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ABSTRACT

Identifying latent variables and their induced causal structure is fundamental in
various scientific fields. Existing approaches often rely on restrictive structural
assumptions (e.g., purity) and may become invalid when these assumptions are
violated. We introduce Conditional Independent Component Analysis (CICA), a
new tool that extracts components that are conditionally independent given latent
variables. Under mild conditions, CICA can be optimized using a tractable proxy
such as rank-deficiency constraints. Building on CICA, we establish an identifia-
bility theory for linear non-Gaussian acyclic models with latent variables: solving
CICA and then applying an appropriate row permutation to the sparsest CICA
solution enables recovery of the causal structure. Accordingly, we propose an es-
timation method based on the identifiability theory and substantiate the algorithm
with experiments on both synthetic and real-world datasets.

1 INTRODUCTION

Understanding causal structures is essential in numerous scientific domains, such as biology (Wood-
ward, 2010), psychology (Eronen, 2020), and economics (Hicks et al., 1980). To uncover the under-
lying causal structures in a data-driven manner, various methods have been proposed (Peters et al.,
2017). Most traditional causal discovery methods rely on the causal sufficiency assumption (Spirtes
et al., 2000), i.e., no latent confounders exist between any pair of observed variables. However, in
many real-world applications, it is often infeasible to measure all the underlying causal variables.
For example, in psychology, researchers investigate the impact of social behavior on mental health,
while intelligence or personality may often act as latent confounders. It is difficult to precisely
measure these variables, yet ignoring such latent confounders can lead to misleading conclusions.
Generally, identifying the presence of latent variables and recovering the causal structure involving
both observed and latent variables remains a significant challenge.

Some approaches attempt to address the challenge by exploiting conditional independence con-
straints, such as the FCI algorithm (Spirtes et al., 1995) and its variants (Colombo et al., 2012).
However, their results capture only the causal relationships among observed variables. To further
discover causal relationships between latent variables, additional parametric assumptions are typi-
cally required. For linear Gaussian causal models, several methods leverage rank-deficiency con-
straints to recover the underlying structure, including latent variables, up to the Markov equivalence
class (Silva et al., 2006; Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2023). To
take into account higher-order statistics, (Xie et al., 2020) develops a generalized independent noise
(GIN) condition and establishes its corresponding estimation algorithm for linear non-Gaussian data.
TIN (Dai et al., 2022) defines the independent linear transformation subspace and its dimension can
be used to further improve the identifiability of causal discovery with measurement error.

Although these methods have achieved some progress, they typically involve certain structural as-
sumptions to simplify the problem. In particular, the purity assumption (Cai et al., 2019; Xie et al.,
2020) rules out edges between observed variables. Violating these assumptions can lead to failures
in determining the true causal graph. For example, in Fig. 1, the two graphs cannot be distinguished
by most existing methods. Only a few methods can theoretically distinguish these two graphs, pri-
marily overcomplete ICA (OICA) (Eriksson & Koivunen, 2004)-based methods and higher-order
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Figure 1: An example of a non-identifiability issue of most existing methods.

cumulant-based methods (Schkoda et al., 2024; Chen et al., 2024). However, OICA typically relies
on the expectation maximization (EM) procedure along with approximate inference, which is com-
putationally prohibitive and prone to local optima (Cai et al., 2023). On the other hand, higher-order
statistics can be very sensitive to outliers in the data (Hyvirinen & Oja, 2000), reliably estimating
higher-order cumulants requires massive samples (Nikias & Mendel, 1993). This raises an impor-
tant question: can we strike a better balance between identifiability and practical feasibility? Our
findings indicate that this could be possible.

Concretely, by analyzing why GIN and TIN conditions fail to distinguish Fig. (1a) and (1b), we
argue that relying solely on a one-sided projection w' Y_1LZ (Y, Z are two subsets of observed
variables) could be restricted. Instead, two-sided projections w{ Y llw, Z may leave additional
identifiable traces. Accordingly, we seek a unified procedure that estimates latent causal structure
by searching for non-zero wy,ws with w{ Y lLw, Z. Motivated by this, we introduce a new tool
named conditional independent component analysis (CICA), which extracts components that are
conditionally independent given latent variables. Fig. 2 illustrates the relationship of CICA with
GIN and TIN from a historical point of view. Under mild conditions, CICA can be optimized
using a tractable proxy such as rank-deficiency constraints, which avoid involving the estimation of
high-order cumulants like OICA or cumulant-based methods. Building on CICA, we establish an
identifiability theory and estimation algorithm for linear non-Gaussian acyclic models with latent
variables: by first solving CICA and then applying an appropriate row permutation to the sparsest
CICA solution, we recover the underlying causal structure, achieving a more general identifiability
result with a tolerable computational burden.

Contributions: (1) We introduce a novel principle, conditional independent component analysis
(CICA), that extracts components that are conditionally independent given latent variables. (2) We
establish an identification theory and an estimation algorithm that performs CICA and then selects
row permutations of the sparsest CICA solutions to recover the underlying causal structure. (3) We
conduct synthetic and real-world experiments to validate its identifiability guarantees.

2 BACKGROUND

2.1 PROBLEM SETUP

We consider a linear latent variable causal model with DAG G, in which the observed variables
X = {X;}™, and latent variables L = {L;}?_, follow the data generating process:

L= BLiL+Ey, X=BxyL+BxxX+Ex.
V = AE, with A := (I— B)™".

where Ex = {Ex,}™, and E, = {Ey,}¢_, are mutually independent non-Gaussian exogenous
noises. We use V; € V to denote a generic variable. B denotes the adjacency matrix, with the entry
B, ; representing the direct causal effect of V; on V;. B;; # 0 if and only if V; is a direct parent of
V; in G. Here, V can also be expressed directly as a linear combination of independent exogenous
noises E, through the mixing matrix A.

(D

Notations. For a matrix M, we denote by Mg . the rows in M indexed by set S, and similarly by
M. g the columns. In addition, let GL(m) be the invertible matrix W € R™*™. Further, we use
Pa(V;), Ch(V;), Anc(V;), De(V;) as parents, children, ancestors and descendants of V;, respectively.
We use LPa(S) for a subset S C 'V to denote the set that contains all the common latent parents
of any two nodes in S, excluding the variables in S. By default, Y and Z denote two subsets of
observed random variables.
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Figure 2: A timeline of tools to recover latent causal structure based on constructing independence.

2.2 PRELIMINARIES

Definition 1 (GIN condition (Xie et al., 2020)). Let Y and Z be two observed random vectors.
Suppose that the variables follow LINGAM. We say (Z,Y) satisfies the GIN condition, if and only
if the following two conditions are satisfied: 1) 3 non-zero w € RIY! that solves the equation
cov(Z,Y)w = 0, and 2) Any such solution w makes the linear transformation w'Y 1L Z.

GIN condition needs to be equipped with enough pure children, which is defined as follows:

Definition 2 (Purity (Xie et al., 2024)). Let L be a set of latent variables, and S be a subset of
descendant nodes of L ie, S C De(f;). We say S is a pure set relative to L iffi) Vo 1L Vb|f:f0r
any Vo, Vy € S, and ii) S 1L {V \ De(L)}|L. In addition, we say that a variable V., € S relative
toLisa pure variable if S is a pure set relative to L. Specifically, if S C Ch(i), we say that each
variable V. € S is a pure child relative to L.

Definition 3 (TIN condition (Dai et al., 2022)). Let Z and Y be two subsets of random variables.
Denote the independent linear transformation subspace Q1z.y := {w e RIYI | wTY_U_Z}. The TIN
condition of Z and 'Y is defined as: TIN(Z,Y) := |Y| — dim(Qz,vy ), where dim(Qz.v) denotes
the dimension of the subspace Qz.v, i.e., the degree of freedom of w.

3 METHOD

In this section, we develop a principled framework for causal discovery in the presence of latent con-
founders. We first describe our motivation by analyzing why existing tools that rely on constructing
independence fail (§3.1). We then formalize our proposed tool, conditional independent component
analysis (CICA), and discuss its indeterminacy (§3.2), optimization criterion (§3.3). Next, we pro-
vide a comprehensive introduction to the identifiability guarantee of latent causal structure based on
CICA (§3.4). Finally, we discuss the connection between CICA and independent subspace analysis
(ISA) and why ISA is not informative in our settings (§3.5).

3.1 MOTIVATION: BEYOND ONE-SIDED PROJECTIONS

Existing criteria such as GIN and TIN conditions are built on one-sided projections of the form
w Y 1LZ. To ensure identifiability, these methods require that latent variables L have enough pure
children (Xie et al., 2024). The rationale is that pure children are mutually conditionally indepen-
dent given L. With sufficient pure children, one can construct a linear combination of Y to remove
the dependence entirely attributable to the common ancestors L and thus induce independence.

In contrast, in Fig. 1a and 1b, every pair of observed variables share not only L but also F;. In this
case, no one-sided projection of the form w ' Y ILZ with non-zero w can eliminate both sources of
dependence simultaneously. As a result, the GIN and TIN conditions fail to distinguish between the
two graphs since both exhibit no non-degenerate independence pattern under one-sided projections.

This limitation highlights the insufficiency of these tools based on one-sided projections when re-
covering the latent causal structure in the presence of multiple latent influences. In fact, not all
constructive independence patterns can be expressed as w ' Y L Z. A natural step forward is to con-
sider two-sided projections of the form w; Y lLw, Z, to remove the dependence from both sides.
The following lemma shows that the independence patterns in the form of w 'Y Il Z are a subset of
those of w, Y 1Lw, Z.
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Lemma 1. Let Z and Y be two subsets of random variables. If w] Y 1LZ has a non-zero solution
w1, then there must exist a non-zero vector wo makes wirYJ_Lw; Z.

Essentially, the richer the independence structure that a principle exploits, the stronger its identifica-
tion power. As shown next, Fig. 1a and Fig. 1b fall into different equivalent classes when using the
information contained in w{ Y IlL.w, Z.

Remark 1. In Fig. la, there always exist two non-zero vectors wi,ws € R? such that w11 X2 +
w12 X3l ws 1. X1 +ws 2 Xo. In contrast, in Fig. 1b, no non-zero solution satisfies this independence
constraint. Besides, in Fig. 1b, there always exist two non-zero vectors wi,ws € RZ such that
w1,1 X9 + w12 X3l wa 1 X1 + wo 2 X3, whereas no non-zero solution exists in Fig. la.

Motivated by these asymmetries, when two causal graphs cannot be distinguished using only a
one-sided projection w ' Y 1L Z, two-sided projections w; Y ILwy Z can leave additional identifiable
traces for the causal direction. This prompts a natural question: Can we develop a unified procedure
that searches for non-zero w , ws with w, Y 1Lw, Z to enhance identifiability?

3.2 CONDITIONAL INDEPENDENT COMPONENT ANALYSIS

A direct route to construct w{ Y 1w, Z is to use overcomplete ICA (OICA), which separates more
mutually independent sources from fewer observed signals. However, OICA is known to be compu-
tationally and statistically ineffective (Ding et al., 2019).

Instead of fully separating all latent sources as in OICA, we propose to factor out the shared influ-
ences explicitly and only require independence conditional on a latent vector. Concretely, we seek
an invertible transform W such that Z = WX has mutually independent coordinates given some
latent L € R”. When p is known and some mild conditions hold, CICA can be optimized by some
proxy criterion and avoids the estimation of L, which makes CICA substantially simpler than OICA
(See Sec. 3.3). We formalize this idea by the following definition.

Assumption 1 (Linear mixing with conditionally independent sources). Let X be an observed vari-

able set with |X| = m. There exist an invertible matrix A € R™*™ p latent variables L with
Y1, = 0, a matrix M € R™*?, and noise variables E = (E, ..., E,,)" such that
X =AS, S =ML +E, E 1L (2)

{E;} are mutually independent with finite, non-zero variances, and at most one E; is Gaussian. ¥,
is not a scalar multiple of the identity matrix I € R™*™. Besides, A does not depend on L.

Definition 4 (p-order Conditional Independent Component Analysis (CICA)). Let X be an observed
variable set with |X| = m. An invertible matrix W € R™*"™ is called a p-order CICA solution for
X if there exists p latent variables L (with p > 0) such that:

(i) (Conditional independence) Writing Z := WX = (Zy,...,Zy,) ", the components are
mutually conditionally independent given L.

(ii) (Minimality in p) There exist no latent variables L with 0 < \f;| < p for which the condi-
tional independence in (1) holds.

When p = 0, condition (i) reduces to mutual independence of Z, and CICA coincides with ICA. In
addition, we introduce py,in (X) := min{k : k € N, k-order CICA solution of X exists} to measure
the size of the minimal latent conditional set of X.

Lemma 2 (Indeterminacy of CICA). Given Assump. 1, let X be m observed variables, W1, W €
R™*™ be two p-order CICA solutions for X. The following two statements are equivalent:

(i) There exists p latent variables L such that, writing Z*) := W, X, the components of Z*)
are mutually conditionally independent given L for k € {1,2}.

(ii) There exist a permutation matrix P (for some permutation w of [m|) and a non-singular
diagonal matrix D such that Wy = P, DW.

In particular, when p = 0 (the ICA case), (i) is understood with L degenerate, and the conclusion
reduces to the classical permutation and scaling indeterminacy of ICA. Therefore, Lemma 2 tells us
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that CICA introduces an additional indeterminacy about the conditional set L compared to ICA. In
addition, based on the CICA solution, one can naturally induce two-sided projections w{ Y 1Lw, Z.

Lemma 3. Let X be m observed variables, and W be a p-order CICA solution of X. Let
X' = WX,Y and Z are two subsets of X', then if max{|Y|,|Z|} > p, w{ Y'1Lwy Z' has a non-
zero solution (w1, w2) for (Y',Z'), where Y' = {X;| >y, ey Wi, # 0}, Z' are defined similarly.

Example 1. The following structural causal model serves as an instantiation of Fig. la, where
L, E1, Es, E3 are independent non-Gaussian variables, a,b, c,u,v are non-zero coefficients. The
identity matrix I € GL(3) is a 3-order CICA solution of X (the conditional set can be {L, E1, E}).
The right-hand side below shows an example of a 1-order CICA solution of X (the conditional set
is {L}). The existence of L leads to the absence of a 0-order CICA (i.e., ICA) solution of X.

w

—_——
X1 =al + E17 1 0 0 X] a E1
{ X :bL+uX1+E2, —U 1 O [ Xo| = |b| L+ |Es
X3 =cL+vXs+ Es. 0 —v 1] | X3 c FEs

Besides, we can construct two-sided projections wirYJ_Lw; Z with non-zero w1, ws, based on the
CICA solution of X. Taking Y = {X1,X%}, Z = {X}} as an example, denoting X' = WX,
then we have bX}, — aX|{ 1L X% e, —(bu + a)X; + bXo 1l X5 — vXa. A non-zero solution
wi = [—(bu+a),b]T, wy = [1,—v]T exists for (Y = {X1, X2}, Z' = { X2, X3}).

3.3 OPTIMIZATION CRITERION FOR CICA

Since the conditional set is latent, the definition of CICA does not specify a testable optimization ob-
jective. A practical question arises: which optimization criterion should we use for CICA? Inspired
by (Huang et al., 2022; Dong et al., 2023), we characterize conditional independence by introducing
the following rank-deficiency constraint.

Lemma 4. For an observed variable set X with |X| = m, denote p = ppmin(X). Suppose m >
2p + 2, and set X' := WX, then W is a p-order CICA solution of X if and only if for every pair
of disjoint coordinate subsets X1,Xza of X' with |X;| = |X2| = p+ 1, det(Xx, x,) = 0, where
¥ := Cov(X') denotes the covariance matrix on X' and ¥x, x, is the (p+1) X (p+1) sub-matrix
of ¥ with rows indexed by X1 and columns by Xa.

In fact, here m > 2p + 2 is not a strict restriction; we can relax it by replacing the covariance
matrix with a higher-order cumulant tensor. More details are included in Appendix B.1. When
Pmin(X) = 1, we can use another proxy objective of CICA, equipped with a weaker condition.

Definition 5 (Triad constraint (Cai et al., 2019)). Define the pseudo-residual of {X;, X;} relative
to Xy as B jiny = Cov(X;, Xy) - X; — Cov(X;, Xy) - X;. We say that the pair of variables
{Xs, X;} and X, satisfy the Triad constraint if E; ;) 1L X}.

Lemma 5. For an observed variable set X with |X| = m, suppose that py,in(X) = 1and m > 3

hold, set X' 2 WX, then the invertible matrix W is a 1-order CICA solution of X if and only if for
every ordered triple (X, X', X}) of X', { X[, X}} and X, satisfies the Triad constraint.

In both Lemma 4 and 5, we assume p,,;,(X) is known, then characterize p,,;,(X)-order CICA
using the zero-determinant and independence constraint, respectively. In our estimation algo-
rithm, we can determine the value of p;,;, (X) in principle, without requiring prior knowledge (see
Lemma 11). Since both the determinant and dependence measures (e.g., HSIC (Gretton et al., 2005))
used in Def. 5 are differentiable, these lemmas actually provide an optimization criterion for CICA.

3.4 IDENTIFIABILITY OF LATENT CAUSAL STRUCTURE BASED ON CICA

In this section, we establish an identifiability theory for causal structure in the linear non-Gaussian
acyclic models with latent variables. Once CICA is solved, when and how can the causal structure
be recovered from the CICA solutions W? First, we have the following basic assumptions.

Assumption 2 (Rank Faithfulness Assumption (Spirtes, 2013)). Let a distribution P be (linearly)
rank-faithful to a DAG G if every rank constraint on a sub-covariance matrix that holds in P is
entailed by every free-parameter linear structural model with a path diagram equal to G.
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Figure 3: An example of different 1-order CICA solutions for X. W3 is a 1-order CICA solution
that renders X’ conditionally independent given L, while W4 renders X’ conditionally independent
given F1, the exogenous noise of X;. The gray/white rectangle denotes non-zero/zero entries.

Assumption 2 holds generically, since the set of values of the free parameters of the SCM for which
the rank is not faithful is of Lebesgue measure O (Spirtes, 2013).

Condition 1. Each latent variable in G has at least three neighbors and two children (which can
be latent or observed).

In this section, for the sake of brevity, we will primarily discuss the results under the one-factor
scenario. Most results can be extended into the multi-factor scenario directly. We provide more
discussion on the multi-factor scenario in Appendix B.2.

To identify the causal structure based on CICA, we must resolve all inherent indeterminacies.
(Shimizu et al., 2006) demonstrates that the permutation and scaling indeterminacy in ICA can be
fixed by acyclicity. As stated in Lemma 2, CICA introduces an additional indeterminacy: the choice
of the latent conditional set. If W is a CICA solution of observed variables X, the conditional set
does not need to coincide with the latent confounders. Instead, it may correspond to the exogenous
noise of the observed variables. Therefore, to solve the indeterminacy of the latent conditional set,
we must further identify the CICA solution that aligns with the ground-truth causal structure.

Lemma 6. I — Bx x is d Diin (X)-order CICA solution of X with latent conditional set LPa(X).

Lemma 7. Suppose W is a pp,in(X)-order CICA solution of X whose latent conditional set is
LPa(X), there exists a unique row permutation matrix P that makes PW whose diagonal elements
have non-zero values, simultaneously.

As shown in Fig. 3, for X = {X;, X5, X3}, W7 is a l-order CICA solution of X given L, thus
W; ~ I - Bx x according to Lemma 2. In contrast, the ambiguity of the latent conditional set
allows alternative solutions, such as W, to also qualify as feasible CICA solutions of X, although
without a direct correspondence to Bx x. Essentially, W2X can be interpreted as swapping the
roles of L and F; on W;X. Although conditional independence is preserved after swapping the
latent variables, the sparsity of the solution matrix changes. Specifically, it becomes denser. This
observation highlights that sparsity can serve as an additional discriminative signal: the sparsest
CICA solution better aligns with the underlying causal structure.

Lemma 8. I — Bx x € argmin{||W||o : W is a ppin(X)-order CICA solution of X}.

Lemma 8 shows that I — Bx x iS a Py, (X)-order CICA solution of X with the minimum number
of non-zero entries. To ensure identifiability, we seek conditions under which I-Bx x is the unique
sparsest Py (X)-order CICA solution of X, up to some permutation and scale indeterminacies.

Condition 2. For any X; € X, E'XJ eX \ {Xv} with LPa(Xl) n LP&(XJ) # (Z), X; 7L> Xj.

Example 2. In the figure on the left below, since X1 is not the parent of X3, X2 and X3 are not the
parents of X1, Condition 2 holds. In contrast, in the figure on the right below, X1 is both the parent

of X5 and X3, thus Condition 2 does not hold.

X1—>X2—>X3 X1—>X2 X3
\_/V
Lemma 9. If Condition 2 holds, W € arg min{||W ||o : W is @ pyin(X)-order CICA solution of
X} if and only if we can find a permutation matrix P and non-singular diagonal matrix D that
makes W = PD(I — Bx x).
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Under Condition 2, Lemma 9 establishes that the sparsest p,,, (X)-order CICA solution recovers
I - Bx x up to permutation and scale indeterminacies. By Lemma 7, the remaining gap can be
eliminated by row permutation. Consequently, Bx x is uniquely identified, including both the
causal graph among the observed variables and its edge coefficients.

Conversely, when Condition 2 does not hold, I — Bx x is non-identifiable: there exists a distinct
Pmin(X)-order CICA solution W’ with an equal number of non-zero entries. Surprisingly, although
W' has different parameters from I — Bx x, their support matrix remains the same. Therefore, the
causal structure among observed variables is identifiable, which we summarized as follows.

Theorem 1. All latent variables in LPa(X) can be identified. Besides, the causal edges of LPa(X)
to X and the causal edges between the observed variables are also identifiable.

When the variables form a hierarchical structure and some latent variables may have no observed
children, due to the linearity assumption and the transitivity of linear causal relations, we can use
a certain observed descendant of the latent variables to implement CICA and apply Theorem 1
recursively. The question is, which one is suitable to serve as a surrogate for the latent variable?

Lemma 10. Let L be a latent variable discovered in the current iteration. Denote S = Ch(L). Let
Sk have the highest causal order in S whose index in S is k, and W be the sparsest pp,in (S)-order
CICA solution of S. P is the permutation matrix that makes PW have non-zero diagonal elements,
simultaneously. Denote Z. = PW S, then the value of Zj, can be a suitable surrogate for L.

Example 3. Tuking Fig. la as an example, denote W as the sparsest 1-order CICA solution of
X = {X;, X5, X3}, P is the permutation matrix that makes PW whose diagonal elements have
non-zero values, simultaneously. Let Z = PWX. As X is the variable that has the highest causal
order in Ch(L), then we can take the value of Z; as the surrogate of L.

Theorem 2. Suppose Condition 1 holds, then the underlying causal graph G is fully identifiable,
including both latent variables and their causal relationships.

Based on the identifiability guarantee, we develop an estimation algorithm named CICA-LiNGAM
to recover the latent causal structure from the CICA solution. Suppose that some observed variables
S form a causal cluster, we can determine the value of p,,;,,(S) using the GIN condition. Here we
say that an observed variable set S is a causal cluster if the variables in S partially share the same
latent parents that satisfy S = Ch(LPa(S)), or LPa(S) d-separates S and Ch(LPa(S)) \ S. The
causal cluster serves as a basic unit that helps us quickly locate the latent variables. The following
lemma states a basic criterion for identifying causal clusters from active variables A (active variables
contain some variables that may form causal clusters in the bottom-up recursive procedure).

Lemma 11 (Identifying Causal Clusters (Xie et al., 2022)). Let A be the active variable set and

S C A. Then S is a causal cluster if- 1) for any subset S of Y with |S| = 2, (A \ S, S) follows the
GIN condition, and 2) no proper subset of S satisfies 1).

Algorithm 1 CICA-LINGAM

Require: Observed variables X.
Ensure: Fully identified causal structure GG on X and discovered latent variables.
1: Initialize active variable set A = X and G = ().
2: while A # () do
3:  Identify global causal clusters in the current active variable set A (Lemma 11).
Obtain the sparsest CICA solution W of each cluster (Lemma 4 or 5).
Find a permutation matrix P to make the diagonal elements of PW non-zero (Lemma 7).
Obtain causal structure within a causal cluster (Theorem 1).
Merge clusters share the common latent parent (Proposition 1 in Appendix B).
Determine whether new latent variables should be introduced (Corollary 2 in Appendix B).
9:  Update the active variable set A according to Lemma 10.
10: end while
11: Return G.

AN AN

The algorithm adopts a recursive procedure. In each iteration, it performs four steps: i) identify
causal clusters (line 3); ii) infer the causal structure within each cluster based on the sparsest CICA
solution (lines 4~6); iii) merge the clusters share the common latent parent and determine how
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many new latent variables are required for these clusters in the current iteration (lines 7~8, details
see Appendix B); and iv) update the active variable set accordingly (line 9).

3.5 CONNECTION WITH ISA

Local ISA-LiNG (Dai et al., 2024) leverages independent subspace analysis (ISA) instead of OICA
for local causal discovery. Inspired by this, we then ask whether ISA remains a suitable surrogate
of OICA in the presence of latent confounders and what the relationship is between CICA and ISA.
To answer these questions, we first review the basic terminology of ISA.

Definition 6 (Irreducible). An m-dim random vector Z is irreducible if it contains no lower-dim
independent components. In other words, no invertible matrix W € GL(m) can decompose WZ =
(Z4,Z4) 7" into 7y | Zb,

Definition 7 (ISA solution (Theis, 2006)). For an m-dim random vector X, an invertible matrix W
is called an independent subspace analysis (ISA) solution of Y if WX = (Z] , ..., Zz)—r COnsists
of mutually independent, irreducible random vectors Z;. The corresponding partition I'w of the
indices [m] is called the ISA partition associated with W.

Although ISA seeks separation “as independent as possible”, the following theorem shows that ISA
is actually not informative enough in the presence of latent confounders.

Theorem 3 (Interpretations of ISA in LINGAM model). Let the graph obtained after removing all
the outgoing edges of X in G be named by G', which form several connected components of observed
variables Xt , X, , -+ , X, , where k be the number of connected components in G'. For an ISA

solution W, let WX = (Z],...,Z])". Then there is a permutation 7 of [k] s.t. for any i € [k],
IW; € GL(|Cy|) makes Z(;y = Wixlci-

Example 4. Here we present a concrete example to aid in understanding Theorem 3. After re-
moving all outgoing edges of X in G (the graph in Fig. 5a), G' (the graph in Fig. 5b) form three
connected components of observed variables, {X1}, {X}, X}} and {X}, X!}, Then WX =
(Z],Z] ,23)", 37, W1, Wy, W3, s.t. Z.y=WiX|,Z, (o) = WQX[’2_4]7Z,,(3) = Ws3X]/

3,5]"
Xy X5 X} Xt
X, — X, _.@% X3 X! @%Xé @%Xg
\/ \/
(a) (b)
Figure 5: An example to understand the procedure of ISA in the LINGAM model.

According to Lemma 3, any matrix W € GL(3) is an ISA solution of Fig. 1a and 1b. Therefore,
they are “ISA equivalent”, which we summarize in the following remark.

Remark 2. The two causal graphs in Fig. 1a and Fig. 1b cannot be identified by ISA.

The fundamental reason why ISA fails to be informative in the presence of latent confounders is that,
although it seeks components that are “as independent as possible”, ISA does not impose constraints
within each irreducible subspace. Consequently, regardless of how variables are connected within a
subspace, the corresponding graphs belong to the same equivalence class under ISA. In contrast, the
absence of constraints within each subspace can be addressed by CICA. For example, the sparsest
1-order CICA solution on { X2, X} makes the edge X5 — X identifiable. In summary, solving
CICA on each subspace can be a good complement to ISA.

4 EXPERIMENTS

In this section, we present simulation studies on synthetic data to demonstrate that our algorithm
effectively identifies latent variables and latent causal structure. Due to space limitations, real-world
experiments on personality psychology data are presented in Appendix C.

We generate data from some typical graph structures that satisfy Condition 1 (see Fig. 6). We con-
sider different sample sizes N = 5k, 10k, 20k. The causal strengths B; ; are generated uniformly
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Case 1 Case 2 ;g /%
Xj— Xy X X/CX\X N—Xe o, e /f\
1— > A2 3 1—>A2—>A3 37— >Ny X, X5 Xg

Figure 6: Causal structures used in synthetic experiments.

Table 1: Comparison on synthetic data. 1 means higher is better while | means lower is better.

Error in Latent Variables | Correct-Ordering Rate 1 F1-Score T

Graph Method SK TOK 20k 5K TOK 70K 5K TOK 70k
CDHS | 030:046 0202040 0402049 | 0.65:045 0.8020.40 0602049 | 0.672045 0.80£0.40 0.60£0.49
LaHME | 0.00£0.00 0.10:0.30 0.00£0.00 | 0.50£0.00 0.45:0.15 0.50£0.00 | 0.6740.00 0.60£0.20 0.67+0.00
Case (a) | PO-LINGAM | 0.00£0.00 0.00:0.00 0.00:0.00 | 0.50£0.00 0.500.00 0.50£0.00 | 0.66£0.03 0.67+0.00 0.670.00

RLCD 1.00£0.00  1.00£0.00  1.00£0.00 | 0.00£0.00 0.00£0.00  0.00£0.00 | 0.00£0.00 0.00+0.00 0.00£0.00
Ours 0.00£0.00  0.00£0.00  0.00£0.00 | 0.65£0.25 0.60£0.35 0.75£0.25 | 0.75+0.25 0.67+£0.38 0.77+0.46
CDHS 1.00£0.00 1.00£0.00 1.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00

LaHME 1.00£0.00  1.00£0.00  1.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00
Case (b) | PO-LINGAM | 1.00£0.00 1.00£0.00 1.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00  0.00+0.00

RLCD 1.00£0.00  1.00£0.00  1.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00+0.00 0.00£0.00
Ours 0.00£0.00  0.00£0.00  0.00£0.00 | 0.60£0.25 0.60+£0.25 0.66+0.27 | 0.67+0.44 0.67+0.44 0.72+0.48
CDHS 2.00£0.00 1.90£0.30  2.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00  0.00£0.00

LaHME 0.00£0.00  0.20£0.60  0.10£0.30 | 0.44£0.00 0.40£0.13  0.40£0.13 | 0.73£0.00 0.65£0.22 0.65£0.22
Case (c) | PO-LINGAM | 0.00£0.00  0.00£0.00 0.20+£0.60 | 0.44+0.00 0.44+0.00 0.40+£0.13 | 0.7320.00 0.73x£0.00 0.65+0.22
RLCD 0.10£0.30  0.10£0.30  0.00£0.00 | 0.60£0.25 0.60£0.25 0.58+0.16 | 0.70+0.24 0.70£0.24  0.73£0.08
Ours 0.00£0.00 0.20+0.60 0.10+0.00 | 0.66£0.18 0.61+0.31 0.61x0.31 | 0.78+0.31 0.72+0.35 0.78+0.31
CDHS 2.00£0.00  2.00£0.00  2.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00  0.00£0.00
LaHME 1.20£1.25 1.40£1.69 0.90+1.58 | 0.19+0.19 0.21+0.21 0.26+0.17 | 0.35+£0.35 0.33+0.34  0.49+0.32
Case (d) | PO-LINGAM | 2.00£0.00 2.00£0.00  2.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00
RLCD 0.50+0.81 1.10+0.83 0.70£0.90 | 0.28+0.19 0.11+0.17 0.20£0.17 | 0.30£0.22  0.13x0.20  0.23+0.20
Ours 1.20£1.25 1.40£1.69 0.90£1.58 | 0.22+0.27 0.39£0.29  0.48+0.35 | 0.42+0.35 0.45+0.38 0.64+0.40

from [—2, —0.5] U [0.5, 2], and the non-Gaussian noise terms are generated from the square of ex-
ponential distributions. In each setting, the results are obtained after averaging the values in the
10 tests. We report both the average results and standard errors. We consider the following four
methods as baselines for comparing: RLCD (Dong et al., 2023), PO-LiNGAM (Jin et al., 2023),
GIN (Xie et al., 2024), CDHS (Li et al., 2025). To evaluate the precision of the estimated graph,
we used the following three metrics as (Li & Liu, 2025). 1) Error in Latent Variables: the absolute
difference between the estimated number of latent variables and the ground-truth one; 2) Correct
Ordering Rate: the number of correctly estimated causal orderings divided by that of ground-truth
causal orderings; 3) F1 score of causal edges.

The experimental results are summarized in Table 1. For CDHS, the algorithm fails in the fully
impure setting as its “Homologous Surrogates” condition (Li et al., 2025) is violated, preventing
any valid output. While LaHME and PO-LiNGAM are relatively stable on key evaluation metrics,
they are unable to produce correct results in fully impure scenarios (e.g., cases 2 and 4) because
their clustering step fails. RLCD is inapplicable to cases 1 and 2, as its underlying rank test requires
at least four observed variables; it also struggled to resolve the causal structure in the remaining
scenarios. In contrast, our proposed algorithm demonstrated optimal performance across all cases.
It consistently identified and characterized the impure connections among the observed variables,
showcasing its advantages in handling impure structures.

5 CONCLUSION

In this paper, we introduce a new tool, Conditional Independent Component Analysis (CICA), which
aims to identify components that are mutually independent given a certain number of latent variables.
CICA naturally induces two-sided projections w{ Y ILw, Z, which carry a richer identification sig-
nal than one-sided projections w' Y 1LZ used in GIN/TIN, thus improving the identifiability in
latent causal structure learning. Although CICA involves additional indeterminacy on the latent
conditional set, we show that sparsity resolves this ambiguity and yields full identification of the
latent variables and causal relationships. Building on our theoretical results, we derive an estimation
algorithm for latent causal structure recovery. Synthetic experiments show the superiority of our
methods in dealing with impure structures.
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A DEFINITIONS, EXAMPLES, AND PROOFS

A.1 DEFINITIONS

Definition 8 (Treks (Sullivant et al., 2010)). In G, a trek from X to Y is an ordered pair of directed
paths (Py, Py) where Py has a sink X, Py has a sink Y, and both Py and Py have the same source Z.

13
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Definition 9 (T-separation (Sullivant et al., 2010)). Let A, B, Ca, and Cg be four subsets of Vg in
graph G (not necessarilly disjoint). (Ca, Cg) t-separates A from B if for every trek (Py, Py) from
a vertex in A to a vertex in B, either Py contains a vertex in Ca or Py contains a vertex in Cg.

Lemma 12 (Rank and T-separation (Sullivant et al., 2010)). Given two sets of variables A and
B from a linear model with graph G, we have rank (¥ o g) = min {|Ca| + |Cg| : (Ca,Cg)t-
separates A from B in G}, where £ A B is the cross-covariance over A and B.

A.2 EXAMPLES
1 0 O 1 0 O
—u 1 0 —(au+b)fa 1 0
—c/a —v 1
W]_ WZ ‘

& ®® Geom & @ ®

Figure 7: An example of different CICA solutions for X. W7 is a CICA solution that renders X’
conditionally independent given L, while W5 renders X’ conditionally independent given E, the
exogenous noise of X;. The gray/white rectangle denotes non-zero/zero entries.

A.3 PROOF
A.3.1 PRELIMINARIES

Lemma 13 (Darmois-Skitovich Theorem (Darmois, 1953)). Given n independent scalar random
variables X1, . .., X, that are not necessarily identically distributed. Consider two linear statistics
Ly =) a;X;, Ly = > 3 X, where ;, B; are constant coefficients. L and Lo are independent if
and only if the random variables X ; for which a;;3; # 0 follow a normal distribution.

Lemma 14 (Graphical implication of TIN (Dai et al., 2022)). Let Z, Y be two subsets of variables,
we have:

TIN(Z,Y) = min{|S| | S is a vertex cut from Anc(Z)toY}. (3)

In a linear non-Gaussian system, the Darmois—Skitovich theorem (Darmois, 1953) plays a key role
in determining the independence of two linear statistics. It tells us that two linear combinations of
independent non-Gaussian variables are independent if they do not share any non-Gaussian com-
ponent. As w' X is a linear combination of independent noises of V, characterizing all possible
independence that can be constructed from observational data requires understanding which noise
combinations can be represented by w " X. To this end, we introduce a new definition that describes
the noise combinations attainable through linear combinations of observed variables.

Definition 10 (Constructible Noise Combination). A noise combination Z C E, which consists
of some independent noises of variables in V. The noise combination Z is constructible by some
observed variables X if there exists a coefficient vector w such that w' X is a linear combination
of the noise variables in Z with non-zero coefficients, i.e., w' X = > p,ezVibi(vi # 0). In other
words, w ' X contains and only contains noise variables in Z.

Example 5. In the figure below, L is the latent confounder of two observed variables X and Y.
We have O, {Er,, Ex},{EL, By },{Ex, Ey} and {Ey,, Ex, Ey } are constructible while the other

noise combinations are not.
< ) ( : O) (E‘i)
) aB+~y B 1

Definition 11 (Bottleneck). Let J, K and B be three subsets of V that are not necessarily disjoint.
We say that B is a bottleneck from J to K if, for every j € J and every k € K, each directed path
from j to k includes some b € B.
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1B} | {Ex) [ 1By} | {EL, Ex} | {EL, By} | {Ex, By} | {EL, Ex, By}
X X X v v v v

ENES

Table 2: All constructive noise combinations of the graph above.

Definition 12 (Latest Minimal bottleneck (LM bottleneck)). Let J, K and B be three subsets of V
that are not necessarily disjoint. We say that a bottleneck B from J to K called minimal if every
bottleneck B' from J to K has |B’| > |B|. Furthermore, B is the (topologically) latest minimal
bottleneck (LM bottleneck) from J to K if for every minimal bottleneck B’ from J to K, B is the
bottleneck from B’ to K.

&
e, o
o "o

Example 6. In the figure above, { L3} is a minimal bottleneck from {L1, Lo} to X. More precisely,
it is also the corresponding LM bottleneck. {Ls, L5} is a minimal bottleneck from {Lq, Ls} to X
but it is not the corresponding LM bottleneck. Instead, it should be {Ly4, L5}.

Definition 13. We define the LM bottleneck-dominated set of B with respect to K as the set of all
nodes in V such that B is the LM bottleneck from the node to K. Formally,

Dg Kk = {v € V|B is the LM bottleneck from v to K} “)

This is the maximal set of nodes for which B serves as a bottleneck toward K.

Lemma 15. Let J, K C 'V that are not necessarily disjoint. The LM bottleneck from J to K always
exists and is unique.

Proof. Build the standard vertex—splitting network G’ = (V' E’) with capacities as follows. For
each v € V, create two nodes v~ ,v™ and add a unit—capacity edge v~ — v™. Foreachu — v € E,
add an infinite—capacity edge vt — v~. Add a source s and a sink ¢; for each j € J add an
infinite—capacity edge s — j—, and for each k € K add an infinite—capacity edge k* — t.

Then for any B C V, Bisabottleneck fromJto K <= C(B) := {v~ — v : v € B}
is an s—t cut in G’. Moreover, the capacity of C'(B) equals |B|. Indeed, every path j ~~ k in G
lifts to a path s ~» j~ ~» -+ ~» kT ~~ ¢ in G’ that necessarily traverses the split edge z~ — =T for
each visited z; cutting precisely the split edges in C(B) blocks all lifted s—¢ paths iff every j ~~ k
path in G meets B. Since only split edges have finite capacity, the cut capacity is |B|.

Therefore, a minimal bottleneck (of smallest cardinality) exists because it corresponds to a minimum
s—t cut in the finite network G’.

Let f be any maximum flow on G’ and let Ry be the residual network. Define
Ty:={x eV :tcanreachzin Ry }, Sp:=V'\Ty.

Standard max—flow theory implies that (S, T'y) is a minimum s—¢ cut, and that T’ is inclusion-wise
maximal among the sink sides of all minimum cuts (the “closest-to-t” minimum cut); in particular,
Ty is unique. For completeness: if (S”,T") is any minimum cut, then edges from 7" to S’ carry zero
residual capacity and edges from S’ to 7" are saturated; hence every node reachable from ¢ in Ry
must lie in 7", so T" C T.

Map the t-closest minimum cut back to a vertex set:
B* := {veV : v €Syandvt € T} }.
By construction, C'(B*) is the cut (Sy, T), hence B* is a minimal bottleneck.

Let B’ be any other minimal bottleneck, and let (S’,7”) be its corresponding minimum cut in G’.
From the previous paragraph 7" C T (equivalently Sy C S’). Take any path ¥’ ~» k in G with
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b € B and k € K; its lift in G’ goes from '~ € S” O Sy to k* € Ty, hence must cross the
cut (S¢,Ty) through some split edge v~ — v with v € B*. Therefore every b’ ~~ k path passes
through B*, i.e., B* is a bottleneck from B’ to K. Since B’ was an arbitrary minimal bottleneck,
B* is the latest minimal (LM) bottleneck.

If B is another LM bottleneck with minimum cut (§ , 1~“), then by the same argument its sink side T
must contain the sink side of every minimum cut, hence T' = T by the maximality/uniqueness of
Ty. Thus B = B*. In summary, the LM bottleneck from J to K exists and is unique. O

Lemma 16. A variable set Vy, C V is an LM bottleneck from some variable set Vg to X if and
only if Vy, itself is the LM bottleneck from Vy, to X.

Proof. If V}, is the LM bottleneck from some V to X, then V} is the LM bottleneck from V;, to
X. Since Vy is a bottleneck from V, to X, every V¢ ~» X path meets V;. Consequently Vy, is
trivially a bottleneck from V3, to X (every v € V,—X path contains v € Vj, at its first node).

We show that V), is minimal for the pair (V;, X). Assume, for contradiction, that there exists a
bottleneck C from V, to X with |C| < |V|. Then for any s € V; and 2 € X, each s~ x path first
hits V, and, from that hit, must pass C (because C meets every V;, ~» X path). Hence C is also a
bottleneck from V; to X, contradicting the minimality of V, for (V, X).

It remains to verify the latest property for (V, X). Let C be any minimal bottleneck from V; to X.
We claim that every C ~~» X path meets V3. Indeed, otherwise there would exist ¢ € C and z € X
with a path ¢~ x avoiding V. Concatenate a path s ~- ¢ with s € V; whose internal nodes avoid
'V, (which exists because V}, is minimal for (V, X); otherwise ¢ would be redundant in C), and
then follow the ¢~ x path; this would give an V¢~ X path avoiding V3, contradicting that V is a
bottleneck from V to X. Thus Vj is a bottleneck from C to X since C was arbitrary minimal for
(Vy, X), Vy is the LM bottleneck from Vy to X.

If V is the LM bottleneck from Vj, to X, then V} is the LM bottleneck from some V, to X. Take
V; := V,. By assumption, Vy is a (latest) minimal bottleneck for (Vy, X); in particular it is a
bottleneck from V to X and, for every minimal bottleneck C from V to X, every C ~» X path
meets V. Hence Vy, is the LM bottleneck from V, to X. O

Theorem 4 (Graphical criteria of the constructible noise combination). Any noise combination o
is constructible by X if and only if (i) 3T C V s.t. T is the LM bottleneck of T to X in G. (ii)
VV; € V, a; = 0 <= T is a bottleneck from V; to X in G.

Proof. Constructibility => (i)—(ii). Assume « is constructible, let S := {7 € V : «; # 0} be the
support of a. By Lemma 15, the LM bottleneck T* from S to X exists and is unique; by Lemma 16,
T™ is also the LM bottleneck from T* to X. This gives (i).

It remains to show (ii). Fix ¢ € V. If a;; = 0, then T™ is a bottleneck from V; to X. Suppose to the
contrary that there exists a directed path P : i ~» x avoiding T* (with € X). Since T* is the LM
bottleneck from S to X, it is, by definition, the bottleneck from every minimal bottleneck for (S, X)
to X; in particular, P can be concatenated with an S ~~ 4 path that avoids T™* up to ¢ (otherwise ¢
would be separated from S by T* and «; would inherit a nonzero contribution through 4’s first hit
in T*). Consequently there exists at least one directed path from S to x that avoids T™* and can be
continued by P, contradicting that T™ intercepts all S ~~» X paths. Hence every ¢ ~» X path hits T*,
i.e., T* is a bottleneck from V; to X.

If a; # 0, then T™ is not a bottleneck from V; to X. If every ¢ ~» = path met T™, then any w whose
latent terms have been canceled via constraints indexed by T* would give v; = 0 (all contributions
must pass through T* and are nullified), contradicting a;; # 0. Thus ¢ has a path to some x € X
that avoids T™.

Combining the two implications yields (ii) with T = T*.
(<) (i)—(ii)) = constructibility. Assume (i)—(ii) hold for some T C V. Let
S:={ieV:a#0} = {ieV: Tisnotabottleneck from V; to X }.

By (i) and Lemma 16, T is the LM bottleneck from T to X and, therefore, from S to X as well
(latest with respect to any minimal bottleneck for (S, X)).
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Consider the vertex—splitting network G’ used in Lemma 15. Let (Sf,T) be the unique ¢-closest
minimum cut in G’ (induced by any maximum flow); it induces Tby T = {v € V : v~ €
Sy, vt € Ty}. Choose | T | distinct nodes {1, ..., 2|} C X reached by the | T| vertex—disjoint
paths guaranteed by Menger’s theorem from T to X (tightness of the cut). Define w supported
on {x1,... ,J:|T|} as the unique solution to the linear system that zeroes the contributions flowing
through T (the | T| x |T| system is non-singular because the T ~~ {x,} paths are vertex-disjoint).
Then 1) for any ¢ such that T is a bottleneck from V; to X, every ¢ ~» X path must traverse some
t € T, hence its contribution to v; is canceled by construction; thus v; = 0. 2) for any ¢ such that T
is not a bottleneck from V; to X, there exists a path P : ¢ ~» x that avoids T. Since our constraints
only cancel flows that pass through T, the term corresponding to P survives so v; # 0.

Finally, impose additional linear constraints (orthogonality) on w to remove latent terms (these con-
straints are independent of the T-cancellation because the latter acts only on flows that cross T),
which is always possible as we only eliminate | T| directions associated with the cut while retaining
degrees of freedom on X. Thus « is constructible by X. O

Corollary 1. Any noise combination « is constructible by XCX ifand only if (i) AT C V s.t. T
is the LM bottleneck of T to X in G. (ii)VV; € V, a; = 0 <= T is a bottleneck from V; to X in G.

A.3.2 ILLUSTRATION OF NON-IDENTIFIABILITY ISSUE ON FIG. 1A AND 1B
Y
7 {Xop | {Xe} | {Xs} | { X0, Xo} | { X0, Xa} | { X, Xa} | {X0, Xo, X}
{X,} 1 1 1 2 2 2 2
X5} 1 1 1 2 2 2 3
{X3} 1 1 1 2 2 2 3
Table 3: TIN value of different Y and Z of Fig. la
Y
7 (X0} | {Xe) | {Xs} | {X0, Xo} | {X0, Xs} | {Xo, X5} | {X3, X5, X5}
{X,} 1 1 1 2 2 2 2
X5} 1 1 1 2 2 2 3
{X3} 1 1 1 2 2 2 3

Table 4: TIN value of different Y and Z of Fig. 1b

Proof. We use G; and G, to represent the causal graph in Fig. 1a, and Fig. 1b, respectively. By some
simple calculations, we can find that both G; and G5 have no rank-deficiency constraints. Thus, for
each pair of (Z,Y), rankg, (¥zv) = min(Z,Y) = rankg, (X7 v). In addition, as we can see in
Table 3 and 4, G; and G5 have the same TIN value for each (Z,Y). As GIN(Z,Y) is satisfied if and
only if TIN(Z,Y) = rank(¥z v) < |Y| (Dai et al., 2022), whether the GIN condition is satisfied
for a certain pair (Z,Y) keeps the same in G; and Go. O

A.3.3 PROOF OF LEMMA 1

Proof. NS(Z) = Anc(Z). By Theorem 4, Anc(Z) is constructible. Therefore, according to the
definition of constructible noise combination, we can always find a non-zero coefficient wy such that
NS(wy Z) = Anc(Z). Since w{ Y 1L Z, we naturally obtain w{ Y Ll w, Z. O

A.3.4 PROOF OF REMARK 1

Proof. By Theorem 4, we can enumerate all constructive noise combinations by finding all LM
bottlenecks. All LM bottlenecks can be identified by testing for Lemma 16. All constructive noise
combinations by { X1, X2}, {X1, X3} and { X5, X3} in Fig. 1a are shown in Tab. 5. All constructive
noise combinations by { X1, X2}, {X1, X3} and { X2, X3} in Fig. b are shown in Tab. 6.
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Z={Xy,Xo} 0 1L} { X1} { X2}
{EL,E1, Eq} {E1, Eb} {EL, Fa} {EL, B}
Z={X1, X3} 0 {L} (X} { X5}
{EL7E17E23E3} {E17E27E3} {EL7E27E3} {EL7E17E2}
Z = {X,, X3} 0 {L} {Xo} {X5}
{EL,E\, Es, Es} | {E1, Es, Es} {EL, Es} {EL,Ey, Es}

Table 5: All constructive noise combinations by {X7, Xo}, {X3, X3} and {X», X3} in Fig. la.
Each constructive noise combination is shown together with its corresponding LM bottleneck in a
pairwise manner.

Z = (X1, X2} ) {L} X1} {Xo}
{EL,E\,E>, Es} | {E1,E>, Es} | {EL,Fs, Es} | {EL, By, E3}
Z={X, X3} 0 {L} (X1} (X5}
{EL,E\, Es} {E1, E5} {EL, E3} {EL, E1}
Z={X3 X3} 0 {L} {Xo} {Xs}
{EL,E7\,Es, Es} | {E1,Es,E3} | {EL,Ey, Es} {EL, B}

Table 6: All constructive noise combinations by {X1, X2}, {X1, X3} and {X5, X3} in Fig. 1b.
Each constructive noise combination is shown together with its corresponding LM bottleneck in a
pairwise manner.

From Tab. 5, when Z = { X, X5}, Y = {X5, X3}, we can construct NS(w{ Z) = {Ey, E>} and
NS(wq Y) = {EL, E3} with non-zero wy,w, € R2. In contrast, in Tab. 6, each pair of constructive
noise combinations by Z and Y has shared noise components, thus cannot be independent. The
conclusion for Z = { X1, X3} and Y = {X5, X3} can be analyzed similarly.

O

A.3.5 PROOF OF LEMMA 2

Lemma 2 (Indeterminacy of CICA). Given Assump. 1, let X be m observed variables, W1, Wo €
R™*™ pe two p-order CICA solutions for X. The following two statements are equivalent:

(i) There exists p latent variables L such that, writing Z*) := W, X, the components of Z*)
are mutually conditionally independent given L for k € {1, 2}.

(ii) There exist a permutation matrix P, (for some permutation 7 of [m]) and a non-singular
diagonal matrix D such that Wy = P, DW.

Proof. Under Assumption | there exist an invertible A € R™*™ a latent vector L € RP, a matrix
M € R™*P andanoise E = (F,. .., Em)—r with mutually independent coordinates, E L L, finite
non-zero variances, and with at most one Gaussian coordinate, such that X = ASand S = ML+ E.
For k € {1,2} write Z(*) := W; X and set B, := WA (hence Z*) = B;.S).

For every ¢, Z®) | {L = ¢} = B,(ML +E) | {L = ¢} = (ByM)/¢ + B,E. Thus, for each £,
the coordinates of Z(*) are mutually independent given L if and only if the coordinates of B, E are
mutually independent (a deterministic shift (B;M)¢ does not affect independence). In particular,
we have an ICA model with independent sources E and mixing matrices By.

(=) Assume (i) holds: there exists a single latent L such that Z*) has mutually independent coor-
dinates conditional on L for £ = 1, 2. By the reduction above, both B; E and Bs;E have mutually
independent coordinates. Since E has mutually independent coordinates with at most one Gaussian,
the standard ICA identifiability implies that the only invertible linear maps sending E to a vector
with independent coordinates are permutation—scalings. Concretely, there exists a permutation ma-
trix P and a non-singular diagonal matrix D such that Bo = P, D B;. Multiplying on the right
by A1 (recall B, = W;A) yields W, = P,DW.

(<) Assume (ii) holds: Wy = P, D W, with P a permutation and D diagonal nonsingular. Let
L be any latent vector for which W is a p-order CICA solution (which exists by assumption that
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‘W is a CICA solution). Then for almost every ¢,
ZO L=} =WyX [{L=0}=P,DW,X | {L=¢} =P, DZV | {L = ¢}.

Since permutation and nonzero per-coordinate scaling preserve mutual independence of coordinates,
the coordinates of Z(?) are mutually independent given L whenever those of Z(!) are. Hence (i)
holds. Therefore, the two statements are equivalent. O

A.3.6 PROOF OF LEMMA 3

Lemma 3. Let X be m observed variables, and W be a p-order CICA solution of X. Let
X' = WX,Y and Z are two subsets of X', then if max{|Y|,|Z|} > p, w] Y’ lLw, Z' has a non-
zero solution (wy,ws) for (Y',Z"), where Y' = {Xi| 3"« v Wi,i # 0}, Z' are defined similarly.

Proof. Y = Wy .Y',Z =Wz .Z', Y and Z are conditional independent given p latent variables.
Since max{|Y|,|Z|} > p, without losing generality, we assume |Y| > p. Then we can find a
non-zero w; that w{ Y 1L Z. By Lemma 1, there exist a non-zero wy that makes w; Y llw, Z. Thus,
wIWYV:Y/J_Lw;WZ#Z,. O

A.3.7 PROOF OF LEMMA 4

Lemma 4. For an observed variable set X with |X| = m, denote p = ppin(X). Suppose m >
2p + 2, and set X' := WX, then W is a p-order CICA solution of X if and only if for every pair
of disjoint coordinate subsets X1,Xo of X' with |X1| = |X2| = p+ 1, det(Xx, x,) = 0, where
Y := Cov(X') denotes the covariance matrix on X' and ¥x, x, is the (p+1) x (p+ 1) sub-matrix
of ¥ with rows indexed by X1 and columns by Xa.

Proof. (=) Necessity. If W is a p-order CICA solution, there exist a p-dimensional latent vector
L and independent noises £ = (E4,..., F,,) (independent of L) such that Z; = aiT L+ FE;i=

1,...,m.Hence ¥ = AX; A" + (diag(Var(E;)). For disjoint X, X5 the diagonal term vanishes,
—_— —— —
rank<p diagonal

$0 Xx, x, = Ax, X LA)T(2 has rank at most p. Therefore det(Exhxz) = 0 for every such pair.

(<) Sufficiency. Assume that for every disjoint Xy, Xo of size p + 1, rank(Xx, x,) < p (equiv-
alently, all (p+1)-minors vanish). By the trek separation theorem, for each such pair there exists a
t-separating pair (L1, La) with |L1| + |La| < p that t-separates X from Xs. Since p = pmin(X),
no separator of size < p works uniformly; hence the minimum size is exactly p for all these pairs.

Consider some (X 4,Xp) with X4 N X}, = () and both | X 4| and | X,| equals p + 1, let (Lq, Lo)
be a minimal ¢-separator for this pair, so |L1| 4+ |La| = p. We claim that (L, Lo) t-separates every
other disjoint (X¢, X p) with | - | = p + 1 and is minimal for that pair as well. Suppose (L1, L2)
does not ¢-separate X from X p. Then there exists a trek from some ¢ € X to d € Xp avoiding
L1 U Ly. Because | L1| + | La| = p while | X 4| = |[Xp| = p + 1, Menger’s theorem for treks imply
that there are p vertex-disjoint treks connecting X 4 \ {a} to X \ {b} for some a € X4, b € Xp,
all avoiding L, U Lo. Together with the trek ¢ ~~ d (also avoiding L; U L9) we obtain p+1 vertex-
disjoint treks between the modified sets X'y = (X4 \ {a}) U {c} and X3 = (X \ {b}) U {d},
hence rank(EX/A X4 ) > p + 1, contradicting our hypothesis. Thus (L1, Lo) t-separates every such
pair. If for some (X¢,Xp) there were a smaller separator (L], L) with |Lj| 4+ |L5| < p, then
rank(Xx . x,) < |Li| + |L5| < p, again contradicting the assumption that all those ranks equal
p by minimality of p = pp,in (X). Hence the same (L1, L2) is a minimal ¢-separator (of size p) for
every such pair. We fix this global separator (L1, Ls).

Let ¢ # j be nodes outside L; U Lo. If there existed a trek from ¢ to j avoiding L1 U Lo, then by
the same replacement argument as above we could build p+1 vertex-disjoint treks between some
disjoint (p+1)-subsets, forcing a cross-rank > p+ 1, which is a contradiction. Therefore, every trek
from ¢ to j meets L; U Lo, i.e., all covariance between distinct observed coordinates flows through
(L1, Ly). Equivalently, ¥ admits a decomposition X = AX; AT + D withrank(AX A7) <p
and diagonal D collecting variances.
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Under Assumption 1, noises are mutually independent and independent of the latents. The diagonal
D found in Step 2 implies that each observed coordinate has a unique private noise, and distinct
coordinates share no private noise. Therefore, we may write, for some p-vector L, Z; = aiTL +
E,,E = (En,...,E,) mutually independent, £ | L. Thus the coordinates of Z are mutually
independent given L, i.e., W is a p-order CICA solution.

Combining both directions proves the equivalence. O

A.3.8 PROOF OF LEMMA 5

Lemma 5. For an observed variable set X with |X| = m, suppose that pp;n(X) = 1 and m > 3

hold, set X! & WX, then the invertible matrix W is a 1-order CICA solution of X if and only if for
every ordered triple (X[, X}, X}) of X', { X[, X}} and X}, satisfies the Triad constraint.

3

Proof. (=) Necessity. If W is a 1-order CICA solution, then for some latent L we have Z; =
m;L + E; with E = (E4,..., E,,) mutually independent, £ | L, and Var(E;) € (0,00). For
i # j # k, Cov(Z;, Zy,) = m;my Var(L) and hence

E jiry = mxVar(L) (m; Z; — m; Z;) = myVar(L) (i, E; — i, Ey),
which depends only on (E;, E;) and is independent of Z;, = 77, L + E},. Thus the Triad constraint
holds for all distinct triples.
(<) Sufficiency. Assume the Triad constraint holds for every distinct (4, 7, k). Fix k and set

~ Cov(Z;, Zy)

Bir 1= arizs EM =7~ By (i # k).

Then for any distinct 7, j, k, E¢; jjx) = Var(Zk)(ﬁjkEi(k) — ﬁikE](.k)) U Zj. Varying (3,j), the

family of non-degenerate linear forms {ﬁjkEgk) - 5¢kE§k)}i¢j¢k is independent of Z;. By the
classical characterization of independence of linear forms for non-Gaussian sources, this is only

possible if the vector E*) = (Ei(k))#k has mutually independent coordinates and is independent
of Zj.. Therefore, we obtain a one-factor representation

Zi =B L+ Ei(k)7 L:= 7, E® 1 L. and {Ei(k)}i# mutually independent,

which means the coordinates of Z are mutually independent given L. Hence W is a 1-order CICA
solution. Combining both directions proves the claim. O

A.3.9 PROOF OF LEMMA 6

Lemma 6. I — Bx x is a Dyin (X)-order CICA solution of X with latent conditional set LPa(X).

Proof. In the setting of our paper, A;(,lX =1 —Bx x. In the proof of Theorem 3, we prove that

A;(}XX deletes all the outgoing edges from X graphically. Therefore, A;(}XX is conditional in-
dependent given LPa(X). Given Condition 1 holds, py,in(X) = | LPa(X)|. Thus, I - Bx x is a
Pmin(X)-order CICA solution of X with latent conditional set LPa(X). O

A.3.10 PROOF OF LEMMA 7

Lemma 7. Suppose W is a ppin(X)-order CICA solution of X whose latent conditional set is
LPa(X), there exists a unique row permutation matrix P that makes PW whose diagonal elements
have non-zero values, simultaneously.

Proof. By Lemma 2 and Lemma 6, we can find a permutation matrix P and non-singular diagonal
matrix D that makes W = PD(I — Bx x). Subsequent proofs can be analogized to Lemma 1
in (Shimizu et al., 2006). O
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A.3.11 PROOF OF LEMMA 8

Lemma 8. I — Bx x € argmin{||W/||o : W is @ pyin(X)-order CICA solution of X}. .

Proof. For w € R™, denote X’ = a'E = w'X = w'AE = w' (I - Bx x)E, where a €
R™*4, As Ax x is a non-singular matrix, denote the row indices corresponding to X as aX for
convenience, then we have A} yw = o, w = Ayxo® = (I - Bx x)"o® = o® — B xo*.
a' is defined similarly, then o™ = Ay yw = Af x (I-Bx x)” . In summary, we can represent
w and o as the linear combination of a*:

ol ] [ AEX ] [ ol ] AEXA;(FJ;( X
—x = + w — == - (67 (5)
[ o Ax x w Ax’,l;c

Here, since we focus mainly on the sparsity of W (i.e., ||W/||o) rather than the specific value in W,
we use O to represent a value 0, and x represents a nonzero value as (Ghassami et al., 2020).

According to Lemma 5, X’ is conditionally independent given a latent variable. Then, for W =

A;(,lx’ denote its corresponding noise coefficients of observed variables ax = [« X1, 0X,2,0 ",
ax.m), we have ax ; = [0,---,0,x, 0,---,0]", ar; = [X,--+,x]T. For other feasible solu-
—— ——

(i—1)-times (m—1i)-times

tions except for A)—(lx, it corresponds to choosing d variables in d 4+ m independent noises.

If W is a 1-order CICA solution whose latent conditional set is LPa(X), then we can find a permuta-
tion matrix P and non-singular diagonal matrix D that makes W = PDA;(lx. As the permutation
matrix P and non-singular diagonal matrix D do not change the sparsity i)attern of W, we can
analyze W directly for convenience.

For the j-th column of W, we have exactly one X in a?,(j in the j-th row. As A)_(lx =1I-Bxx,
W = (I — B)T(’X)O(X. For Vt € [m], Wt,j = (It,: — th)a?’(j = (I@j — Bt,j)()é;’(j.

Case (i): If t = j (I;; # 0), then W ; = o = x.

Case (ii): If X; € Pa(X;) (By; # 0), then W, ; = thJ-ozx- = X.

If X does not fall into any of the two cases above, then W, ; = 0. In summary, when W ~ A)_(lx,
Vvt e m]\ {k}, W ; # 0 <= X, € {X,} UPa(X}). Thus, W], = |X| + |Gx].

If W is a 1-order CICA solution whose latent conditional set is not LPa(X), then X'’ is conditionally
independent given another latent variable than L. Without loss of generality, we assume that X’
is conditionally independent given the exogenous noise of X, Fy. Therefore, £ € NS(X ]’)
for any j € [m]. In other words, we have ax,; € R™ has a x in its k-th position. Besides,
exact only one ax ; has a x in j-th position for j € [m] \ {k}. On the other hand, we have

al = [0,---,0,%, 0,---,0 ]. Essentially, in this scenario we exchange the position between E,
N—— ——

(k—1)-times (m—k)-times

and £, compared to W ~ A)_éx'

For example, Equ. (6) presents an example of a® when k = 3.

x 0 0 0 0
0 x 0 0 0
X X X X X
0 0 0 x 0 (6)
00 0 0 - x

Based on the expression of a® above, we can now check the sparsity of ||[W|| of each column.

For the k-th column of W, we have exactly one X in a?(k, in the k-th rows. In addition, oz:Lk = X.

Therefore, the support of azl"k is exactly the same as in the scenario W ~ A)_(?x-
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For the j-th column of W with j # k, we have two X in O‘:),(j’ in the j-th and k-th rows, respectively.
As A;(,lx =I-Bxx,W=(I- B;X)ax. ForVt € [m], Wy ; # 0 <= (I;. — Bt,X)ai(j =+
0 <— (It,j — Bm—)afj -+ (It,k — Bt,k)ai(,j 75 0.

Case (1) Ift = j (Ityj 7& O,ItJC = O), then Wt,j = (Ij,j — thj)afj + (Ij,k — Bj7k)ai(’j =

gy — Bj,kaﬁj. On the other hand,

OézIfj = AE,X(I - B;(,X)a:),(j
= AE,X(IZJ - B;(,j)a;,(j + AE,X(I:,k - B;r(,k)ai(,j

T T T X T T T X
= (AL7j - AL,XBX,j)aj,j + (AL,k - AL,XBXJc)O‘k,j

=0
If Wj; =0, as afj and aif ; are non-zero, then the following system of equations has a non-zero
solution z1 = o ;, w2 = O‘i(,j-
1= Bjrzo=0
{(A{j ~ AL xBL )oi+ (AL, — AL xBX)z2 =0 (7)

Therefore, we have the determinant of the coefficient matrix being zero, that is, (AE P
Ay xBx i) + (A ; — Af xBx ;)Bjx = 0. Here, A{ , — A] y By ; measures the total causal
effects of L to X}, without passing through other observed variables, (AE i~ AE’XB;’ Bk

measures the total causal effects of L to X, without passing through X \ {X;} and end with X.
Therefore, the causal effect of L on X}, is zero given all observed variables other than X; and Xj.
In other words, L 1L Xy |X \ { X4, X;} and Rank(¥ 1 x,x\{x,,x,}) = 0. However, this rank con-
straint is not a generic constraint, which violates the rank faithfulness assumption. Therefore, we
have W ; # 0 in contradiction.

Case (ii): If t = k (It)]‘ = O,It7k = 0), then Wt)j = (Ik,j - Bk)j)afj + (Ik,k - Bhk)aﬁj =
—Bj ja; + o, Similarly to case (i), if Wy j = 0, we have (Ay, , — Af xBy )Bij +(Ay ; —
AE,XB; ;) = 0, which means the causal effect of L on X is zero given all observed variables

other than X; and Xj. It implies Rank(X 1, x.jx\(x, x,1) = 0. As this rank constraint is not a
. J ) . ) ) ]‘ \{ ks ]} .
generic constraint and violates the rank faithfulness assumption, we have Wy, ; # 0.

Case (iii): If X; € Pa(X;) \ {Xi} (By; # 0), then W, ; = meafj — Btykozi(’j. Simi-
larly to case (i), ift W, ; = 0, we have (Azk - AE,XB;(,k)Bt-,j = (AEJ - AEXB;—(J)Bt,k.
Then Rank(X¢z x,},¢x,, XX\ {Xe, X, X].}) = 1, which violates the rank faithfulness assumption.
Therefore, we have W ;

Case (iv): If X; € Pa(Xy) \ {X;} (Byx # 0), then W, ; = —Bt,jozfj — Bt7ka§j. Similarly to
case (iii), if W, ; = 0, we have (Ay , — Af, xBx ;)Bt; = (A] ; — A xBx ;)Bi . Therefore,
we can prove Wy ; # 0as Rank(3(L x,},{x,,x,}/X\{X,.X,x,}) = 1 violates the rank faithfulness
assumption.

If X, does not fall into any of the four cases above, then W, ; = 0. In summary, V¢ € [m] \ {k},
Wt’j # 0 = X; € {Xj,Xk} @] Pa(Xj) UPa(X;C). As {XJ} @] Pa(Xj) - {Xj,X}c} U
Pa(X,;) U Pa(Xy), we have HA)—(}XHO < ||[W|lo. Therefore, I — Bx x € argmin{||W]||p :
W is @ Pimin (X)-order CICA solution of X}. O

A.3.12 PROOF OF LEMMA 9

Lemma 9. If Condition 2 holds, W € argmin{||W||o : W is @ pynin(X)-order CICA solution of
X} if and only if we can find a permutation matrix P and non-singular diagonal matrix D that
makes W = PD(I — Bx x).

Proof. First, during the proof in Lemma 8 we obtain the following results. If W is a 1-order CICA
solution whose latent conditional set is LPa(X), V¢t € [m] \ {k}, W, ; # 0 <= X, € {X,} U
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Pa(X;). If W is a 1-order CICA solution whose latent conditional set is not LPa(X), Vt € [m] \
{k‘}, Wt,j 75 0= X; € {Xj,Xk} U Pa(Xj) U Pa(Xk). If X; € Pa(Xj) and Pa(Xk) = @,
{X;, X} UPa(X;) UPa(X}y) = {X,} UPa(X}), thus W, ; has the exactly same sparsity pattern.
If Condition 2 holds, then there exist a X; such that the constraint X}, € Pa(X;) and Pa(X}) = 0
does not hold, {X,;} UPa(X;) C {X,, X} UPa(X;) UPa(Xy), then the CICA solution whose
latent conditional set is LPa(X) has a strictly small number of non-zero entries. O

A.3.13 PROOF OF THEOREM 1

Theorem 1. All latent variables in LPa(X) can be identified. Besides, the causal edges of LPa(X)
to X and the causal edges between the observed variables are also identifiable.

Proof. By Lemma 8, if Condition 2 is satisfied, we can identify I — Bx x by adding sparsity
constraints and induce the causal structure. On the other hand, if Condition 2 is not satisfied, I —
Bx x is not identifiable. That is, we can find another p-order CICA solution W’ with the same
number of non-zero entries as I — Bx x. Review the results obtained in the proof of Lemma 8, Vt
m]\{k}, W, ; #0 <= X; € {X;, X} UPa(X,;) UPa(X}). If X}, € Pa(X;) and Pa(X}) = 0,
{X;, Xk} UPa(X;) UPa(X}y) = {X,} UPa(X;), thus W, ; has the exactly same sparsity pattern.
If the constraint X, € Pa(X;) and Pa(X}) = 0 holds for every X; (Condition 2 does not hold),
then the whole W exist exactly same sparsity pattern. In other words, although W' has different
parameters with I—-Bg g, their support matrix remains the same. Therefore, in both cases, the causal
structure among observed variables Bx x within a causal cluster is identifiable. Given Condition 1
holds, pmin(X) = | LPa(X)|, thus we can identify each latent variable in LPa(X). Putting all these
partial results together, all the latent variables in LPa(X), the causal edges of LPa(X) to X and the
causal edges between the observed variables can be identified.

A.3.14 PROOF OF LEMMA 10

Lemma 10. Let L be a latent variable discovered in the current iteration. Denote S = Ch(L). Let
Sk have the highest causal order in S whose index in S is k, and W be the sparsest pp,in (S)-order
CICA solution of S. P is the permutation matrix that makes PW have non-zero diagonal elements,
simultaneously. Denote Z = PWS, then the value of Zi, can be a suitable surrogate for L.

Proof. By Lemma 8, if Condition 2 is satisfied, we can identify I — Bx x by adding sparsity
constraints and induce the causal structure. Then P'W deletes all outgoing edges from S and makes
Zy, a pure child of L. As shown in (Xie et al., 2024), it can be a suitable surrogate for L. On the
other hand, if Condition 2 is not satisfied, I — Bx x is not identifiable. Review the results obtained
in the proof of Lemma 8, Vt € [m] \ {k}, Wy ; # 0 <= X, € {X,, X;;,} UPa(X;) UPa(Xy). If
X € Pa(Xj) and Pa(Xk) =0, {X77 Xk} U Pa(Xj) U Pa(Xk) = {X7} U Pa(Xj), thus Wt,j has
the exactly same sparsity pattern. If the constraint X;, € Pa(X;) and Pa(X}) = () holds for every
X; (Condition 2 does not hold), then the whole W exist exactly same sparsity pattern. In other
words, although W' has different parameters with I — Bg g, their support matrix remains the same.
Essentially, W’S can be interpreted as swapping the roles of L and Ej, on I — Bg gS. Although L
is not contained in the latent conditional set, it is still included in Z;. Therefore, in both cases, Z;,
can be a suitable surrogate for L. O

A.3.15 PROOF OF THEOREM 2

Theorem 2. Suppose Condition 1 holds, then the underlying causal graph G is fully identifiable,
including both latent variables and their causal relationships.

Proof. Denote Dis(V;) the length of the longest direct path from V; to X. VX; € X, Dis(X;) = 0.
We collect Yy, = {V;| Dis(V;) < k}. The proof is based on mathematical induction:

(1) Base: for k = 1, we use Theorem 1 to identify the common latent parents of observed variables
and related causal edges. In other words, we can correctly identify the induced sub-graph of G with
nodes in Y.

(2) Induction: assume we have correctly identified the induced sub-graph of G with nodes in
{Vi| Dis(V;) < k}, then using Lemma 10 to find the suitable surrogate for latent variables in
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Yx \ Yk-1, we can continue to use Theorem 1 to local the latent variables in Y41 and related
causal edges, which concludes the induction.

Therefore, the underlying causal graph G is fully identifiable, including both latent variables and
their causal relationships. O

A.3.16 PROOF OF THEOREM 3

Theorem 3. Let the graph obtained after removing all the outgoing edges of X in G be named by
G’, which form several connected components of observed variables X'C1 , X/027 e 7X’Ck, where k

be the number of connected components in G'. For an ISA solution W, let WX = (Z] , ..., Z;)T.
Then there is a permutation 7 of [k] s.t. for any i € [k], IW; € GL(|C;|) makes Z;y = WX, .

Proof. Based on the Schur complement, we have
A)_c}x =(I-Bxx)-Bxr.(I-Brr) 'BrLx (8)

Denote Z = A;&XX. Then we have N'S(Z;) = {E;|L; has a directed path to X; whose interme-
diate nodes, if exist, are all latent nodes}. The reasons are as follows.

|X]
Zi =) (AxX)iX;
j=1
|X] 9
=> (I-Bxx) - BxrL(I-Brr) 'BLx)i;X; ©)
j=1
=X; - Z (B@j —|—Bi7L(I—BL7L)_1BL,j)X]‘

X;eX\{X;}

Considering all directed paths into X;, we categorize them into different groups according to the
topologically last observed nodes before X; on this path. For example, if there is a path P; : X; —
L — Xy — Lo — X;, we put this path into the group corresponding to Xy, named G[X]. If
there are no observed nodes before X; in this path, we put this path in the group corresponding to (),
named G[0]. In total, there are [ X| groups: U, ex\ (x,} 9[Xk] U G[0].

X is a cumulative sum of all directed paths into X;. The contribution of each directed path in this
sum is the noise of the start point times the path coefficient. Obviously, any path will be placed in
the group Uy, ex\ {x,} 9[Xk]UG[0]. Then, consider what the subtrahend in the last line of Equ. (9)

denotes. B; ; denotes the direct causal effect from X; to X;, B; 1,(I — B, 1.) "'By ; denotes the
indirect causal effect from X; to X; through latent variables. Consequently, (B; ; + B; r.(I —
BL,L)*lBLJ)X ; includes all causal effects in X; from Anc(X;) whose last observed node before
X in the causal path is X;. This term is exactly the sum of causal effects on X; by paths in G[X].
As a consequence, Z; equals the sum of causal effects on X; by the paths in G[()]. That is, those
directed paths whose intermediate nodes are all latent.

Therefore, A;(,lx deletes all the outgoing edges from X and forms several connected components
which correspond to the subspace in ISA’s definition. Since ISA does not pose any constraints within
a subspace, any invertible matrix is valid. Since ISA exists block permutation indeterminacy (Theis,
2006), then we can conclude that there is a permutation 7 of [k] s.t. forany ¢ € [k], IW,; € GL(|C;|)
makes Zr;) = W; X . O

A.3.17 PROOF OF REMARK 2

Remark 2. The two causal graphs in Fig. 1a and Fig. 1b cannot be identified by ISA.

Proof. For the causal graphs in Fig. la and 1b, after removing all the outgoing edges of X,
X1, X2, X3 are still connected due to the existence of L. According to Theorem 3,V W € GL(3)
is an ISA solution in both causal graphs. Consequently, the two causal graphs in Fig. l1a and Fig. 1b
cannot be identified by ISA. O
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B ILLUSTRATIONS OF ALGORITHMS

B.1 DISCUSSION OF OPTIMIZATION CRITERION OF CICA

Definition 14 (Cumulant (Brillinger, 2001)). Let X = (X1, X3,...,X,) be a random vector of
length n. The k-th order cumulant tensor of X is defined as a n x --- x n (k times) table, C'*)
whose entry at position (i1, - i) is

e mem(Xy,, X)) = Y (oM e-0E ] x| B [T X
(D1,...,Dp) jeD; jEDy
where the sum is taken over all partitions (D1, . .., Dy) of the set {i1, ... i}

A p-dimensional shared subspace leaves a low-rank fingerprint not only in covariance but also in
higher-order cumulants. In the covariance view, identifiability comes from the fact that cross-
covariance blocks live in a space of rank at most p; equivalently, all (p + 1)-minors vanish. The
same logic transfers to cumulants: when we form cumulant matrices by linearly contracting the
fourth-order cumulant tensor, the contribution of the shared factors still spans at most p independent
directions. Hence, these cumulant blocks also satisfy a rank deficiency property.

This viewpoint treats cumulants as providing additional low-rank views of the same latent struc-
ture. Because there are many ways to contract a cumulant tensor, we obtain many rank constraints
without needing two large disjoint coordinate subsets, which loosens the requirement on m. At the
same time, the framework strictly contains the second-order case: if we “degrade” the cumulant to
order two, we recover the original covariance criterion. In short, moving from covariance to cumu-
lants preserves the rank-deficiency principle while supplying more constraints and thereby stronger
identifiability with fewer observed variables.

B.2 DISCUSSION ON MULTI-FACTOR SCENARIO

Proposition 1 (Merging Rules). Let A be the active variable set and Cy and Cqy be two causal
clusters. Then the following rules hold.

RI. If|LPa(C1)| = | LPa(C>)|, and for any subset C C {C, U Cy} with |C| = | LPa(Cy)| + 1,
(AU{CLUCy\ C} C) follows the GIN condition, then Cy and Cy share the same set of latent
variables as parents, i.e., LPa(C;) = LPa(Cs).

R2. If |LPa(C1)| # |LPa(C2)| (suppose | LPa(C1)| > |LPa(C2)]),

| LPa(C;)| and WV; € C3\ C, (AU {C; U Cy \ {C,V;}},{C, V})follows the GIN condition,
then the common parents of Cy contain the common parents of Ca, i.e., LPa(Cy) C LPa(Cy).

Otherwise, C1 and Cs do not share any common latent variables as parents.

Corollary 2. Let L be a latent variable set that has been introduced in the previous iterations, Co
be a new cluster, and A be the active variable set in the current iteration. Further, let Cy be the set
of children of L that have been found. Then the following rules hold.

R3. If|L(Cs)| = (A\LU{01U
Co}\ {C, Vi}, {C, V}) follows the GIN condition, then the common latent parents of Cy are L,
ie, L(Cy) =L.

R4. If |L(Cy)| # |L| (suppose |L| > |L(C2)|), and for any C C Cy with |C,| = |L| and any
V; e C,\C, (A\LU{C,UCy}\{C, Vit {C, V;}) follows the GIN condition, then L contains
the common parents of Co, i.e., L(Cs) C L.

C ADDITIONAL INFORMATION ON EXPERIMENTS

C.1 COMPUTING INFRASTRUCTURE

The computing devices and platforms are listed as follows.
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* OS: Microsoft Windows 11

* CPU: AMD Ryzen 7 4800H with Radeon Graphics, 2900 Mhz
* Memory: 16G

* Python 3.8.18.

C.2 REAL-WORLD EXPERIMENTS

Dataset Description. The Big Five personality dataset is rooted in the Five-Factor Model (FFM),
a seminal theoretical framework in personality psychology to characterize individual personal-
ity differences, proposed by American psychologists Paul Costa and Robert McCrae (Costa &
McCrae, 1992). This dataset encompasses five core personality dimensions, namely Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism, abbreviated as the O-C-E-A-N
model. Each dimension is operationally measured by 10 psychometric items, which are designed to
capture the nuanced traits underlying each factor. For example, the Openness dimension includes
items like “I am intrigued by abstract ideas”, while the Conscientiousness dimension features items
such as “I am diligent in fulfilling responsibilities”.

The data were collected via the online interactive personality testing platform hosted on https:
//openpsychometrics.org, a widely recognized and ethically compliant public data acqui-
sition channel in psychological research. The survey implementation adhered to established ethical
norms in empirical psychology, including informed consent and anonymous participation. After
data cleaning and validation, the final dataset utilized in this study comprises approximately 20,000
valid samples, covering 50 psychological measurement indicators (10 items per dimension across
the five factors). Prior to subsequent analyses, we performed standardization on the data to ensure
each variable follows a distribution with a mean of 0 and a variance of 1.

Measurement Model Learning. To determine the causal structure in the Big Five personality
data, we first employed the GIN algorithm (Xie et al., 2022) to construct a measurement model. The
core objective was to identify observed items that highly correspond to each personality dimension.
During the clustering process, some items may reflect multiple personality dimensions: for instance,
item Og (“I spend time reflecting on things”) has dual connotations. On one hand, it reflects in-depth
thinking about abstract and complex issues, which is consistent with the cognitive exploration traits
of Openness; on the other hand, it involves reviewing and being prudent about one’s own behaviors
and tasks, aligning with the rigorous and self-disciplined traits of Conscientiousness. For item Aj
(“I make people feel at ease.”), on one hand, the sense of interpersonal security brought by empathy
and friendliness is in line with the cognitive exploration traits of Agreeableness; from the perspective
of Extraversion, the enthusiasm and talkativeness of extroverts can easily alleviate awkwardness.
Such variables cannot correspond to a specific cluster and are therefore not included in the output of
the measurement model. After screening via the GIN algorithm, the final output of the measurement
model is as follows:

* Openness: L1{03,04,07}, L3{03, 05,06, 010}, L3{01,0s};
* Conscientiousness: L4{C1,Cs, Cs,Cy, Cy, Cg,C7,Cs, Cy, C1p};
» Extraversion: L;{E1, Es, E4, E5, Eg, E7, Es, Fg, E1p};

» Agreeableness: Lg{A;, As, A3, Ay, A5, Ag, A7, Ag, Ag};

* Neuroticism: L7{Ny, N3, N3, Ny, N5, Ng, N7, Ng, N9, N1g}.

The measurement model reveals that the latent variables Ly, Ls, Lg, and L7 serve as unitary rep-
resentations for Conscientiousness, Extraversion, Agreeableness, and Neuroticism, respectively, ex-
plaining the shared variance in their corresponding item responses. In contrast, the Openness di-
mension exhibits a more granular internal structure, decomposing into three distinct sub-clusters:
Ly, Ly, and L3. These sub-clusters correspond to the core components of “Cognitive exploration”,
namely abstract reasoning, creative imagination, and linguistic-cognitive complexity.

Causal Analysis Within Clusters. After obtaining the measurement model, we further applied
our algorithm to uncover causal relationships within the clusters. We found several new conclusions
that were not revealed by (Dong et al., 2023).
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(i) Openness: In the Openness dimension, “difficulty in understanding” is the direct cause of “lack
of interest”(O2 — O4) — when a person repeatedly fails to understand abstract content, it will
directly weaken their willingness to explore this field, whereas if they can understand it easily, they
will be more likely to develop interest. Imagination is the core source of creative output: on one
hand, “vivid imagination” will directly give rise to “excellent and unique ideas”(O3 — O5), and
conversely, a lack of imagination will directly restrict the quality of ideas; on the other hand, the
breadth of imagination also directly determines the quantity of ideas, and “vivid imagination” will
be transformed into “a constant stream of ideas”’(O3 — O1¢). In addition, vocabulary reserve is
the foundation of the complexity of language expression: “a rich vocabulary” will directly endow
people with the ability to use complex and rare words(O; — Og), while a poor vocabulary cannot
support the use of difficult words.

(ii) Conscientiousness: In the Conscientiousness dimension, The intrinsic core trait of “liking or-
der” directly drives individuals to maintain the orderly state of life and work through the behavior
of “following a schedule”(C7 — Cy); while the behavioral tendency of “paying attention to details”
directly translates into the specific manifestation of “being exacting in work”(Cs — C9) — a high
sensitivity to details directly acts on the control of omissions in work, thereby presenting a rigorous
work state.

(iii) Extraversion: In the Extraversion dimension, on one hand, the intrinsic mindset of “feeling
comfortable around people” serves as the core prerequisite for active social interaction — if an
individual feels at ease in crowds, this mindset will directly prompt them to initiate conversations
actively (E's — Es), and at the same time, it will directly drive them to interact with multiple people
in social scenarios such as parties (F's — FE7); on the other hand, the core tendency of “not liking
to draw attention to oneself” is the direct trigger for social avoidance behaviors — the aversion
to others’ attention will directly guide the individual to choose a low - key position “keeping in
the background” (Fs — FE,), and this sense of aversion will also directly suppress their desire to
express themselves in front of strangers (Es — E1g).

(iv) Agreeableness: In the Agreeableness dimension, in which A4(“I sympathize with others’ feel-
ings.”) plays a key mediating role: “feeling others’ emotions” is the prerequisite for generating
“sympathizing with others’ feelings”(Ag9 — A4) — only by accurately capturing others” emotional
states can one further put oneself in others’ shoes and generate emotional resonance, while the in-
ability to perceive emotions will directly lead to a lack of empathy. On this basis, “sympathizing with
others’ feelings”, as a mediating variable, becomes the direct driving force for altruistic behavior —
a deep resonance with others’ feelings will directly prompt individuals to take time out for others
(A4 — Ag); conversely, if such empathy(A,) is lacking, even if one can perceive others’ emotions,
it will directly reduce the willingness to engage in the altruistic behavior of active companionship.

(v) Neuroticism: In the Neuroticism dimension, on one hand, the core trait of “changing mood a lot”
is directly externalized as the specific manifestation of “having frequent mood swings”(N; — Ng);
on the other hand, the emotional tendency of “getting stressed out easily” exerts a direct impact
through the accumulation of sustained states(N; — N79) — being in a stressed state for a long time
will directly lead to the continuous superposition of negative emotions, which in turn gives rise to
the emotional outcome of “often feeling blue”.

Structural Model Learning. Following the learning of the measurement model and cluster causal
analysis, we further recovered the causal structure among latent variables. While some of our find-
ings are generally consistent with (Dong et al., 2023), we present here only the newly discovered
structural learning results.

CausalRelation: {L1 — LQ, Ly — L37 Ly — LG,LG — L5, Ly — Ll, Ly — L57 L; — L5}

(i)(Ly — Lo,L; — L3): In the Openness dimension, “Abstract cognitive ability and interest
orientation(L4)” serve as the prerequisite for fostering “creative potential (Ls)” and “complexity
of language expression (L3)”. Only by overcoming difficulties in understanding abstract concepts
and maintaining interest in them can one provide cognitive support for the operation of imagination
and the accumulation of vocabulary. On this basis, L; directly drives the manifestation of Lo and
Lj: strong abstract cognitive ability translates into rich imagination and excellent creative output,
while a positive orientation toward abstract thinking enhances the depth of vocabulary reserves and
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the ability to use complex words; conversely, deficiencies in L;regarding abstract cognition will
directly restrict the development of creativity and the complexity of language expression.

(ii)(L; — Ls): “Emotional Instability (L7) “exerts a negative regulatory effect on “social partic-
ipation tendency (Ls5)”. Emotional fluctuations and feelings of anxiety directly suppress people’s
desire to interact, thereby leading to social avoidance behaviors such as staying in the background
and being quiet around strangers.

D RELATED WORK

Existing methods for handling causal discovery in the presence of latent confounders can be catego-
rized into the following folds. Here we list the papers focusing on linear continuous variables,

* (i) Conditional independence constraints. This line of work uses conditional independence
tests to infer causal graphs. The core idea is to find patterns of conditional independence
among variables to reveal the underlying causal structure. By testing for independence
among observed variables, these methods can discover the causal skeleton and orient some
of the edges. These approaches can handle both linear and nonlinear causal relationships.
Related work in this area include (Spirtes et al., 2000; Colombo et al., 2012; Akbari et al.,
2021; Triantafillou & Tsamardinos, 2015).

* (ii) Rank deficiency. This line of work uses rank constraints of covariance matrices to locate
latent variables and infer the causal skeleton. The core idea is that in linear causal models,
the covariance matrix or its submatrices exhibit specific rank properties. By analyzing these
rank deficiencies, it’s possible to reveal the connection patterns between latent and observed
variables. Related work in this area includes (Silva et al., 2002; 2006; Kummerfeld &
Ramsey, 2016; Huang et al., 2022; Jin et al., 2023).

* (iii) Matrix decomposition. This line of work proposes to identify the causal structure of
latent variables by decomposing the covariance or precision matrix into matrices with spe-
cific structures, such as low-rank and sparse. Specifically, the low-rank matrix captures
the causal relationships from latent variables to observed variables, while the sparse ma-
trix represents the direct causal relationships among observed variables. Representatives
include (Chandrasekaran et al., 2011; 2012; Anandkumar et al., 2013; Frot et al., 2019).

* (iv) Overcomplete independent component analysis (OICA). This line of work leverages
Overcomplete Independent Component Analysis (OICA) to handle problems with latent
variables. OICA is a variant of Independent Component Analysis (ICA) which allows more
source signals than observed signals, and thus can be used to learn the causal structure with
latent variables. Related work in this area includes (Shimizu et al., 2009; Entner & Hoyer,
2010; Adams et al., 2021).

* (v) Generalized independent noise (GIN). This line of work extends the independent noise
condition to handle scenarios with latent variables. The core idea is that, for non-Gaussian
linear causal mechanisms, higher-order statistics can be leveraged to identify latent struc-
tures. These methods typically use the non-Gaussianity of the latent variables to infer
causal relationships, even in the presence of confounding. Related work in this area in-
cludes (Cai et al., 2019; Xie et al., 2020; Dai et al., 2022; Xie et al., 2023; Chen et al.,
2022; 2023; Jin et al., 2023; Xie et al., 2024).

* (vi) Cumulant-based. This line of work leverages higher-order cumulants to identify the
causal structure when latent variables are present. For non-Gaussian distributions, cumu-
lants can capture richer structural information than covariance alone. These studies show
that the cumulant tensors of observed variables have specific rank constraints that can re-
veal the causal skeleton of latent variables. Related work in this area includes (Cai et al.,
2023; Chen et al., 2024; Schkoda et al., 2024).

e (vii) Score-based. These methods frame the learning of latent variable causal models as
a search problem, aiming to find the graph structure that best fits the data. They define
a scoring function to measure a graph’s goodness of fit, then use search algorithms (like
hill-climbing or beam search) to find the highest-scoring graph. Related work in this area
includes (Agrawal et al., 2023; Ng et al., 2024).
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT to refine writing only. The prompt was: “I am preparing a paper for submission
to an international conference and would like your help to check for any grammatical issues and
refine the wording or sentence structure where necessary to ensure conciseness and precision.” Edits
were applied paragraph-by-paragraph, and all outputs were verified and revised by the authors; no
scientific content, analyses, or references were generated by the tool.

29



	Introduction
	Background
	Problem Setup
	Preliminaries

	Method
	Motivation: beyond one-sided projections
	Conditional Independent Component Analysis
	Optimization Criterion for CICA
	Identifiability of Latent Causal Structure based on CICA
	Connection with ISA

	Experiments
	Conclusion
	Definitions, Examples, and Proofs
	Definitions
	Examples
	Proof
	Preliminaries
	Illustration of Non-identifiability Issue on Fig. 1a and 1b
	Proof of Lemma 1
	Proof of Remark 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 1
	Proof of Lemma 10
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Remark 2


	Illustrations of Algorithms
	Discussion of Optimization Criterion of CICA
	Discussion on Multi-factor Scenario

	Additional Information on Experiments
	Computing Infrastructure
	Real-world Experiments

	Related Work
	The Use of Large Language Models (LLMs)

