
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Time to Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

Anonymous Authors1

Abstract
Large language models (LLMs) are widely used
to evaluate the quality of LLM generations and
responses, but this leads to significant challenges:
high API costs, uncertain reliability, inflexible
pipelines, and inherent biases. To address these,
we introduce PAJAMA (Program-As-a-Judge for
Automated Model Assessment), a new alterna-
tive that uses LLMs to synthesize executable
judging programs instead of directly scoring re-
sponses. These synthesized programs can be
stored and run locally, costing orders of magni-
tude less while providing interpretable, and au-
ditable judging logic that can be easily adapted.
Program-based judges mitigate biases, improving
judgment consistency by 15.83% and reducing
biased responses by 23.7% on average compared
to a Qwen2.5-14B-based LLM-as-a-judge. When
program judgments are distilled into a model, PA-
JAMA outperforms LLM-as-a-judge on the chal-
lenging CHAT-HARD subset of RewardBench,
outperforming metrics by 2.19% on Prometheus
and 8.67% on the JudgeLM dataset, all at three
orders of magnitude lower cost.

1. Introduction
General-purpose large language models (LLMs) are now the
standard for automated evaluation of generative model re-
sponses. In the typical LLM-as-a-judge setup, a judge LLM
evaluates a user query with two LLM-generated answers,
then selects the better one (Wei et al., 2024). These judg-
ments can be viewed as preference labels that enable ranking
LLMs by performance (Chiang et al., 2024; Zheng et al.,
2023), efficiently verifying LLM agent behaviors (Zhuge
et al., 2024), curating datasets (Wettig et al., 2024), or distill-
ing into specialized reward models (Christiano et al., 2017).

Despite their promise, current LLM-as-a-judge approaches
have several drawbacks:

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

• High cost: Querying state-of-the-art models, e.g., Open
AI o3, or Claude 3 Opus (Anthropic, 2024), can run into
thousands of dollars for large evaluation sets. For example,
researchers spent about $4,000 to generate 100K high-
quality judgments using GPT-4 (Zhu et al., 2023).

• Uncertain reliability: Although LLMs can explain their
verdicts, their outputs may exhibit inconsistent reliability
in adhering to rubrics (Yu et al., 2024).

• Inflexible pipelines: Any minor change to the evaluation
rubric requires re-running the entire pipeline, incurring
additional expenses.

• Inherent biases: LLMs trained on web datasets encode
social and stylistic biases (e.g., gender preferences, or
favoring emojis), which can skew decisions (Adila et al.,
2024; Chen et al., 2024; Ye et al., 2024).

We address these by relying on a simple but powerful notion.
Instead of prompting an LLM for preferred answers, we ask
it to generate the judging logic it would use and encode
it into an executable program. In other words, the model
is asked to synthesize a compact function, e.g., a few lines
of Python, that encodes its evaluation criteria. These are
executed to obtain a quality score for each response.

This program synthesis-style strategy offers several advan-
tages. First, API costs now scale with the number of gener-
ated programs, not the dataset size, significantly reducing
expenses. Once generated, judging programs can be stored
and executed locally for any new query at no additional
cost. Second, synthesized programs are interpretable, allow-
ing practitioners to audit each line, refine rubrics, or insert
heuristic rules to minimize bias. Third, by exposing the
full decision logic, this approach turns a black-box judging
model into a transparent, inspectable evaluation process.

While promising, translating LLM judgments into exe-
cutable code raises new challenges. It is common for syn-
thesized programs to be repetitive, reusing similar criteria
with minor variations. To encourage diversity, we introduce
six distinct criteria—each expressible as code—to guide
LLMs in generating useful programs. Additionally, individ-
ual program outputs can be noisy, and different programs
may capture complementary signals. We address this by
combining our approach with the weak supervision frame-
work (Ratner et al., 2016; 2017; 2019; Fu et al., 2020). By
modeling program outputs, we aggregate program judges

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

Figure 1. PAJAMA’s General Workflow.

into a collective signal that can outperform naı̈ve ensem-
bling approaches like majority voting.

Results and Contributions. To tackle the above, we pro-
pose PAJAMA (Program-As-a-Judge Automated Model
Assessment), a lower-cost and lower-bias evaluation system
that relies on synthesized judging programs. Each program
can serve directly as a judge or have its judgments dis-
tilled into a reward model for improved generalization. For
example, when distilled into a reward model, PAJAMA out-
performs LLM-as-a-judge-distilled reward models on the
challenging CHAT-HARD subset of RewardBench (Lam-
bert et al., 2024), achieving +2.19% on Prometheus (Kim
et al., 2023) and +8.67% on JudgeLM dataset (Zhu et al.,
2023), while decreasing API costs by approximately 3500→
and 2500→, respectively. We also test PAJAMA on high-
bias responses, observing that it produces consistent correct
responses and improved error rate over LLM-as-a-judge.
Across four common bias types, it enhances consistency by
15.83% and reduces the biased-answer win rate by 23.7%
relative to Qwen2.5-14B.

2. Evaluation System: PAJAMA
We start with an overview of PAJAMA’s general workflow,
followed by the problem setup (Sec. 2.1), then describe pro-
gram synthesis for judging code (Sec. 2.2) and discuss how
we combine multiple judgments to produce an aggregated
evaluation decision (Sec. 2.3).

General Workflow. The workflow of PAJAMA is illus-
trated in Fig. 1. First, users collect queries and LLM genera-
tion pairs, then create prompts to guide LLMs in generating
programs with judging logic. Prompts can vary in their de-
sign and specified evaluation criteria, enabling the creation
of multiple judging programs. Using weak supervision,
aggregated preference labels are inferred from program out-
puts. Finally (and optionally), these judgments can be used
to train a distilled reward model for local use.

2.1. Problem Setup

We consider user queries and responses drawn from the
space of free-form text, !ω, e.g., all possible natural lan-
guage strings. We denote the space of queries as X and
the space of responses as Y . For any query x ↑ X , we

evaluate two responses, y1, y2 ↑ Y , generated by the same
or different LLMs. Other approaches directly score each
candidate generation, i.e., assign a score to each y.

Ground-truth assessments for reward or evaluation models
are accurate but costly and slow due to human annotations.
Using LLM-as-a-judge is faster but incurs high inference
costs, and may embed LLM biases into ground truth and
downstream models. We address these issues with synthe-
sized judging programs as an alternative.

2.2. Program Synthesis

We propose a prompting template to query LLMs for syn-
thesizing programmatic judges. Using GPT-4o (Hurst et al.,
2024), we generate these judges as follows:

Prompt used to synthesize judging programs.

You are a judge tasked with evaluating LLM-
generated responses to a given question. Write your
evaluation logic as Python code, returning a numeric
score for a response where higher values indicate bet-
ter quality. Use third-party libraries (e.g., embedding
models, nlp metrics) as needed.
def judging function(query, response):

We chose this approach for its simplicity, but we note that
more sophisticated approaches to program synthesis can
be seamlessly swapped in. Next, we propose six distinct
criteria that can be incorporated into the program synthesis
prompt and thus be encoded into executable Python code.
We describe each criterion below. We likewise note that
these can be easily swapped for other criteria relevant to the
particular task of interest.

• Structure: A judge evaluates text by analyzing features
such as transition markers (e.g., “therefore,” “however”),
sentence count, paragraph length, and the presence of
headings, questions, or emphasized text. More markers
and structured elements indicate better quality.

• Relevance: A judge assesses semantic alignment between
the question and response. For example, one approach
uses TF-IDF to compute cosine similarity for lexical over-
lap. Another can employ semantic embeddings to measure
deeper contextual similarity (Multi-Granularity, 2024).

• Readability: A judge analyzes grammar errors, informa-
tion density, and counts repetitive words. It also includes
third-party libraries to compute readability metrics like
the Flesch–Kincaid grade level (Kincaid et al., 1975).

• Bias: A judge evaluates response objectivity using sen-
timent analysis and regex patterns to detect stance and
biased keywords, ensuring neutrality.

• Factuality: A judge assesses factual accuracy, using fine-
tuned BERT models to verify content correctness (Feng
et al., 2023).

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

• Safety: A judge employs fine-tuned BERT models,
trained to detect hate speech or harmful content, to ensure
responses are safe and appropriate (Vidgen et al., 2021).

We note that these judging principles, evaluation rubrics,
and keyword lists are all generated by the GPT4o. Each of
the resulting programs can function as an independent judge
to assess the quality of LLM responses.

2.3. Judgment Ensemble

The outputs of program-based judges can be noisy or in-
complete. For this reason, we seek to combine them. Doing
so enables reducing noise and taking advantage of comple-
mentary signals. We perform the aggregation by borrowing
weak supervision techniques.

Suppose we generate m judging programs, each implement-
ing a scoring function ωi : X → Y ↓ [0, 1]. For a prompt x
and two candidate responses y1 and y2, we discretize their
scores by defining

ω̄i(x, y1, y2) =

{
+1, if ωi(x, y1) > ωi(x, y2),

↔1, otherwise.

In words, a judge outputs +1 when it prefers y1 over y2,
and ↔1 when it prefers the opposite.

Borrowing the terminology of weak supervision (Ratner
et al., 2019; Shin et al., 2022), we model a joint distri-
bution over the noisy outputs ω̄i, conditioned on the (la-
tent) true preference label Y (x, y1, y2) ↑ {+1,↔1}, as
Pr

(
ω̄1, . . . , ω̄m | x, y1, y2

)
= 1

Zω
exp

(
↔ εi

∑m
i=1 ω̄iY

)
,

where εi denotes the reliability weight, i.e., accuracy,
learned for judge i, and Zε is the normalizing partition func-
tion ensuring a valid probability distribution. Once these
weights are learned, the ensemble can infer a consensus pref-
erence label for any triple (x, y1, y2) (Ratner et al., 2016;
2017; 2019; Fu et al., 2020). These inferred preference la-
bels can be used to evaluate LLM generations directly, or
be distilled into a reward model (Christiano et al., 2017).
The distilled model is often able to generalize beyond the
constituent programs (Shin et al., 2025).

3. Experiments
We evaluate PAJAMA’s effectiveness through two experi-
ments. We first compare its effectiveness to LLM-as-a-judge
(Sec. 3.1) then assess its robustness when facing responses
with intentionally injected biases (Sec. 3.2). Our goals are
to validate the following claims:

C1. Lower evaluation costs: PAJAMA can yield com-
petitive evaluation results at significantly lower cost
compared to LLM-as-judge. Its performance scales as
the number of synthesized programs increases.

C2. Bias reduction: PAJAMA can mitigate biases, main-

taining consistent, correct responses and reducing the
biased-response win rate.

3.1. Effectiveness in Evaluation (C1)

Setup. We employ three pairwise comparison datasets:
Prometheus (Kim et al., 2023), JudgeLM (Zhu et al., 2023),
and PandaLM (Wang et al., 2024) to assess the perfor-
mance of our program-as-a-judge approach. We prompt
GPT-4o (Achiam et al., 2023) to generate 52 judging pro-
grams, execute them, and aggregate program outputs via
Snorkel (Ratner et al., 2017) to create preference labels for
the training dataset. For LLM-as-a-judge comparison, the
training datasets for Prometheus and JudgeLM are produced
by GPT-4, while PandaLM uses GPT-3.5-Turbo. Both train-
ing datasets are used to fine-tune Gemma-2B-it (Team et al.,
2024), distilling their judgments into reward models. We
evaluate the performance of these distilled models on (i)
held-out splits of the respective datasets (in-domain) and
(ii) RewardBench, a standard out-of-domain benchmark for
reward models (Lambert et al., 2024).

Results. Table 1 compares the performance of distilled
reward models constructed using two approaches. On in-
domain held-out evaluation sets, PAJAMA gives competi-
tive results in comparison to LLM-as-a-judge, while incur-
ring significantly less cost in obtaining preference labels,
requiring only $0.053—three orders of magnitude cheaper
than LLM-as-a-judge. This cost efficiency holds in Re-
wardBench evaluations as well. Moreover, while LLM-as-a-
judge achieves higher accuracy in the CHAT and Reasoning
categories, the program-as-a-judge-distilled reward model
outperforms it in the more challenging CHAT-HARD cate-
gory, with gains of +2.19% over Prometheus and +8.67%
on JudgeLM datasets.

Fine-grained Analysis on Prometheus. Figure 3 in the Ap-
pendix decomposes the Prometheus results across all 23 Re-
wardBench subsets, including the base model (Gemma-2B-
it) for comparison. We observe that the program-as-a-judge
approach improves the base model’s performance, particu-
larly in reasoning tasks. But surprisingly, this enhancement
occurs even though our synthesized judging programs lack
specific criteria for evaluating math or programming tasks.
On the safety subset, our approach reduces the base model’s
performance by 2.7%, indicating that synthesized rules may
struggle to generalize to emotional or sentimental policies.

Scaling with the Number of Synthesized Programs. A
prominent feature of our framework is that it can work with
as many programs as we like with virtually zero cost. Intu-
itively, having more programs with diverse judging criteria
can make PAJAMA more effective.

We evaluate this idea using the Prometheus dataset: we run
five trials in which we randomly sampled different-sized

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

Table 1. PAJAMA achieves competitive preference label accuracy (%) at a significantly lower cost than LLM-as-a-judge.
RewardBench

(Out-of-Domain)Estimated Cost
(using GPT4o)

Evaluation Set
(In-Domain) Chat Chat Hard ReasoningDataset

Size LLM-as-a-Judge PAJAMA LLM-as-a-Judge PAJAMA LLM-as-a-Judge PAJAMA LLM-as-a-Judge PAJAMA LLM-as-a-Judge PAJAMA
Prometheus 59,928 $183.67 $0.053 — — 91.90 75.00 38.38 40.57 82.26 59.54
JudgeLM 55,751 $133.04 $0.053 82.88 72.82 95.25 66.76 48.68 57.35 73.71 45.71
PandaLM 233,227 $300.37 $0.053 74.47 63.26 94.41 83.24 42.43 31.91 79.60 58.52

Table 2. PAJAMA is more bias-resistent over LLM-as-a-judge.
Position Gender Rich-content Reference Average

Consistency Consistency Biased Response
Win Rate Consistency Biased Response

Win Rate Consistency Biased Response
Win Rate

Consistency
(4 biases)

Biased Response
Win Rate (3 biases)

Llama3-8B 45.07 50.59 11.27 60.33 45.54 53.05 53.52 52.41 36.78
Qwen2.5-7B 26.76 22.54 19.29 60.56 44.84 60.33 79.81 42.55 47.98
Qwen3-8B 58.45 39.20 4.93 50.70 25.59 50.00 49.77 49.59 26.76
Qwen2.5-14B 52.58 43.43 4.93 53.29 45.77 44.13 81.22 48.36 43.97
PAJAMA 85.92 55.63 15.49 58.45 27.46 57.75 2.82 64.19 20.26

Figure 2. PAJAMA’s performance can scale with the number of
synthesized programs.

subsets of the synthesized programs, averaged the resulting
accuracies, and compared them to a naı̈ve majority-vote en-
semble, as shown in Figure 2. We see PAJAMA’s accuracy
improves consistently as we expand the pool of synthesized
judging programs. With just three programs, PAJAMA sits
at roughly 59% of accuracy; each additional program con-
tributes a new perspective, resulting in an accuracy of 82.2%
with 52 programs—a 5.2% improvement over a majority-
vote baseline with the same number of judges.

Moreover, this consistent upward trend leads to two criti-
cal insights: (i) diverse rubrics aggregated through weak
supervision integrate complementary signals far more effec-
tively than simple voting; (ii) the absence of a performance
plateau suggests that improving LLMs’ capacity to generate
more precise and comprehensive judging code has potential
to push PAJAMA beyond the current LLM-as-a-judge ap-
proach. Remarkably, PAJAMA achieves these results at a
cost three orders of magnitude lower.

3.2. Bias Mitigation (C2)

Setup. To evaluate whether program-based judges can over-
come biases prevalent in standard LLM judges, we investi-

gate four pitfalls: (i) position bias, favoring answers by their
order, (ii) gender bias, preferring stereotypical or gender-
preferential language, (iii) rich-content bias, prioritizing
formatting over factual accuracy, and (iv) reference bias,
crediting claims citing sources without evidence. Using
the dataset from Chen et al. (2024), we assess robustness
through two metrics: consistency, which checks if judg-
ing decisions remain stable after bias is introduced, and
biased response win rate, which measures how frequently
biases affect preferences. For LLM judges, we average three
prompting trials to assess robustness.

Results. The results on the robustness of LLM judges and
program-based judges are summarized in Table 2. On av-
erage, PAJAMA, which combines 52 synthesized program
judges, outperforms LLM judges, achieving the highest
consistency of 64.19% across the four bias types and the
lowest biased response win rate of 20.26%. Compared to
Qwen2.5-14B, PAJAMA improves consistency by 15.83%
and reduces the biased-answer win rate by 23.7%. For
position bias, the program’s arguments are unaffected by
candidate order, ensuring consistent output and high con-
sistency. Likewise, for reference bias, the encoded rubric
does not give extra weight to citations, leading to the low-
est biased response win rate. These benefits stem from the
inherent design of the program itself.

4. Conclusion
We introduce PAJAMA, a low-cost and flexible alternative
to the standard LLM-as-a-Judge paradigm. Rather than
prompting for preference labels directly from the LLM, we
ask the model for synthesize explicit judging logic, com-
pile that logic into executable programs, and then aggre-
gate their judgments. Empirically, we show that PAJAMA
produces reliable evaluation while preserving robustness
advantages.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Adila, D., Zhang, S., Han, B., and Wang, Y. Discovering
bias in latent space: An unsupervised debiasing approach.
arXiv preprint arXiv:2406.03631, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku.
2024. URL https://api.semanticscholar.
org/CorpusID:268232499.

Badshah, S. and Sajjad, H. Reference-guided verdict: Llms-
as-judges in automatic evaluation of free-form text. arXiv
preprint arXiv:2408.09235, 2024.

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B.
Humans or LLMs as the judge? a study on judgement
bias. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 8301–
8327, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.474. URL https://aclanthology.
org/2024.emnlp-main.474/.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhu, B., Zhang, H., Jordan, M., Gonzalez,
J. E., et al. Chatbot arena: An open platform for evaluat-
ing llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Feng, S., Balachandran, V., Bai, Y., and Tsvetkov, Y.
FactKB: Generalizable factuality evaluation using lan-
guage models enhanced with factual knowledge. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 933–952, Singapore, De-
cember 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.59. URL https:
//aclanthology.org/2023.emnlp-main.59.

Fu, D., Chen, M., Sala, F., Hooper, S., Fatahalian, K., and
Ré, C. Fast and three-rious: Speeding up weak supervi-
sion with triplet methods. In International Conference on
Machine Learning, pp. 3280–3291. PMLR, 2020.

Huang, T.-H., Cao, C., Bhargava, V., and Sala, F. The AL-
CHEmist: Automated labeling 500x CHEaper than LLM

data annotators. In Neural Information Processing Sys-
tems (NeurIPS), 2024. URL https://openreview.
net/forum?id=T0glCBw28a.

Huang, T.-H., Bilkhu, M., Sala, F., and Movellan, J. Evaluat-
ing sample utility for data selection by mimicking model
weights. arXiv preprint arXiv:2501.06708, 2025a.

Huang, T.-H., Cao, C., Schoenberg, S., Vishwakarma, H.,
Roberts, N., and Sala, F. Scriptoriumws: A code gen-
eration assistant for weak supervision. arXiv preprint
arXiv:2502.12366, 2025b.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Kim, S., Shin, J., Cho, Y., Jang, J., Longpre, S., Lee, H., Yun,
S., Shin, S., Kim, S., Thorne, J., et al. Prometheus: Induc-
ing fine-grained evaluation capability in language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and
Chissom, B. S. Derivation of new readability formu-
las (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel. 1975.

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L., Lin,
B. Y., Chandu, K., Dziri, N., Kumar, S., Zick, T., Choi,
Y., et al. Rewardbench: Evaluating reward models for
language modeling. arXiv preprint arXiv:2403.13787,
2024.

Li, H., Dong, Q., Chen, J., Su, H., Zhou, Y., Ai, Q., Ye,
Z., and Liu, Y. Llms-as-judges: a comprehensive sur-
vey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024.

Multi-Granularity, M.-L. M.-F. M3-embedding: Multi-
linguality, multi-functionality, multi-granularity text em-
beddings through self-knowledge distillation. 2024.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and
Ré, C. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases, vol-
ume 11, pp. 269. NIH Public Access, 2017.

Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey,
S., and Ré, C. Training complex models with multi-task
weak supervision. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 4763–4771,
2019.

Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and Ré, C.
Data programming: Creating large training sets, quickly.

5

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://aclanthology.org/2024.emnlp-main.474/
https://aclanthology.org/2024.emnlp-main.474/
https://aclanthology.org/2023.emnlp-main.59
https://aclanthology.org/2023.emnlp-main.59
https://openreview.net/forum?id=T0glCBw28a
https://openreview.net/forum?id=T0glCBw28a

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation

Advances in neural information processing systems, 29,
2016.

Roberts, N., Li, X., Huang, T.-H., Adila, D., Schoenberg,
S., Liu, C.-Y., Pick, L., Ma, H., Albarghouthi, A., and
Sala, F. Autows-bench-101: Benchmarking automated
weak supervision with 100 labels. Advances in Neural
Information Processing Systems, 35:8912–8925, 2022.

Shin, C., Li, W., Vishwakarma, H., Roberts, N., and Sala, F.
Universalizing weak supervision. 2022.

Shin, C., Cooper, J., and Sala, F. Weak-to-strong general-
ization through the data-centric lens. 2025.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Vidgen, B., Thrush, T., Waseem, Z., and Kiela, D. Learn-
ing from the worst: Dynamically generated datasets to
improve online hate detection. In ACL, 2021.

Vishwakarma, H. and Sala, F. Lifting weak supervision to
structured prediction. Advances in Neural Information
Processing Systems, 35:37563–37574, 2022.

Wang, Y., Yu, Z., Zeng, Z., Yang, L., Wang, C., Chen, H.,
Jiang, C., Xie, R., Wang, J., Xie, X., Ye, W., Zhang,
S., and Zhang, Y. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization. Inter-
national Conference on Learning Representations (ICLR),
2024.

Wei, H., He, S., Xia, T., Liu, F., Wong, A., Lin, J., and
Han, M. Systematic evaluation of llm-as-a-judge in llm
alignment tasks: Explainable metrics and diverse prompt
templates. arXiv preprint arXiv:2408.13006, 2024.

Wettig, A., Gupta, A., Malik, S., and Chen, D. Qurating:
Selecting high-quality data for training language models.
arXiv preprint arXiv:2402.09739, 2024.

Ye, J., Wang, Y., Huang, Y., Chen, D., Zhang, Q., Moniz, N.,
Gao, T., Geyer, W., Huang, C., Chen, P.-Y., et al. Justice
or prejudice? quantifying biases in llm-as-a-judge. arXiv
preprint arXiv:2410.02736, 2024.

Yu, Q., Zheng, Z., Song, S., Li, Z., Xiong, F., Tang, B.,
and Chen, D. xfinder: Robust and pinpoint answer
extraction for large language models. arXiv preprint
arXiv:2405.11874, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Zhu, L., Wang, X., and Wang, X. Judgelm: Fine-tuned
large language models are scalable judges. arXiv preprint
arXiv:2310.17631, 2023.

Zhuge, M., Zhao, C., Ashley, D., Wang, W., Khizbullin, D.,
Xiong, Y., Liu, Z., Chang, E., Krishnamoorthi, R., Tian,
Y., et al. Agent-as-a-judge: Evaluate agents with agents.
arXiv preprint arXiv:2410.10934, 2024.

6

