕ, α: Adapt all, (iii) ϕ′,−:
Fine-tune all, (iv) ϕ′, α: Adapt and fine-tune all. NFTS-{1,N} refer to conventional and deferred
episode-wise NAS respectively. Mean accuracy over 600 test episodes. Right: Impact of the number
of candidates N in the deferred NAS shortlist. Mean accuracy over 30 test episodes.

3.3 FURTHER ANALYSIS

Ablation Study To analyse the role that our architecture search plays in few-shot performance
more precisely, we also conduct an ablation study of our final model against four corners of our
search space: (i) Initial model only, using a pre-trained feature extractor and simple NCC classi-
fier, which loosely corresponds to SimpleShot (Wang et al., 2019), (ii) Full adaptation only, us-
ing a fixed feature extractor, which loosely corresponds to TSA (Li et al., 2022), ETT (Xu et al.,
2022), FLUTE (Triantafillou et al., 2021), and others – depending on base architecture and choice
of adapter, (iii) Fully fine-tuned model, which loosely corresponds to PMF (Hu et al., 2022), and
(iv) Combination of full fine-tuning and adaptation. Table 5 (left) shows that full adaptation, full
fine-tuning, and their combination, give improvement on the linear readout baseline. Our work is
the first to note the better performance of combining fine-tuning and adapters (ϕ′, α).

Most importantly, both variants of our NFTS substantially outperform the baselines, demonstrating
the value of our overall framework compared to mainstream fixed fine-tuning patterns. Next, we
can compare our top-1 adaptation architecture selection strategy against our progressive approach
that defers the final architecture selection to an episode-wise decision (i.e., NFTS-1 vs. NFTS-N).
Our deferred architecture selection improves upon fixing the top-1 architecture from meta-train,
especially for the single source domain case. This is intuitive, because NAS on a single source
domain (cf., multi-domain) condition is most at risk of over-tuning to that domain, and should
benefit the most from learning and transferring a diverse pool of architectures to the target domains.

Discovered Architectures We next analyse: What kind of adaptation architecture is discovered
by our NAS strategy? We first summarise results of the entire search space in terms of which layers
are preferential to fine-tune or not, and which layers are preferential to insert adapters or not in
Figure 2a. The blocks indicate layers (columns) and adapters/fine-tuning (rows), with the color
indicating whether that architectural decision was positively (green) or negatively (red) correlated
with validation performance. We can see that the result is complex, without a simple pattern, as
assumed by existing work (Hu et al., 2022; Li et al., 2022; Xu et al., 2022). That said, our NAS
does discover some interpretable trends. For example, adapters should be included at early/late
ResNet-18 layers and not at layers 5-9.

We next show the top three performing paths subject to diversity constraint in Figure 2b. We see that
these follow the strong trends in the search space from Figure 2a. For example, they always adapt (α)
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(a) Correlation between inclusion/non-inclusion of
learnable parameters α and ϕ′, and validation perfor-
mance.

(b) Top 3 performing paths subject to diversity con-
straint. We expect the green areas in Fig. 2a to be
roughly followed.

Figure 2: Qualitative analysis of our architecture search. Fig. 2a summarises the whole search
space by answering the question: How important is to adapt (α) or fine-tune (ϕ′) each block? The
color of each square indicates the point-biserial correlation (over all searched architectures) between
adapting/fine-tuning layer gi and validation performance. Fig. 2b shows the top 3 performing can-
didates subject to a diversity constraint, after 15 generations of evolutionary search. Dark blue
indicates that the layer is adapted/fine-tuned and light blue that it is not.

CIFAR10 82.0 81.2 83.3
CIFAR100 75.9 75.0 75.1
MNIST 95.5 94.4 95.1
MSCOCO 58.1 57.8 56.4
Tr. Signs 81.7 82.2 81.8

Table 6: How the diverse selection of architectures from Fig. 2b perform per unseen downstream
domain in Meta-Dataset. Shading indicates episode-wise architecture selection frequency, numbers
indicate accuracy using the corresponding architecture. The best dataset-wise architecture (bold) is
most often selected (shading).

block 14 and never adapt block 9. However, due to our diversity constraint, they do include diverse
decisions (e.g., whether to fine-tune (ϕ′) block 15) that were not strongly indicated in Figure 2a.

Finally, we analyse how our small set of N = 3 candidate architectures in Figure 2b is used during
meta-test. Recall that this small set allows us to perform an efficient minimal episode-wise NAS,
including for novel datasets unseen during training. The results in Table 6 show how often each
architecture is selected by held-out datasets during meta-test (shading), and what is the per-dataset
performance using only that architecture. It shows how our approach successfully learns to select
the most suitable architecture on a per-dataset basis, even for unseen datasets. This unique capability
goes beyond prior work (Hu et al., 2022; Li et al., 2022; Xu et al., 2022) where all domains must
rely on the same adaptation strategy despite their diverse adaptation needs.

Why N=3? Impact of Candidate Architecture Set Size Our framework admits various design
options from N = 1, to large N (full-blown NAS per few-shot episode). As discussed earlier, N = 1
uses the same architecture for all episodes without dataset-specific selection. Meanwhile, we expect
large N to suffer overfitting due to ultimately selecting a large number of parameters (N networks,
times the number of learnable parameters each) based on a small support set, defeating the purpose
of our whole selective fine-tuning paradigm. To illustrate this we conduct a small experiment on
a subset of 30 episodes1 in Table 9 (right), comparing the support/train and query/test accuracy as
a function of N . For large N , besides being expensive, we see overfitting with support accuracy
approaching perfect, but query accuracy decreasing. This is also reflected in the decreasing Pearson
correlation between episode-wise support and query accuracies as N becomes large.

Discussion Overall, our deferred NAS approach where a large-scale search is conducted up-front
during meta-train and a small candidate set search is conducted per meta-test episode, provides a
reasonable trade-off between per-episode cost and efficacy. While our cost at recommended N = 3
is slightly higher than competitors with a single fine-tuning, it is similar or less than competitors
who repeat adaptation with different learning rates during testing (Hu et al., 2022) (4× cost), or
exploit a backbone ensemble (8× cost) (Dvornik et al., 2020b; Liu et al., 2021a). Where this cost is
not acceptable, our single architecture NFTS-1 already provides state-of-the-art results.

1Selecting a high number of episodes is expensive, due to substantial per-episode architecture selection cost.
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4 RELATED WORK

Gradient-Based Few-Shot Adaptation Parameter-efficient adaptation modules have been ap-
plied for multi-domain learning, and transfer learning. A seminal example is the Residual
Adapter (Rebuffi et al., 2017), a lightweight 1x1 convolutional filter added to ResNet blocks. They
were initially proposed for multi-domain learning, but were successfully used to achieve state of the
art results for CNNs on the meta-dataset benchmark (Triantafillou et al., 2020) by enabling fine-
tuning of a URL (Li et al., 2021) pre-trained backbone without severe overfitting in the few-shot
regime Li et al. (2022). Meanwhile, prompt (Jia et al., 2022) and prefix (Li & Liang, 2021) tuning
are established examples of parameter-efficient adaptation for transformer architectures for similar
reasons. In FSL, Efficient Transformer Tuning (ETT) (Xu et al., 2022) apply a similar strategy to
few-shot ViT adaptation using a DINO (Caron et al., 2021) pre-trained backbone.

PMF (Hu et al., 2022), FLUTE (Triantafillou et al., 2021) and FT (Dhillon et al., 2020) focus on
adapting existing parameters without inserting new ones. To manage the adaptation/overfitting trade-
off in the few-shot regime, PMF fine-tunes the whole ResNet or ViT backbone, but with carefully-
managed learning rates. Meanwhile, FLUTE hand-picks a set of FILM parameters with a modified
ResNet backbone for few-shot fine-tuning, while keeping the majority of the feature extractor frozen.

All of the methods above make heuristic choices about where to place adapters within the backbone,
or for which parameters to allow/disallow fine-tuning. However, as different input layers represent
different features (Chen et al., 2021; Zeiler & Fergus, 2014), there is scope for making better de-
cisions about which features to update. Furthermore, in the multi-domain setting different target
datasets may benefit from different choices about which modules to update. This paper takes an
Auto-ML NAS-based approach to systematically address this issue.

Neural Architecture search Neural Architecture Search (NAS) is a large topic (Elsken et al.,
2019) which we do not attempt to review in detail here. Mainstream NAS aims to discover new
architectures that achieve high performance when training on a single dataset from scratch in a many-
shot regime. To this end, research aims to develop faster search algorithms (Abdelfattah et al., 2021;
Guo et al., 2020; Liu et al., 2019; Xiang et al., 2023), and better search spaces (Ci et al., 2021; Fang
et al., 2020; Radosavovic et al., 2019; Zhou et al., 2021). We build upon the popular SPOS (Guo
et al., 2020) family of search strategies that encapsulate the entire search space inside a supernet that
is trained by sampling paths randomly, and a search algorithm then determines the optimal path. We
develop an instantiation of the SPOS strategy for multi-domain FSL. We construct a search space
suited for parameter-efficient adaptation of a prior architecture to a new set of categories, and extend
SPOS to learn on a suite of datasets, and efficiently generalise to novel datasets. This is different
than the traditional SPOS paradigm of training and evaluating on the same dataset and label-space.

While there exist some recent NAS works that try to address a similar “train once, search many
times” problem efficiently (Cai et al., 2020; Li et al., 2020a; Molchanov et al., 2022; Moons et al.,
2021), naively using these approaches has two serious shortcomings: i) They assume that after
the initial supernet training, subsequent searches do not involve any training (e.g., a search is only
performed to consider a different FLOPs constraint while accuracy of different configurations is
assumed to stay the same) and thus can be done efficiently – this is not true in the FSL setting as
explained earlier. ii) Even if naively searching for each dataset at test time were computationally
feasible, the few-shot nature of our setting poses a significant risk of overfitting the architecture to
the small support set considered in each episode.

5 CONCLUSIONS

In this paper we present NFTS, a novel framework for discovering the optimal adaptation architec-
ture for gradient-based few-shot learning. NFTS contains several recent strong heuristic adaptation
architectures as special cases within its search space, and we show that by systematic architecture
search they are all outperformed, leading to a new state-of-the-art on Meta-Dataset and Meta-Album.
While in this paper we use a simple and coarse search space for easy and direct comparison to prior
work’s hand-designed adaptation strategies, in future work we will extend this framework to include
a richer range of adaptation strategies, and a finer-granularity of search.
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A ADDITIONAL RELATED WORK

Feed-Forward Few-Shot Adaptation Besides the gradient-based few-shot adaptation methods
mentioned in Section 4, an alternative line of work (Requeima et al., 2019; Bateni et al., 2020) uses
feed-forward networks to modulate the feature extraction process. However, these dynamic feature
extractors are less able to generalise to completely novel domains than gradient-based methods (Finn
& Levine, 2018), as the adaptation module itself suffers from an out of distribution problem.

Sparse Fine-Tuning In the many-shot regime there exists a line of work on sparse-fine tuning that
attempts to identify a subset of parameters to update for fine-tuning, such as SpotTune (Guo et al.,
2019) and DiffPrune (Guo et al., 2021). This is related to our goal in terms of working with sparse
masks, but otherwise are completely different. They optimise for a sparse mask that optimises a
single-task training loss on a large dataset, while we optimise for a small set of architectures that, in
expectation, enables the learner to generalise to the test/query set of some novel after learning on a
small train/support set in a few-shot episode.

NAS and Few-Shot Learning There have been a few prior attempts at NAS-related few-shot
learning methods such as MetaNAS (Elsken et al., 2020) and mNAS (Wang et al., 2020a). These ap-
proaches differ from ours in that they attempt to learn architectures that are suited for learning from
scratch, rather than how to fine-tune a powerful pre-trained feature; and have only been demonstrated
on small architectures using a (flawed (Wang et al., 2021)) DARTS-like search, while lacking the
ability to scale to the large architectures we consider. EG: Elsken et al. (2020) reports 7 GPU-days
to search a < 30k parameter model, while we take 2 GPU-days for 11M (ResNet-18) model.

B ADDITIONAL RESULTS

B.1 META-TRAINING CONVERGENCE

Meta-Training Fig. 3 shows convergence in terms of training and validation accuracy during su-
pernet training (accuracy is averaged across episodes and paths, following the training objective in
Eq. 8). This convergence curve corresponds to training a supernet with a ResNet-18 backbone in the
multi-domain setting, for 40 thousand episodes. Similar behaviour occurs during the meta-training
time search. The total cost for ResNet-18 is approximately 10 GPUh for supernet training, 30 GPUh
searching, 0.05 GPUh per test episode.

Path Search Process In addition, we illustrate the path search process in Figure 4. This figure
shows a 2D t-SNE projection of our 2K-dimensional architecture search space, where the dots are
candidate architectures of the evolutionary search process at different iterations. The dots are colored
according to their validation accuracy. From the results we can see that: The initial set of candidates
is broadly dispersed and generally low performing (left), and gradually converge toward a tighter
cluster of high performing candidates (right). The top 3 performing paths subject to a diversity
constraint (also illustrated in Fig. 2b) are annotated in purple outline.

B.2 ADDITIONAL ABLATIONS

Why not ensemble? Our framework involves performing an episode-wise selection from our short-
list candidate set of N architectures, where the scoring of each architecture involves fine-tuning
that architecture. One might therefore reasonably ask how our strategy compares to ensembling
the same set of N fine-tuned models? Our guiding hypothesis is that different test-time episodes
likely need different architectures/adaptation schemes. For example, in single-domain meta-dataset,

1000 400000%

100%

train acc.
val acc.

Figure 3: Meta-training convergence (40,000 train episodes).
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Figure 4: Population of paths(candidate architectures) in the search space after 1, 5, and 15 gener-
ations of evolutionary search. Each dot is a 2-d TSNE projection of the binary vector representing
an architecture, and its color shows the validation performance for that architecture. The supernet
contains a wide variety of models in terms of validation performance, and the search algorithm con-
verges to a well-performing population. The top 3 performing paths that are given in Fig. 2b are
highlighted in the far right figure (Generation 15) in purple outline.

ResNet ViT

Base Parameter Count 11M 22M
Number of Blocks 16 12
Parameter Count per Adapter +36K-2M +200K
Min-Max Possible Parameters Added in Search Space 0 - 11M 0 - 4M
Min Max Possible Parameters Updated in Search Space 0 - 22M 0 - 26M
Number of Actual Parameters after NAS (avg. over N=3 architectures) 16M (+46%) 25M (+14%)
Number of Updatable Parameters After NAS (avg. over N=3 architectures) 15M 24M
Actual Parameters Updated (TSA/ETT) 11M 4M
Actual Parameters Updated (PMF) - 22M

Table 7: Architectural properties in the adaptation scheme of NFTS, for ResNet and ViT backbone
architectures.

a downstream task more similar to ImageNet might prefer fewer updateable parameters compared
to a downstream task more different to ImageNet. An architecture ensemble would take away this
flexibility as the prediction architecture would always be a mixture of the N architectures (even if
they are episode-wise fine-tuned), rather than selecting the best suited architecture for each episode.

We validate our strategy with an ablation in Tab. 9 (ResNet-18, SD setting), showing that our second
stage of architecture selection from the candidate short list outperforms simply predicting based on
the ensemble of fine-tuned architectures.

Detailed Results of Search Space Ablation Tables 10 and 11 provide the exact scores per Meta-
Dataset domain that are summarised in Table 5 of the main paper, for single domain and multi-
domain FSL respectively.

Structure and number of trainable parameters We start with ResNet-18 and ViT, which are
well-known architectures with well-documented number of parameters (11M and 22M respectively).
These are fine-tuned and/or extended with additive modules: Between 0-16 TSA modules are added
in the case of ResNet, and between 0-12 ETT modules are added in the case of VIT. The specific
architecture of TSA and ETT modules given by Li et al. (2022) and Xu et al. (2022) respectively,
and already summarised for completeness in Table 1 of our paper. Each TSA module has 100K-2M
parameters (depending where in the architecture it is attached), and each ETT module has 200K
parameters. The number of parameters increased by adapting is not a fixed quantity, it depends on
the result of the architecture search (e.g.,: Fig 2b defines the result of the architecture search by
showing which option in Table 1 is used at each layer). With respect to parameter counts of our
search space, and of the final models discovered within that search space, we summarise them in
Table 7 - together with a few related methods PMF, TSA, and ETT. Finally, we remark that although
NFTS adds some parameters to the base network, our total number of parameters is still much less
than the ensemble based methods like SUR (Dvornik et al., 2020b) and URT (Liu et al., 2021a),
which are roughly 8x the base architecture size. Furthermore, in Table 8 we present a concise
summary presenting parameter counts and computational costs between SUR, URL, and NFTS.
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Method Backbone # Parameters Performance

SUR (Dvornik et al., 2020b) ResNet-18 82M 71.4
URL (Li et al., 2021) ResNet-18 82M 76.6
CTX (Doersch et al., 2020) ResNet-34 21.4M 74.2
NFTS ResNet-18 16M 80.7

Table 8: Ablation study for comparison of number of parameters and performances between SUR,
URL, and NFTS. Performance is mean accuracy scores Meta-Dataset, multi-domain setting.

NFTS-N (select best) NFTS-N (ensemble)

Test acc. 75.2 74.4

Table 9: Ablation: Selection vs ensemble (N=3, 600 test eps.).

C SUPERNET TRAINING AND PATH SEARCH ALGORITHMS

We present the detailed implementation (in pseudocode) for the supernet training and evolutionary
search, in Algorithms 1 and 2, respectively.

D HYPERPARAMETER SETTING

Table 12 reports the hyperparameters used for all of our experiments. Note the following clarifica-
tions:

• “Number of epochs” refers to multiple forward passes of the same episode, while “Number
of episodes” refers to the number of episodes sampled in total.

• The batch size is not mentioned, because we only conduct episodic learning, where we do
not split the episode into batches, i.e., we feed the entire support and query set into our
neural network architectures.

• Learning rate warmup, where applicable, occurs for the first 10% of the episodes.

We further specify something important: While our strongest competitors (Li et al., 2022; Xu et al.,
2022) tune their learning rates for meta-testing (e.g., TSA uses LR=0.1 for seen domains and LR=1.0
for unseen, and ETT uses a different learning rate per downstream Meta-Dataset domain), we treat
meta-testing episodes as completely unknown, and use the same hyperparameters we used on the
validation set during search.

E SOURCE CODE

The source code is available at: https://github.com/peustr/nfts-public.
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Method Aircrafts Birds DTD Fungi ImageNet Omniglot QuickDraw Flowers CIFAR-10 CIFAR-100 MNIST MSCOCO Tr. Signs Average
R

es
N

et
-1

8

ϕ ,− 64.5 69.6 71.1 41.2 56.4 74.8 64.2 84.6 75.0 63.9 82.1 55.9 77.7 67.8
ϕ , α 69.6 67.7 75.0 42.5 59.5 71.3 64.9 88.8 77.4 70.0 90.2 58.4 80.1 70.4
ϕ′,− 69.9 74.7 73.3 39.5 57.3 71.9 65.4 89.0 76.5 66.3 93.6 54.4 81.4 70.2
ϕ′, α 67.6 69.1 77.0 39.3 59.7 77.8 66.1 87.4 81.7 69.5 91.9 55.1 78.7 70.8
NFTS-1 73.2 76.5 81.6 42.1 61.3 80.2 66.9 90.0 82.9 68.8 94.0 58.4 80.6 73.6
NFTS-N 74.9 76.5 81.6 50.5 62.7 80.2 67.2 94.5 83.0 71.5 94.0 59.7 81.9 75.2

V
iT

-S

ϕ ,− 73.4 73.6 81.6 56.3 60.3 69.4 70.8 90.4 70.4 61.5 83.8 60.5 81.7 71.8
ϕ , α 76.9 83.2 86.7 59.3 63.7 75.8 65.1 89.5 70.7 67.4 81.1 54.8 82.9 73.8
ϕ′,− 76.8 80.9 85.8 61.4 65.9 73.2 68.5 91.0 69.9 66.1 82.5 57.6 78.8 74.0
ϕ′, α 77.0 83.4 82.4 58.6 66.7 73.1 65.0 95.9 76.7 66.1 87.7 58.7 82.9 74.4
NFTS-1 83.0 85.5 87.3 62.2 68.8 81.9 72.9 95.3 79.4 72.6 95.2 62.6 87.5 78.7
NFTS-N 83.0 85.5 87.6 62.2 71.0 81.9 74.5 96.0 79.4 72.6 95.2 62.6 87.9 79.2

Table 10: Ablation study on Meta-Dataset comparing four special cases of the search space: (i)
ϕ,−: No adaptation, no fine-tuning, (ii) ϕ, α: Adapt all, (iii) ϕ′,−: Fine-tune all, (iv) ϕ′, α: Adapt
and fine-tune all. NFTS-{1,N} refer to conventional and deferred episode-wise NAS respectively.
Single domain setting: Only ImageNet is seen during training and search. Reporting mean accuracy
over 600 episodes.

Method Aircrafts Birds DTD Fungi ImageNet Omniglot QuickDraw Flowers CIFAR-10 CIFAR-100 MNIST MSCOCO Tr. Signs Average

R
es

N
et

-1
8

ϕ ,− 64.5 69.6 71.1 41.2 56.4 74.8 64.2 84.6 75.0 63.9 82.1 55.9 77.7 67.8
ϕ , α 89.3 78.3 76.1 62.7 57.2 93.8 76.0 90.8 77.8 66.1 90.5 56.9 79.5 76.5
ϕ′,− 90.2 76.7 70.6 63.1 57.8 88.2 79.3 88.9 78.2 68.2 96.1 51.7 82.9 76.3
ϕ′, α 86.1 78.9 77.2 60.5 57.6 94.1 79.5 86.5 81.0 67.2 96.1 52.6 81.8 76.9
NFTS-1 90.1 82.1 79.9 67.9 61.4 94.3 82.6 92.2 82.4 73.8 95.4 58.1 81.0 80.1
NFTS-N 90.1 83.8 82.3 68.4 61.4 94.3 82.6 92.2 83.0 75.1 95.4 58.8 81.9 80.7

V
iT

-S

ϕ ,− 73.4 73.6 81.6 56.3 60.3 69.4 70.8 90.4 70.4 61.5 83.8 60.5 81.7 71.8
ϕ , α 85.7 84.3 81.8 68.7 70.4 89.1 77.0 90.2 73.5 61.4 82.6 53.7 72.4 77.3
ϕ′,− 83.0 84.5 81.1 70.9 72.4 88.6 74.6 90.4 75.1 63.5 87.0 54.0 75.5 77.5
ϕ′, α 82.5 85.9 82.7 68.9 73.7 90.4 77.1 94.0 73.4 66.2 85.9 55.9 77.4 78.9
NFTS-1 89.1 90.3 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.7 87.2 83.1
NFTS-N 89.1 92.5 86.3 75.1 74.6 92.0 80.6 93.5 75.9 70.8 91.3 62.8 87.2 83.4

Table 11: Ablation study on Meta-Dataset comparing four special cases of the search space: (i)
ϕ,−: No adaptation, no fine-tuning, (ii) ϕ, α: Adapt all, (iii) ϕ′,−: Fine-tune all, (iv) ϕ′, α: Adapt
and fine-tune all. NFTS-{1,N} refer to conventional and deferred episode-wise NAS respectively.
Multi-domain setting: The first 8 datasets are seen during training and search. Reporting mean
accuracy over 600 episodes.

Algorithm 1: Supernet training.
Input: Supernet fθ,α,ϕ′ . Datasets D. Step sizes η1, η2. Path pool P . Prototypical loss L

(Eq. 5).
Output: Trained supernet fθ,α,ϕ′ .
repeat

Sample dataset D̄ ∼ D
Sample episode S, Q ∼ D̄
Sample path p ∼ P with learnable parameters αp, ϕ′

p and frozen parameters ϕp ⊂ θ

αp ←− αp − η1∇αp
L(fp

θ,α,ϕ′ ,S,Q)
ϕ′
p ←− ϕ′

p − η2∇ϕ′
p
L(fp

θ,α,ϕ′ ,S,Q)
until prototypical loss converges
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Algorithm 2: Training time evolutionary search.
Input: Supernet fθ,α,ϕ′ . Datasets D. Step sizes η1, η2. Prototypical loss L (Eq. 5). NCC

accuracy A (Eq. 10).
Output: Optimal path p∗.
Initialise population P randomly
Initialise fitness of P as ΨP ←− 0
repeat

Sample episodes from all datasets S, Q ∼ D
for each candidate p ∈ P do

for a small number of epochs do
αp ←− αp − η1∇αpL(f

p
θ,α,ϕ′ ,S,S)

ϕ′
p ←− ϕ′

p − η2∇ϕ′
p
L(fp

θ,α,ϕ′ ,S,S)
end
Ψp←− A(fp

θ,α,ϕ′ ,S,Q)
end
offspring←− recombine the M best candidates of P w.r.t. ΨP

P ←− P + offspring
eliminate the M worst candidates of P wrt ΨP

until convergence or max. iterations

ResNet-18 ViT-S
Hyperparameter SDL (MD) MDL (MD) MDL (MA) SDL (MD) MDL (MD)
Backbone architecture URL URL Supervised DINO DINO
Adapter architecture TSA TSA TSA ETT ETT

T
R

A
IN

Number of episodes 50000 80000 20000 80000 160000
Number of epochs 1 1 1 1 1
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.05 0.05 0.05 0.00007 0.00007
Learning rate schedule - - - cosine cosine
Learning rate warmup - - - linear linear
Weight decay 0.0001 0.0001 0.0001 0.01 0.01
Weight decay schedule - - - cosine cosine

SE
A

R
C

H

Number of episodes 100 100 100 100 100
Number of epochs 20 20 20 40 40
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.1 0.1 0.1 0.000003 0.000003
Weight decay 0.0001 0.0001 0.0001 0.1 0.1
Initial population size 64 64 64 64 64
Top-K crossover 8 8 8 8 8
Mutation chance 5% 5% 5% 5% 5%
Top-N paths 3 3 3 3 3
Diversity threshold 0.4 0.4 0.4 0.2 0.2

T
E

ST

Number of episodes 600 600 1800 600 600
Number of epochs 40 40 40 40 40
Optimizer adadelta adadelta adadelta adamw adamw
Learning rate 0.1 0.1 0.1 0.000003 0.000003
Weight decay 0.0001 0.0001 0.0001 0.1 0.1
Regulariser strength 0.04 0.04 0.04 - -

Table 12: Hyperparameter setting for all experiments presented in Section 3 of the main pa-
per. The notation is as follows: SDL=Single domain learning, MDL=Multi-domain learning,
MD=Meta-Dataset, MA=Meta-Album, TRAIN=Supernet training phase, SEARCH=Evolutionary
search phase, TEST=Meta-test phase.
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