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ABSTRACT

Recently, some works have tried to combine diffusion and Generative Adversarial
Networks (GANs) to alleviate the computational cost of the iterative denoising
inference in Diffusion Models (DMs). However, existing works in this line suffer
from either training instability and mode collapse or subpar one-step generation
learning efficiency. To address these issues, we introduce YOSO, a novel genera-
tive model designed for rapid, scalable, and high-fidelity one-step image synthesis
with high training stability and mode coverage. Specifically, we smooth the ad-
versarial divergence by the denoising generator itself, performing self-cooperative
learning. We show that our method can serve as a one-step generation model train-
ing from scratch with competitive performance. Moreover, we extend our YOSO
to one-step text-to-image generation based on pre-trained models by several ef-
fective training techniques (i.e., latent perceptual loss and latent discriminator for
efficient training along with the latent DMs; the informative prior initialization
(IPI), and the quick adaption stage for fixing the flawed noise scheduler). Exper-
imental results show that YOSO achieves the state-of-the-art one-step generation
performance even with Low-Rank Adaptation (LoRA) fine-tuning. In particular,
we show that the YOSO-PixArt-α can generate images in one step trained on 512
resolution, with the capability of adapting to 1024 resolution without extra explicit
training, requiring only ~10 A800 days for fine-tuning.

1 INTRODUCTION

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have re-
cently emerged as a powerful class of generative models, demonstrating state-of-the-art results in
many generative modeling tasks, such as text-to-image (Rombach et al., 2022; Xu et al., 2023c;
Chen et al., 2024; Feng et al., 2023), text-to-video (Blattmann et al., 2023; Hong et al., 2022), image
editing (Hertz et al., 2022; Brooks et al., 2023; Meng et al., 2022) and controlled generation (Zhang
et al., 2023; Mou et al., 2023). However, the generation process of DMs requires iterative denoising,
leading to slow generation speed. Coupled with the intensive computational requirements of large-
scale DMs, they constitute a substantial barrier to their practical application and wider adoption.

Sampling from DMs can be regarded as solving a probability flow ordinary differential equation
(PF-ODE) (Song et al., 2021). Some previous works (Song et al., 2020; Lu et al., 2022a;b; Bao
et al., 2022) focus on developing advanced ODE-solvers, for reducing the sampling steps. However,
they still require 20+ steps to achieve high-quality generation. Another line is distilling from pre-
trained PF-ODEs (Song et al., 2023; Liu et al., 2023; Luo et al., 2023a;b;c; Salimans & Ho, 2022),
aiming to predict multi-step solution of PF-ODE solver by one step. Existing methods (Luo et al.,
2023a;b) can achieve reasonable sample quality with 4+ steps. However, it is still challenging to
generate high-quality samples with one step.

In contrast, generative adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2016)
are naturally built on one-step generation with fast sampling speed. However, it is hard to extend
GANs on large-scale datasets due to training challenges (Sauer et al., 2022; Kang et al., 2023), re-
sulting in worse sample quality compared to DMs (Sauer et al., 2023b; Kang et al., 2023). In this
work, we present a novel approach to combine diffusion process and GANs. The key to achieving
access is finding a way to smooth the adversarial divergence for stabilize the training while maintain-
ing effective one-step learning. Previous works (Xiao et al., 2022; Xu et al., 2023b;c; Sauer et al.,
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(a) Framework of YOSO.

(b) 1024 resolution. (c) 512 resolution.

Figure 1: One-step generated images by YOSO under different configurations (Bottom). The model
is trained by fine-tuning PixArt-α (Chen et al., 2024) on 512 resolution with our proposed algorithm.
Bottom Left is generated by YOSO adapting to 1024 resolution with Eq. (7) without extra explicit
training.

2023c) have developed some variants for combining diffusion and GANs. However, existing works
either directly perform adversarial divergence against real data without smoothing strategy which
suffers from unstable training and mode collapse, or rely on adding noise to smooth the adversarial
divergence to stabilize the training which delivers less effective one-step generation learning. To
enjoy the best of both worlds, we propose to smooth the adversarial divergence by denoising the
generator itself. In particular, we regard the one-step denoising generation based on less corrupted
samples as ground truth and regard the one-step denoising generation based on more corrupted sam-
ples as student distribution to perform adversarial divergence. The approach can not only naturally
reduce the distance between target distribution and student distribution to stabilize the training, but
also form effective one-step learning on clean samples. The learning process can be viewed as a
self-cooperative process (Xie et al., 2018), as the generator learns from itself. Such an innovative
design enables stable training and effective learning for one-step generation. Hence, we name our
model YOSO, short for You Only Sample Once.

Moreover, we extend our YOSO to one-step text-to-image generation based on pre-trained models
and introduce several effective training techniques (i.e., latent perceptual loss and latent discrim-
inator for efficient training along with the latent DMs; the informative prior initialization (IPI),
and the quick adaption stage for fixing the noise scheduler). Thanks to our effective designs, we
can efficiently and effectively fine-tune existing pre-trained text-to-image DMs (i.e., stable diffu-
sion (Rombach et al., 2022) and PixArt-α (Chen et al., 2024)) for high-quality one-step generation
(see Fig. 1). Furthermore, we are the pioneers in supporting Low-Rank Adaptation (LoRA) (Hu
et al., 2022) fine-tuning in one-step text-to-image generation for enhanced efficiency, delivering
state-of-the-art performance.

Our work presents several significant contributions:

• We introduce YOSO, a novel generative model that can generate high-quality images with
one-step inference, with a stable training process and good mode coverage.
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• We further scale up YOSO by several principled and effective proposed training techniques
that enable low-resource fine-tuning of pre-trained text-to-image DMs for one-step text-to-
image, requiring only ~10 A800 days.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed YOSO,
including image generation from scratch, text-to-image generation fine-tuning, compatibil-
ity with existing image customization and image controllable modules.

2 BACKGROUND

Diffusion models. Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) define a
forward process that gradually transforms samples from data distribution to Gaussian distribution
by adding noise in T steps with variance schedule βt: q(xt|xt−1) ≜ N (xt;

√
1− βtxt−1, βtI). The

corrupted samples can be directly obtained by xt = ᾱtx0 +
√
1− ᾱtϵ, where ᾱt =

∏t
s=1(1− βT )

and ϵ ∼ N (0, I). The parameterized reversed diffusion process is defined to gradually denoise:
pθ(xt−1|xt) ≜ N (xt−1;µθ(xt, t), σ

2
t I). The model can be trained by minimizing the negative

ELBO (Ho et al., 2020; Kingma et al., 2021): L = Et,q(x0)q(xt|x0)KL(q(xt−1|xt,x0)||pθ(xt−1|xt))
where q(xt−1|xt,x0) is Gaussian posterior derived in (Ho et al., 2020). A key assumption in diffu-
sion is that the denoising step size from t to t− 1 is sufficiently small. This assumption ensures the
true q(xt−1|xt) follows Gaussian distribution, enabling the effectiveness of modeling pθ(xt−1|xt)
with Gaussian distribution.

Diffusion-GAN hybrids. An issue in DMs is that the true q(xt−1|xt) does not follow Gaussian
distribution when the denoising step size is not sufficiently small. Therefore, in order to enable large
denoising step size, Diffusion GANs (Xiao et al., 2022) propose to minimize the adversarial diver-
gence between model pθ(x′

t−1|xt) and q(xt−1|xt): minθ Eq(xt)[Dadv(q(xt−1|xt)||pθ(x′
t−1|xt))],

where pθ(x′
t−1|xt) ≜

∫
pθ(x0|xt)q(xt−1|xt,x)dx0 and pθ(x0|xt) is imposed by a GAN generator.

The capability of a GAN-based formulation enables much larger denoising step sizes (i.e., 4 steps).

3 METHOD: SELF-COOPERATIVE DIFFUSION GANS

A key issue in Diffusion-GAN hybrid models (Xiao et al., 2022; Xu et al., 2023b;c) is that they match
the generator distribution pθ(xt−1|xt) ≜ Epθ(x0|xt)q(xt−1|xt,x0) with the corrupted data distribu-
tion. This formulation only indirectly learns the pθ(x0|xt) and pθ(x0) =

∫
q(xt)pθ(x0|xt)dxt,

which are the distributions used for one-step generation, making the learning process less effective.

3.1 OUR DESIGN

To enable more effective learning for one-step generation, we propose to directly construct the learn-
ing objectives over clean data. We first construct a sequence distribution of clean data as follows:

p
(t)
θ (x0) =

∫
q(xt)pθ(x0|xt)dxt, 0 < t ≤ T ; p

(0)
θ (x0) ≜ q(x0), (1)

where q(x0) is the data distribution, pθ(x0|xt) ≜ N (Gθ(xt, t), σ
2I) and Gθ is the denoising gen-

erator. Note that Gθ(xt, t) is our denoising generator that predicts clean samples. If the network ϵθ

is parameterized to predict noise, we have Gθ(xt, t) ≜
xt−

√
1−ᾱtϵθ(xt,t))

ᾱt
.

Given the constructed distribution, we can formulate the optimization objective as follows:

Et[Dadv(q(x)||p(t)θ (x)) + λ · KL(q(x0,xt)||pθ(x0,xt))]

= Et[Dadv(q(x)||p(t)θ (x)) + λt · KL(q(x0)q(xt|x0)||q(xt)pθ(x0|xt))],
(2)

where q(x0,xt) ≜ q(x0)q(xt|x0) and pθ(x0,xt) ≜ q(xt)pθ(x0|xt). The optimization objective is
constructed by combining adversarial divergence and KL divergence. Specifically, the adversarial
divergence focuses on matching over the distribution level, ensuring the generation quality, and the
KL divergence focuses on matching over point level, ensuring the mode coverage.

However, it is hard to directly learn the adversarial divergence over clean data distribution, akin to
the challenges with GAN training. To tackle these challenges, previous Diffusion GANs (Xiao et al.,
2022; Xu et al., 2023b) have pivoted towards learning the adversarial divergence over the corrupted
data distribution. Unfortunately, as analyzed before, such an approach fails to directly match pθ(x0),
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curtailing the efficacy of one-step generation. Moreover, it also compels the discriminator to fit
different levels of noise, leading to limited capability.

Recall that p(t)θ (x) is defined as
∫
q(xt)pθ(x|xt)dxt. The quality of the distribution has two key

factors: 1) the ability of the trainable generator Gθ; 2) the information given by xt.

Hence given the generator Gθ fixed, if we increase the information in xt, it is supposed that we can
get a better distribution. In other words, it is highly likely that p(tk)θ (x) is superior to p

(t)
θ (x), where

tk = max{t − k, 0} < t. Motivated by the cooperative approach (Xie et al., 2018; 2021; 2022;
Hill et al., 2022) which uses an MCMC revised version of model distribution to learn the generator,
we suggest to use p

(tk)
θ (x) as ground truth to learn p

(t)
θ (x), which constructs the following training

objective:

min
θ

Lθ ≜ EtEq(x)q(xt|x)λt||Gθ(xt, t)− x||22 + Et(Dadv(p
(tk)
θ (sg(x))||p(t)θ (x)), (3)

where sg[·] denotes stop-gradient operator and the second term is named as cooperative adversarial
loss. This training objective can be regarded as a self-cooperative approach, since the ‘revised’
samples from p

(tk)
θ (x) and samples from p

(t)
θ (x) are generated by the same network Gθ. Note that

we only replace data distribution as p(tk)θ (x) in the adversarial divergence for smoothing the learning
objective, as recent work (Luo et al., 2023d) has found that it is beneficial to learn the generator with
a mix of real data and revised data.

We briefly verify the theoretical rationality of the cooperative adversarial divergence below.

Proposition 1 The optimal solution of the cooperative adversarial loss reaches p(T )
θ (x) = pd(x).

This proposition tells that the proposed cooperative adversarial loss can recover the real data distri-
bution when the network’s capability is sufficiently large, demonstrating the theoretical rationality
of the proposed objective. See proof in the Appendix C.

In the distribution matching objective above, we apply the non-saturating GAN objective to mini-
mize the adversarial divergence of marginal distributions. And the KL divergence for point matching
can be optimized by L2 loss. Hence a tractable training objective is formulated as follows:

min
θ

max
ϕ

Et[E
p
(tk)

θ
(x)

logDϕ(sg(x), t)− E
p
(t)
θ

(x)
logDϕ(x, t)] + λtEq(x)q(xt|x)||Gθ(xt, t)− x||22,

where Dϕ is the discriminator network. We find that the self-cooperative approach is connected
with Consistency Training (Song et al., 2023). However, Consistency Training considers the xtk as
an approximated ODE solution of xt to perform a point-to-point match. In contrast, our proposed
objective matches p(t)θ (x) and p

(tk)
θ (x) in marginal distribution level, which avoids the approximated

error of ODE.

To further ensure the mode cover of the proposed model, we can add consistency loss to our objective
as regularization, which constructs the following loss:

min
θ

max
ϕ

Et

{
E
p
(tk)

θ
(x)

[logDϕ(x, t)− E
p
(t)
θ

(x)
logDϕ(x, t)]

+ Eq(x)q(xtk
|x)q(xt|xtk

,x)[λ(t)||Gθ(xt, t)− x||22 + λcon
t ||Gθ(xt, t)− sg(Gθ(xtk , tk))||

2
2]
}
,

(4)

where λcon
t and λ(t) are pre-defined hyper-parameters.

4 TRY IT ON CIFAR-10 BEFORE SCALING UP FOR SAVING MONEY!
In this section, we evaluate the performance of the proposed YOSO on CIFAR-10 (Yu et al., 2015)
to verify its effectiveness under both training from scratch and fine-tuning settings.

4.1 TRAINING STRATEGIES

Before starting training, we introduce some effective training strategies in following for taming
YOSO.

Decoupled scheduler. We find that the optimal scheduler for performing consistency loss and ad-
versarial loss are not identical. This is due to the cooperative adversarial loss not involving the ap-
proximated error regarding the timestep skips, enabling a substantial skip to maximize its efficacy.

4
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In contrast, the consistency loss is susceptible to approximated error from timestep skips, necessi-
tating a more conservative skip to preserve its effectiveness. Hence, to better unleash the capability
of each loss, we propose using decoupled schedulers to construct our final training objective:

min
θ

max
ϕ

Et

{
E
p
(tk)

θ
(x)

[logDϕ(x, t)− E
p
(t)
θ

(x)
logDϕ(x, t)]

+ Eq(x)q(xtm |x)q(xt|xtm ,x)[λ(t)||Gθ(xt, t)− x||22 + λcon
t ||Gθ(xt, t)− sg(Gθ(xtm , tm))||22]

}
,

(5)

where tk = max(t− k, 0), tm = max(t−m, 0), and we let k = 250 and m = 25 in experiments.

Table 1: Unconditional generation re-
sults on CIFAR-10.

Model FID↓ NFE ↓
Distillation or Fine-tuning
YOSO 1.81 1

Tract (Berthelot et al., 2023) 3.78 1
Diff-Instruct (Luo et al., 2023c) 4.53 1
DMD (Yin et al., 2023) 2.66 1
CTM (Kim et al., 2024) 1.98 1
SiD (Zhou et al., 2024) 1.92 1

Training from scratch
YOSO 2.26 1

DDGANs (Xiao et al., 2022) 3.75 4
CT (Song et al., 2023) 8.70 1
iCT (Song & Dhariwal, 2024) 2.83 1

DDPM (Ho et al., 2020) 3.21 1000
EDM (Karras et al., 2022) 2.04 36
DDIM (Song et al., 2020) 4.67 50

StyleGAN2 (Karras et al., 2019) 2.92 1

Annealing strategy. Since our target is to obtain a pow-
erful one-step denoised generation model, however, as
the KL loss and consistency loss will enforce point-level
matching, this may hurt performance in cases where the
model capacity is insufficient. Therefore, we suggest re-
ducing the weight of these two losses to zero as training
progresses. Specifically, we let λ = (1− ⌊n/N

K ⌋
K−1 )λ′ for de-

creasing the weight to zero with K times, where n is the
current iterations and N is the total training iterations.

4.2 EMPIRICAL EVALUATION

Experiment Setting. We use the EDM (Karras et al.,
2022) architecture for both UNet and discriminator. For
the evaluation metric, we choose the Fréchet inception
distance (FID) (Heusel et al., 2017). We train the pro-
posed model on the CIFAR-10 dataset (Yu et al., 2015).
We only employ MSE to compute image distance.

Results. The quantitative results are shown in Tab. 1. We observe that our method provides state-
of-the-art performance with only a one-step manner on both training from scratch and fine-tuning
settings, outperforming previous existing accelerated DMs, and GANs. In particular, our YOSO in
fine-tuning EDM (Karras et al., 2022) even delivers better performance compared to EDM itself with
ODE sampling. This is because our YOSO performs fine-tuning instead of distillation, the optimal
solution for our YOSO is data distribution instead of teacher distribution.

5 TOWARDS ONE-STEP TEXT-TO-IMAGE SYNTHESIS

Since training a text-to-image model from scratch is quite expensive, we suggest using pre-trained
text-to-image DMs as initialization with Self-Coopeartive Diffusion GANs. In this section, we
introduce several principled designs for developing a generation model that enables one-step text-
to-image synthesis based on pre-trained DMs.

5.1 USING PRE-TRAINED MODELS FOR TRAINING

Latent Perceptual Loss. Prior research (Hou et al., 2017; Hoshen et al., 2019; Song et al., 2023)
has confirmed the effectiveness of perceptual loss in various domains. Notably, recent studies (Liu
et al., 2023; Song et al., 2023) have found that the LPIPS loss (Zhang et al., 2018) is crucial for
obtaining few-step DMs with high sample quality. However, a notable drawback is that the LPIPS
loss is computed in the data space, which is expensive. In contrast, the popular SD operates in the
latent space to reduce computational demands. Hence, using LPIPS loss in training latent DMs is
pretty expensive, as it requires not only the computation of LPIPS loss in the data space but also an
additional decoding operation. Realizing that the pre-trained SD can serve as an effective feature
extractor (Xu et al., 2023a), we suggest using pre-trained SD to perform latent perceptual loss.
However, SD is a UNet, whose final layer predicts epsilon with dimensions identical to the data.
Hence we propose using the bottleneck layer of the UNet for computing:

d(zθ, z) = ||HalfUNet(zθ, c, t = 0)−HalfUNet(z, c, t = 0)||22, (6)

where z is the latent encoded images by VAE and c is the text feature. We note that the benefit
of computing latent perceptual loss by SD is not only the computational efficiency but also the
incorporation of text features, which are crucial in text-to-image tasks.

Latent Discriminator. Training GANs for the text-to-image on large-scale datasets faces serious
challenges. Specifically, unlike unconditional generation, the discriminator for the text-to-image

5
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task should justify based on both image quality and text alignment. This challenge is more obvious
during the initial stage of training. To address this issue, previous pure GANs (Kang et al., 2023)
for text-to-image propose complex learning objectives and require expensive costs for training. The
learning of GANs has been shown to benefit from using a pre-trained network as the discriminator.
As discussed above, the pre-trained SD has learned representative features. Hence, we suggest ap-
plying the pre-trained SD for constructing the latent discriminator. Similar to latent perceptual loss,
we only use half UNet for the discriminator followed by a simple predict head. The advantages of
the proposed strategy are twofold: 1) we use the informative pre-trained network as initialization;
2) the discriminator is defined over latent space, which is computationally efficient. Unlike previ-
ous work (Sauer et al., 2023c) that defines a discriminator over data space which required decode
latent and backward from decoder, yielding expensive computational cost. By applying the Latent
Discriminator, we observe a stable training process with fast convergence.

5.2 FIXING THE NOISE SCHEDULER

A common issue in DMs is that the final corrupted samples are not pure noise. For example, the noise
scheduler used by the SD makes the corrupted samples at the final timestep as: xT = 0.068265 ·
x0 + 0.99767 · ϵ, where the terminal Signal-to-noise ratio (SNR) is ᾱT

1−ᾱT
= 0.004682, effectively

creates a gap between training and inference. Previous work (Lin et al., 2024a) has only observed
that this makes DMs unable to produce pure black or white images. However, we find that this issue
yields serious problems in one-step generation. As shown in Fig. 2, there are notable artifacts in
one-step generation if we directly sample noise from standard Gaussian. The reason may be that in
multi-step generation, the gap can be gradually fixed in sampling, while one-step generation reflects
the gap more directly. To address this issue, we provide two simple yet effective solutions.

(a) w/o IPI (b) w/ IPI

Figure 2: Samples by YOSO-
LoRA with one-step infer-
ence from different initializa-
tion.

Informative Prior Initialization (IPI). The non-zero terminal
SNR issue is similar to prior hole issues in VAEs (Klushyn et al.,
2019; Bauer & Mnih, 2019; Kingma et al., 2016). Therefore, we
can use informative prior instead of non-informative prior to effec-
tively address this issue. For simplicity, we adopt a learnable Gaus-
sian Distribution N (µ, σ2I), whose optimal formulation is given
below: ϵ′′ = ᾱT · (Exx+ Std(x)× ϵ′) +

√
1− ᾱT · ϵ, where Exx

and Std(x) can be efficiently estimated by finite samples, and ϵ′

follows standard Gaussian distribution. As shown in Fig. 2, the arti-
facts in one-step generation are immediately removed after applying
IPI. We note that the performance is achieved with minimal adjust-
ment, enabling the possibility of developing one-step text-to-image generation by LoRA fine-tuning.

Figure 3: Pre-
dicting ϵ fails.

Quick Adaption to V-prediction and Zero Terminal SNR. The IPI suffers from
numerical instability when terminal SNR is pretty low. As shown in Fig. 3, we
fine-tune PixArt-α (Chen et al., 2024) whose terminal SNR is 4e-5 with introduced
technique and ϵ-prediction, failing in one-step generation. Following (Lin et al.,
2024a), we suggest switching to v-prediction (Salimans & Ho, 2022) and zero ter-
minal SNR. However, we found that direct transition convergences slowly (see
Appendix F). This is unacceptable in solving large-scale text-to-image with limited
computational resources. To address this, we propose a quick adapt-stage:

Adapt-stage-I switch to v-prediction : L(θ) = λt||vθ(xt, t) − vϕ(xt, t)||22, where vϕ(xt, t) =

ᾱtϵϕ(xt, t)−
√
1− ᾱtx

t
ϕ, xt

ϕ =
xt−

√
1−ᾱtϵϕ(xt,t)

ᾱt
, vθ(·, ·) denotes the desired v-prediction model,

and ϵϕ(·, ·) denotes the frozen pre-trained model.

Adapt-stage-II switch to zero terminal SNR : L(θ) = λt||vθ(xt, t) − vϕ(x
′
t, t)||22. Note that in

this stage, we only change the scheduler to zero terminal SNR for student model. This avoids
numerical instability issues of ϵ-prediction with zero terminal SNR. We note that the zero terminal
SNR scheduler has lower SNR than the original schedule at each timestep, formulating an effective
distillation objective.

We note that this adapt stage converges rapidly, typically requiring only 1k iterations to initialize
training YOSO. This enables a quick adaption to v-prediction and zero terminal SNR from pre-
trained ϵ-prediction DMs, thereby comprehensively mitigating the non-zero terminal SNR issue in
the noise scheduler.
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Figure 4: Qualitative comparisons of YOSO against competing methods. NFE denotes the Number
of Function Evaluations.

Figure 5: Qualitative comparisons of YOSO against competing methods. It can be seen that both
DMD and SD-Turbo suffer from mode collapse, while YOSO achieves better sample quality and
mode cover. The prompt is "A cute dinosaur, cartoon style, white background".

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed YOSO. Sec. 6.1 examines YOSO in
the context of text-to-image generation by fine-tuning pre-trained PixArt-α (Chen et al., 2024) and
Stable Diffusion (Rombach et al., 2022). In Sec. 6.3, we show that the YOSO can be used for
several downstream applications. Moreover, we conduct ablation studies in Sec. 6.2 to highlight the
effectiveness of our proposed algorithm and proposed training techniques.

6.1 TEXT-TO-IMAGE GENERATION

Experiment Setting. We initialize the GAN generator by pre-trained PixArt-α which is a diffusion
transformer with 0.6B parameters. For the GAN discriminator, we construct the latent discriminator
by pre-trained SD 1.5 using the proposed construction introduced in Sec. 5.1. We switch the pre-
trained PixArt-α to v-prediction by the proposed technique introduced in Sec. 5.1, followed by
training on the JourneyDB dataset (Pan et al., 2023) with resizing as 512 resolution. We apply
a batch-size of 256 and a constant learning rate of 2e-5 during training. We observe the training
convergence fast, requiring only 30k iterations and around 10 A800 days to be trained. We apply a
batch-size of 256 and a constant learning rate of 2e-5 during training. We also conduct experiments
on fine-tuning SD 1.5 via LoRA to show the effectiveness of the proposed YOSO.

Evaluation. We employ Aesthetic Score (AeS) (Schuhmann et al., 2022) to evaluate image quality
and adopt the Human Preference Score (HPS) v2.1 (Wu et al., 2023) to evaluate the image-text
alignment and human preference. The AeS is computed by an aesthetic score predictor trained on
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LAION (Schuhmann et al., 2022) datasets, without considering the image-text alignment. HPS is
trained to predict human preference given image-text pairs, considering the image-text alignment
and human aesthetic. Additionally, we include ImageReward score (Xu et al., 2024), and CLIP
score (Hessel et al., 2021) to provide a more comprehensive evaluation of the model performance.
We mainly compare our model against the open-source state-of-the-art (SOTA) models, e.g., SD-
Turbo (Sauer et al., 2023c), PixArt-DMD (Chen et al., 2024; Yin et al., 2023), and Hyper-SD (a
concurrent work) (Ren et al., 2024).

Table 2: Comparison of machine metrics on text-to-image
generation across state-of-the-art methods. HFL denotes hu-
man feedback learning which might hack the machine met-
rics.

Model Backbone HFL Steps HPS↑ AeS↑ IR↑ CS↑
Base Model SD 2.1 No 25 27.28 5.66 0.36 33.46
SD Turbo (Sauer et al., 2023c) SD 2.1 No 1 27.06 5.31 0.40 32.21

Base Model SD 1.5 No 25 24.72 5.49 0.20 31.88
InstaFlow (Liu et al., 2023) SD 1.5 No 1 26.18 5.27 -0.22 30.04
Hyper-SD-LoRA (Ren et al., 2024) SD 1.5 Yes 1 28.01 5.79 0.29 30.87
YOSO-LoRA (Ours) SD 1.5 No 1 28.33 5.97 0.43 31.33
LCM-LoRA (Luo et al., 2023b) SD 1.5 No 4 22.77 5.66 -0.37 30.36
PeRFlow (Yan et al., 2024) SD 1.5 No 4 22.43 5.64 -0.35 30.77
TCD-LoRA (Zheng et al., 2024) SD 1.5 No 4 22.24 5.45 -0.15 30.62
Hyper-SD-LoRA (Ren et al., 2024) SD 1.5 Yes 4 30.24 5.55 0.53 31.07
YOSO-LoRA (Ours) SD 1.5 No 4 30.50 6.05 0.56 31.52

Base Model PixArt-α No 25 31.07 6.12 1.05 33.81
DMD (Yin et al., 2023) PixArt-α No 1 29.78 6.02 0.97 32.90
YOSO (Ours) PixArt-α No 1 30.52 6.19 1.02 32.95

Quantitative Results. The quantita-
tive results are presented in Tab. 2.
As shown in Tab. 2, YOSO clearly
beat previous state-of-the-art meth-
ods across all metrics (including
HPS, AeS, Image Reward score, and
Clip Score). It is important to
highlight that for the SD 1.5 back-
bone, we only use LoRA for fine-
tuning SD 1.5, where only less than
10% parameters are tuned. Mo-
roever, our method without human
feedback learning (HFL) even out-
performs Hyper-SD with HFL which
potentially hacks the machine metric.

Qualitative Comparison. To provide more comprehensive insight in understanding the perfor-
mance of our YOSO, we further provide the qualitative comparison in Fig. 4. The comparison
shows that: YOSO clearly beats existing baselines in terms of both image quality and prompt align-
ment, which is achieved by LoRA-finetuning. Specifically, the samples by SD-Turbo are blurry to
some extent, and the samples by Hyper-SD are over-saturated and with notable artifacts. Moreover,
the advantage of YOSO in text-image alignment is significant. For example, in the last row of Fig. 4
related to a cow-people worker is coding, previous methods including SD 1.5 itself cannot produce
samples following the prompt, while YOSO precisely follows the prompt to generate a half cow half
people worker. Additionally, it is important to highlight that both SD-Turbo and DMD seem to have
a serious issue in mode collapse. As shown in Fig. 5, both SD-Turbo and DMD generate samples
that are extremely close to each other. Overall, based on quantitative and qualitative results, we
conclude that our YOSO is better in sample quality, prompt alignment, and mode cover compared
with the SOTA one-step text-to-image models.

6.1.1 ZERO-SHOT ONE-STEP 1024 RESOLUTION GENERATION

Due to the computational resource limitation, we trained YOSO on 512 resolution. However, there
is a 1024-resolution version of PixArt-α, obtained by continuing training on the 512-resolution
version of PixArt-α. Motivated by the effectiveness of the LoRA combination (Luo et al., 2023b),
we suggest constructing a similar combination as follows:

WYOSO1024 = WPixArt512 + α · (WPixArt1024 −WPixArt512) + β · (WYOSO512 −WPixArt512), (7)

where α, β ∈ (0, 1] and W means the model weight. We let α = β = 1 in our experiments. As
shown in Fig. 1b, the YOSO constructed in this way can generate high-quality images with 1024
resolution. Note that YOSO even changes the predicted objective to v-prediction. The impressive
performance indicates the robust generalization ability of our proposed YOSO.

6.2 ABLATION STUDIES

We provide additional insight into the effectiveness of the proposed YOSO by performing ablation
studies on some potential variants on CIFAR-10 and on text-to-image generation. We call YOSO
without decoupled scheduler and annealing strategy as YOSO-base. See more details in Appendix.

Effect of Consistency Loss. For the effect of consistency loss in YOSO, our results suggest that it
can improve the image quality, as indicated by the FID scores in Tab. 3. Notably, the removal of the
consistency loss does not lead to a substantial decline in generation performance, which indicates
the effectiveness of our proposed adversarial formulation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Qualitative comparison against competing methods and applications in down-stream tasks.
Table 3: Ablation study on CIFAR-10
with smaller backbone.

Model FID↓ NFE ↓
YOSO 3.05 1
YOSO-Base w/ decoupled scheduler 3.30 1
YOSO-Base 3.82 1

YOSO-Base w/o consistency loss 4.41 1
YOSO-Base w/o LPIPS loss 4.63 1
YOSO-Base w/ Dadv(pd||ptθ) 10.85 1
UFOGen (Xu et al., 2023c) 45.15 1
DDGANs (Xiao et al., 2022) 3.75 4

Table 4: Ablation study on one-step text-to-image synthesis.

CM Lper IPI Naive GAN Coop GAN DS AS HPS AeS
✓ 15.22 5.23
✓ ✓ 20.08 5.45
✓ ✓ ✓ 20.63 5.57
✓ ✓ ✓ ✓ 24.88 5.69
✓ ✓ ✓ ✓ 26.42 5.85
✓ ✓ ✓ ✓ ✓ 27.10 5.94
✓ ✓ ✓ ✓ ✓ ✓ 28.33 5.97

Effect of Latent Perceptual Loss. To investigate the effect of latent perceptual loss proposed in
Sec. 5.1, we conduct experiments on text-to-image tasks by using it to compute the consistency loss.
As shown in Tab. 4, the proposed latent perceptual loss clearly improves the HPS from 15.22 to
20.08 and AeS from 5.23 to 5.45, highlighting its effectiveness.

Effect of Decoupled Scheduler. We evaluate the impact of the proposed decoupled scheduler by
adding it to YOSO-base. As evidenced by Tab. 3 and Tab. 4, the incorporation of the decoupled
scheduler significantly enhances sample quality, as reflected by improvements in FID, HPS, and
AeS metrics. Notably, the FID score on CIFAR-10 decreases from 3.82 to 3.30 and the HPS in
text-to-image tasks is improved from 26.42 to 27.10, demonstrating the superior efficacy of the
decoupled scheduler.

Effect of Annealing Strategy. We also assess the effect of the proposed annealing strategy by
removing it from the final formulated YOSO. As illustrated in Tab. 3 and Tab. 4, the removal of
the annealing strategy degrades FID from 3.05 to 3.30 and reduces HPS from 28.33 to 27.10. Such
results demonstrate the effectiveness of the annealing strategy in training YOSO.

Figure 7: The discriminator loss curve.

Adversarial Divergence Dadv(pd||ptθ). The key design
of our proposed YOSO is smoothing the adversarial di-
vergence by using self-generated data instead of real data
as ground truth to perform adversarial divergence.We
evaluate the variant of using Dadv(pd||ptθ) as adversarial
divergence. As shown in Tab. 3, the performance of the
variant is significantly worse than YOSO-Base, i.e., FID
degrades from 3.82 to 10.85. Moreover, besides sample
quality, we find that the training of our proposed YOSO
is much more stable than the variant. As shown in Fig. 7, the discriminator loss of the variant is not
stable and is much smaller than ours. We also compare the variant in the text-to-image task. The
results are given in Tab. 4, from which we can see that replacing our cooperative adversarial loss
with Dadv(pd||ptθ) yields serious performance deterioration, i.e., HPS decreases from 26.42 to 24.88
and AeS decreases from 5.85 to 5.69. This indicates that our approach can effectively smooth the
adversarial divergence by narrowing the gap between fake and real distribution, which makes dis-
crimination harder and hence increases discriminator loss. Furthermore, we observe mode collapse
in the training of this variant. Note that a similar case also occurs in SD-Turbo, a strong one-step
text-to-image model, which performs adversarial divergence directly against real data (See Fig. 4).
Overall, these results indicate the superiority of the proposed YOSO.

Comparison to UFOGen. Similar to us, UFOGen does not directly perform adversarial diver-
gence against real data either. Instead, they employ adversarial divergence over corrupted data (i.e.,
Dadv(q(xt−1)||

∫
q(xt−1|x = Gθ(xt, t))q(xt)dxt)). However, we argue that such a formulation
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is less effective in constructing one-step generation model as the adversarial divergence it employs
only indirectly aligns with one-step generation at the level of clean data. We implement UFOGen
on CIFAR-10 on our own. Note that we also perform consistency loss in the UFOGen variant to
ensure a fair comparison, as the consistency loss has been found useful in YOSO. As shown in
Tab. 3, UFOGen only obtains 45.15 FID on CIFAR-10, significantly worse than YOSO with 3.82
FID. This further underscores the superiority of our proposed YOSO. Through comparison with dif-
ferent adversarial divergence formulations, we find that our approach not only stabilizes training by
smoothing the adversarial divergence but also facilitates effective learning for one-step generation.

6.3 APPLICATION

One promising and attractive property of DMs is that they can be used in multiple downstream
tasks. In this section, we show the capability of our proposed YOSO in various downstream tasks,
keeping the unique advantages of DMs: 1) Image-to-image Editing: As shown in Fig. 6, our
YOSO-LoRA is capable of performing high-quality image-to-image editing (Meng et al., 2022) in
one step; 2) Compatibility with ControlNet and Different Base Models: As shown in Fig. 6, our
YOSO-LoRA is compatible with ControlNet (Zhang et al., 2023), following the condition well. Our
YOSO-LoRA is also compatible with different base models (e.g., Dreamshaper and Toonyou) fine-
tuned from SD 1.5, preserving their style well. We find that when applying YOSO-LoRA to new
base models, it fails to produce reasonable samples in one step. This may be due to the capability of
LoRA and the distribution shift of training data.

7 RELATED WORKS

Few-Step Text-to-Image Generation. LCM (Luo et al., 2023a) adapts consistency distilla-
tion (Song et al., 2023) for stable diffusion (SD) and enables image generation in 4 steps with
acceptable quality. InstaFlow (Liu et al., 2023) adapts rectified flows (Liu et al., 2022; Liu, 2022)
for SD, facilitating the generation of text-to-image in a mere single step. Despite this, the fidelity
of the generated images is still poor. Some works (Yin et al., 2023) adapts variation score distil-
lation (Wang et al., 2023) and diff-instruct (Luo et al., 2023c) for SD, which requires training an
additional DMs for the generator distribution, akin to the discriminator in GANs. We found models
trained in this way seem to have serious mode collapse issues (see Fig. 5). Recently, combining
DMs and GANs for one-step text-to-image generation has been explored. UFOGen (Xu et al.,
2023c) extends DDGANs (Xiao et al., 2022) and SSIDMs (Xu et al., 2023b) to SD by modifying
the computation of reconstruction loss from corrupted samples to clean samples. However, it still
performs adversarial matching using corrupted samples. ADD (Sauer et al., 2023c) introduces a
one-step text-to-image generation based on SD. It follows earlier research (Sauer et al., 2023a) by
employing a pre-trained image encoder, DINOv2 (Oquab et al., 2024), as the backbone of the dis-
criminator to accelerate the training. However, the discriminator design moves the training from
latent space to pixel space, which substantially heightens computational demands. Moreover, they
directly perform adversarial matches at clean real data, increasing the challenge of training. This
requires the need for a better but expensive discriminator design and expensive R1 regularization
to stabilize the training. SDXL-Lightning (Lin et al., 2024b) combines progressive distillation and
adversarial training in a progressive framework. Recently, a concurrent work Hyper-SD (Ren et al.,
2024) combines consistency distillation and adversarial training in a progressive framework, while
our work can be trained end-to-end. However, their work performs adversarial point-level match-
ing via consistency loss, and they still perform adversarial training via injecting noise. This results
in less effective one-step learning, thus they rely on human feedback learning for achieving better
performance. In contrast, we perform the adversarial training at the distribution level by replacing
real data with self-generated data to smooth the adversarial divergence, which not only can stabilize
the training without injecting noise but also form effective one-step generation learning. Moreover,
compared with above mentioned diffusion-GAN hybrid models, our approaches can be trained from
scratch to perform one-step generation, which is not demonstrated by them. Additionally, we extend
our method not only to SD but also to PixArt-α (Chen et al., 2024) which is based on diffusion
transformer (Peebles & Xie, 2022). This demonstrates the wide application of our proposed YOSO.

8 CONCLUSION

In summary, we present YOSO, a new generative model enabling high-quality one-step generation.
Our novel designs combine the diffusion process and GANs, enabling not only one-step generation
training from scratch but also one-step text-to-image generation fine-tuning from pre-trained models.
We will release our model to advance the research of text-to-image synthesis.
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Algorithm 1 YOSO training from scratch.

Require: dataset D, learning rate η, total denoising steps T , total iterations N , distance metric
d(·, ·), and noise scheduler Q(·, ·, ·).

Ensure: optimized models Gθ, Dϕ.
1: Initialize weights {θ, ϕ};
2: for i← 1 to N do
3: Sample noise ϵ from standard normal distribution;
4: Sample data x from dataset D;
5: Sample Timesteps t from 1 to T uniformly.
6: Obtain noisy samples xt = Q(x, ϵ, t)
7: Obtain less noisy samples xt−1 = Q(x, ϵ, t− 1)
8: Obtain one-step prediction: x̂t = Gθ(xt, t) and x̂t−1 = Gθ(xt−1, t− 1)
9: # update discriminator

10: Compute Loss Lϕ following Eq. (4).
11: ϕ← ϕ− η∇ϕLϕ;
12: # update Generator
13: Compute Loss Lθ following Eq. (4).
14: θ ← θ − η∇θLθ;
15: end for

A BROADER IMPACTS

This work presents YOSO, a method that accelerates multi-step large-scale text-to-image diffusion
models into a one-step generator. On the positive side, while this is academic research, we believe
the proposed YOSO can be widely applied in industry, and its high efficiency can lead to energy
savings and environmental benefits. However, when these rapid generation models are manipu-
lated by malicious actors, they can also simplify and accelerate the creation of harmful information.
Although our work focuses on scientific research, we will take actions to reduce the harmful infor-
mation, such as filtering out harmful content in the dataset.

B LIMITATION

Our model, like most text-to-image diffusion models, may exhibit shortcomings in terms of fairness,
as well as in handling specific details and accurately controlling the number of targets. We plan to
explore these unresolved issues in the generation field in our future work, in order to enhance the
model’s capabilities in text generation, fairness, detail control, and quantitative control.

C PROOF

Proof: The cooperative adversaril loss is defined as: Et(Dadv(p
(tk)
θ (sg(x))||p(t)θ (x)). Since the

divergence is non-negative, and the p
(0)
θ is defined as pd, there exist a global optimal solution

p
(T )
θ (x) = p

(T−1)
θ (x) = · · · = pd(x) such that Et(Dadv(p

(tk)
θ (sg(x))||p(t)θ (x)) = 0. This com-

pletes the proof.

D TRAINING ALGORITHM

We present the algorithm for training YOSO from scratch in Algorithm 1.

E ADDITIONAL RELATED WORK

Text-to-image Diffusion Models. Since Diffusion models have shown a stable training process and
are well-suited for scaling up generative models, numerous works have been proposed to extend
DMs for text-to-image generation (Ramesh et al., 2022; Balaji et al., 2022; Rombach et al., 2022;
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(a) w/o quick adaption. (b) w/ quick adaption.

Figure 8: One-step generated images by YOSO-PixArt-α trained with only 5k iterations
under different configurations from the same initial noise and prompt.

Xue et al., 2023). Latent DMs (Rombach et al., 2022; Podell et al., 2023) are widely adopted for
high-resolution image and video generation due to their computational efficiency.

F THE EFFECT OF QUICK-ADAPTION

We present a qualitative comparison between YOSO w/o quick adaption and YOSO w/ quick adap-
tion in Fig. 8. Note that the YOSO and variants here are trained with only 5k iterations. And for
YOSO w/ quick adaption, we incorporate the 1k iterations used for quick adaptation into the total
5k training iterations to ensure a fair comparison. As shown in Fig. 8, YOSO w/ quick adaption
demonstrates significantly better image quality compared to YOSO w/o quick adaption. The gener-
ated images of YOSO w/o quick adaption exhibit over-smoothing and severe artifacts. This indicates
that the convergence of direct transition to v-prediction and zero terminal SNR is relatively slower.
Additionally, it is worth highlighting that although there are only 5k training iterations, the one-step
generation quality of YOSO is already reasonable, which demonstrates the effectiveness and quick
convergence of the proposed quick adaption stage and YOSO.

G EXPERIMENT SETTING DETAILS

G.1 UNCONDITIONAL GENERATION EXPERIMENTS

For the generator, we use the Adam optimizer with β1 = 0.9 and β2 = 0.999; for the discriminator, we
use the Adam optimizer with β1 = 0. and β2 = 0.999. We adopt a constant learning rate of 2e-4 for
both the discriminator and the generator in training from scratch. We adopt a constant learning rate
of 2e-5 for both the discriminator and the generator in fine-tuning. We apply EMA with a coefficient
of 0.9999 for the generator. We let the λt = SNR(t) and λcon

t = 1
1

SNR(t)−
1

SNR(t−1)

.

G.2 TEXT-TO-IMAGE EXPERIMENTS

For the generator, we use the AdamW optimizer with β1 = 0.9 and β2 = 0.999; for the discriminator,
we use the AdamW optimizer with β1 = 0. and β2 = 0.999. We adopt a constant learning rate of 2e-5
for both the discriminator and the generator. We apply gradient norm clipping with a value of 1.0
for the generator only. We use batch size 256. For full fine-tuning, we apply EMA with a coefficient
of 0.9999 for the generator. For LoRA fine-tuning, we apply EMA with a coefficient of 0.999 for
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Figure 9: Additional qualitative comparison on PixArt-α backbone at 1024 resolution.

the generator. Generally, the training is done within 30k iterations for full fine-tuning, while within
5k iterations for LoRA fine-tuning. We let the λt = SNR(t) and λcon

t = 1
1

SNR(t)−
1

SNR(t−m)

.

For full fine-tuning, we train YOSO on the JourneyDB dataset (Pan et al., 2023), by resizing to 512
resolution. And we only use the square image. For LoRA fine-tuning, we use an internally collected
dataset and the caption of the JourneyDB dataset (Pan et al., 2023) to generate data for training,
we only generate one image for one caption. For the evaluation, we evaluate the HPS score on its
benchmark, and we evaluate other metrics based on COCO-5k (Lin et al., 2014) datasets.

G.3 ABLATION STUDY

For the ablation study on CIFAR-10, we use the same UNet and discriminator architecture as used
in DDGANs (Xiao et al., 2022). For the generator, we use the Adam optimizer with β1 = 0.9 and β2

= 0.999; for the discriminator, we use the Adam optimizer with β1 = 0. and β2 = 0.999. We adopt
a constant learning rate of 2e-4 for both the discriminator and the generator. We apply EMA with a
coefficient of 0.9999 for the generator. We let the λt = SNR(t) and λcon

t = 1
1

SNR(t)−
1

SNR(t−1)

.

H ADDITIONAL QUALITATIVE COMPARISON

We present an Additional Qualitative comparison to PixArt-α and PixArt-δ on 1024 resolution in
Fig. 9. As can be observed, our method produces significantly better image quality compared to
PixArt-δ (LCM) and achieves comparable results to the multi-step teacher model.

We present an Additional qualitative comparison among different sampling steps using YOSO-
LoRA in Fig. 10. As can be observed, the 4-step samples have better visual quality than 1-step
samples

We present an Additional qualitative comparison among 2-step examples of LCM by varying the
distance metrics in Fig. 11 to verify the effectiveness of the proposed latent perceptual loss. In
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(a) 1-step samples

(b) 4-step samples

Figure 10: Qualitative comparison among different sampling steps using YOSO-LoRA.

particular, we mainly vary the feature layer for computing the latent perceptual loss. It can be seen
that using the bottleneck layer delivers better visual quality.
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Figure 11: Additional qualitative comparison of 2-step examples on varying the distance metric in
LCM.
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