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ABSTRACT
Video anomaly detection has garnered widespread attention in
industry and academia in recent years due to its significant role
in public security. However, many existing methods overlook the
influence of scenes on anomaly detection. These methods simply
label the occurrence of certain actions or objects as anomalous. In
reality, scene context plays a crucial role in determining anomalies.
For example, running on a highway is anomalous, while running
on a playground is normal. Therefore, understanding the scene
is essential for effective anomaly detection. In this work, we aim
to address the challenge of scene-dependent weakly supervised
video anomaly detection by decoupling scenes. Specifically, we
propose a novel text-driven scene-decoupled (TDSD) framework,
consisting of a TDSD module (TDSDM) and fine-grained visual
augmentation (FVA)modules. The scene-decoupledmodule extracts
semantic information from scenes, while the FVA module assists in
fine-grained visual enhancement. We validate the effectiveness of
our approach by constructing two scene-dependent datasets and
achieve state-of-the-art results on scene-agnostic datasets as well.
Code is available at https://github.com/shengyangsun/TDSD.

CCS CONCEPTS
• Computing methodologies→ Scene anomaly detection.
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“The video footage could include the following scenes: {𝑆𝑐𝑒𝑛𝑒!}, {𝑆𝑐𝑒𝑛𝑒"}, ..., {𝑆𝑐𝑒𝑛𝑒#}.”
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Figure 1: (a) Scene-agnostic anomalies refer to events that
are independent of the scene in which they occur. How-
ever, scene-dependent anomalies require consideration of the
scene in which the event occurs. (b) Previous weakly super-
vised methods were unable to detect scene-dependent anom-
alies, but by injecting semantic information about scenes, we
can achieve the detection of scene-dependent anomalies.

ACM Reference Format:
Shengyang Sun, Jiashen Hua, Junyi Feng, DongxuWei, Baisheng Lai, and Xi-
aojin Gong. 2024. TDSD: Text-Driven Scene-Decoupled Weakly Super-
vised Video Anomaly Detection. In Proceedings of the 32nd ACM Interna-
tional Conference on Multimedia (MM ’24), October 28-November 1, 2024,
Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3664647.3680934

https://github.com/shengyangsun/TDSD
https://doi.org/10.1145/3664647.3680934
https://doi.org/10.1145/3664647.3680934
https://doi.org/10.1145/3664647.3680934


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Shengyang Sun et al.

1 INTRODUCTION
Video anomaly detection (VAD) [1, 17, 23, 24, 31, 42, 56] aims to dis-
criminate the abnormal frames from the given video, has received
significant research interest due to its crucial role in miscellaneous
domains such as public security and surveillance. Some previous
methods [15, 18] explored training models in a fully-supervised
setting, however, full supervision requires frame-level or snippet-
level annotations for training, which entails a significant amount
of manual labeling costs. Conversely, some researchers utilize un-
supervised methods [8, 22, 24, 28] to address this task, only us-
ing normal videos to train the model and identifying outliers as
anomalies during evaluation. Unfortunately, collecting all normal
samples is impractical, and since no abnormal samples are involved
in training, the model is prone to producing false alarms during in-
ference. To reduce the cost of data labeling and obtain models with
excellent performance, weakly supervised video anomaly detec-
tion (WS-VAD) [5, 7, 16, 29, 35, 42, 45, 54, 56] using only video-level
annotations for training has recently received widespread attention.

In the task of anomaly detection, defining what constitutes
an anomaly is crucial. Previous research has primarily focused
on a single-scene scenarios [1, 17, 23, 31] or multi-scene scenar-
ios [24, 42, 56] where anomalies exhibit consistent behavior across
different scenes, known as scene-agnostic anomalies. However, in
the real world, determining whether an event is anomalous often
requires considering the scene context in which it occurs, i.e. scene-
dependent anomalies, also known as scene-aware anomalies. As
shown in Figure 1(a), it is abnormal for bicycles to travel on pedes-
trian pathways, whereas it is normal for them to travel on roads. By
taking into account the scene context, anomaly detection systems
can adapt to different environments, enhancing their scalability
and applicability in real-world deployment. Therefore, in recent
years, there have been several notable attempts at scene-dependent
VAD [2, 3, 36, 38]. However, these studies have been conducted
in unsupervised setting, which have limited performance. To en-
hance the practical application capabilities of VAD, in this work,
we investigate scene-dependent anomaly detection under a weakly
supervised setting.

In this work, our focus lies in the meticulous exploration of
scene context within videos, enabling the model to possess the ca-
pability of detecting scene-dependent anomalies. To better describe
the scene information in the video, we classify scene information
into context descriptions and object descriptions. Specifically, the
context descriptions encompass general scene summaries, such
as schoolhouse, palace, and store for general descriptions, which
is a macroscopic description of the overall scene. However, solely
relying on macroscopic descriptions may make it difficult to distin-
guish between some similar scenes, such as park scenes and front
yards of houses. Determining whether it is a park often requires
considering the presence of park benches and fountains. Therefore,
when exploring scene information, we simultaneously consider the
objects of the scene, such as bicycle, van, and fountain for specific
objects. Exploiting scene objects not only enhances the scene’s dis-
criminative ability but also incorporates potential abnormal targets,
thereby increasing the anomaly detection capability of the model.

In real-world VAD tasks, scenes are often complex, and it’s dif-
ficult to fully capture the semantic meaning of video segments

solely through visual features [4]. In recent years, the emergence of
vision-language models, e.g. CLIP [30] and ALIGN [12], has made
it possible to combine visual information from videos with natu-
ral language descriptions, obtaining richer information from two
modalities. This fusion provides a more comprehensive understand-
ing of scenes, thereby aiding in more accurate anomaly detection.
Based on this, we propose a text-driven scene-decoupled (TDSD)
framework for weakly supervised video anomaly detection, which
exploits the context descriptions and object descriptions of scenes
based on the pre-trained CLIP model, empowering the model to
detect scene-dependent anomalies, as shown in Figure 1(b).

Our contributions are summarized as follows:

• We propose a novel text-driven scene-decoupled framework
to addressweakly supervised video anomaly detection, which
exploits the context and objects semantic meanings of scenes
in normal and abnormal videos, enabling the model to detect
scene-dependent anomalies. To the best of our knowledge,
this is the first work to address scene-dependent video anom-
aly detection under a weakly supervised setting.

• Wedesigned the text-driven scene-decouplemodule (TDSDM)
and the fine-grained visual augmentation (FVA) module for
extracting semantic features of scenes and enhancing fea-
tures at a fine granularity, respectively. The TDSDM consists
of context semantic injection (CSI) and object semantic in-
jection (OSI), which enable the model to learn the semantic
features of scenes and objects within scenes, respectively.

• To validate the ability to detect scene-dependent anomalies
of our method, we reorganize the scene-dependent anomaly
dataset NWPU Campus [3], which is originally constructed
for the one-class classification setting, to suit the weakly
supervised setting. Besides, we merged the public scene-
agnostic datasets UCF-Crime and ShanghaiTech into one
scene-dependent dataset, further validating the effectiveness
of the WS-VAD method. Additionally, we conduct experi-
ments on two scene-agnostic datasets to validate the aspects
of our designs that are independent of scene awareness.

2 RELATEDWORKS
2.1 Video Anomaly Detection
Video anomaly detection (VAD) has gained significant research
interest, which can be classified three main research lines, fully-
supervised [15, 18], unsupervised [10, 19, 22, 24, 27, 28, 37, 44, 50, 53]
and weakly-supervised VAD [5–7, 16, 29, 35, 39–42, 45, 54, 56].

The fully supervised VAD [15, 18] trains a model using frame-
level annotations, including precise bounding boxes of anomalies.
This necessitates a significant amount of labor to label the data.
To alleviate the burden of annotating numerous samples, unsu-
pervised methods focus solely on gathering normal videos for
model training. During inference, they differentiate samples de-
viating from normality as anomalies. For example, reconstruction-
based unsupervised techniques [8, 22, 24, 28] employ autoencoders
to encode normal samples into latent spaces, identifying poorly
reconstructed samples as anomalies. For instance, Yu et al. [50]
propose a reconstruction-based method that uses an object detec-
tor to identify potential anomalies in videos and focuses on the
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Figure 2: An overview of the proposed framework. It includes the text-driven scene-decouple module (TDSDM), fine-grained
visual augmentation (FVA), and the global encoder. The snowflake icon in the figure indicates that we have frozen this module
in the training. Best viewed in color.

temporal information of objects. Meanwhile, distance-based un-
supervised methods [10, 11, 34, 37] establish decision boundaries
using Gaussian mixture models or one-class SVMs, distinguish-
ing deviated data as anomalous samples. However, since abnor-
mal samples are absent from the training set, the model tends to
generate false alarms when detecting ambiguous normality. To al-
leviate the burden of labor-intensive annotations while training
models on abnormal data, weakly-supervised video anomaly detec-
tion (WS-VAD) [7, 29, 35, 42] tackles this challenge by employing
multiple instance learning (MIL). This approach trains the model
using video-level annotated data and achieves excellent perfor-
mance. For example, Lv et al. [25] propose an unbiased multiple
instance learning (UMIL) framework to tackle bias in MIL-based
VAD, thereby decreasing false alarms and enhancing performance.
Wu et al. [48] propose a framework that leverages the pre-trained
vision-language model CLIP to address the WS-VAD task. All previ-
ous weakly supervised methods focus on scene-agnostic anomaly
detection, leaving scene-dependent VAD unexplored. In contrast
to them, our approach focuses on addressing both scene-agnostic
anomalies and exploring solutions for scene-dependent anomalies.

2.2 Scene-dependent Video Anomaly Detection
In recent years, scene-dependent VAD has garnered increasing at-
tention due to the growing complexity of surveillance scenarios.
The incorporation of scene context into VAD involves several cru-
cial components, such as extracting scene features, identifying scene
types, and modeling the relationship between objects and scenes. In
previous methods, scene features have been extracted by inputting
the entire frame, with or without marked objects, into various en-
coders [2, 3, 36, 38]. Scene types have been identified primarily using
unsupervised clustering algorithms [2, 36, 38]. Additionally, spatio-
temporal context graph [36], hierarchical scene normality-binding
model [2], and scene-conditioned variational auto-encoder [3] are
constructed to model the relationship between objects and scenes.
In addition, several studies have employed graphs to model scenes
and objects. Liu et al. [20] employ three models to construct a fac-
tual causal graph for video action recognition. Han et al. [9] propose
a method that improves the accuracy of scene graph generation by

decomposing the predicate prediction task into subtasks. In con-
trast, we leverage the pre-trained vision-language model to obtain
the scene semantic features and objects semantic features, injecting
the semantic features into the spatiotemporal features, being the
scene-attended features. Besides, this is the first work to address
the scene-dependent VAD under a weakly supervised setting.

2.3 Vision-language Models
Vision-language models have been widely applied to various vision
tasks. For instance, Liu et al. [21] propose a multi-grained gradual
inferencemodel that focuses on objects and aligns textual and visual
information through graph structures and its multi-grained gradual
inference mechanism. Besides, pre-trained vision-language models
(VLM) such as CLIP [30] and ALIGN [12], which are trained on
large-scale datasets, have acquired a wide range of knowledge and
demonstrated impressive generalization capabilities. Therefore, in
recent years, these models have been extensively deployed to down-
stream vision tasks through adaptation techniques like fine-tuning
and prompt learning [13, 32, 49, 57]. In the context of weakly super-
vised VAD, Joo et al. [14] leverage the CLIP vision encoder along
with a proposed temporal self-attention module to enhance feature
quality. Wu et al. [48] adapt CLIP by incorporating an adaptation
layer into the CLIP vision encoder and employing a text prompt
learning scheme for the CLIP text encoder. Zanella et al. [51] directly
manipulate the latent CLIP feature space to identify the normal
event subspace. In contrast, our approach utilizes CLIP’s powerful
zero-shot capability to obtain semantic information about scenes.
By employing CLIP’s text encoder, we extract semantic features
of scenes, which are then integrated with spatiotemporal features.
This enables the model to detect scene-dependent anomalies.

3 METHODOLOGY
3.1 Overview of the Proposed Framework
We illustrate the proposed framework in Figure 2. The framework
mainly includes three parts, the text-driven scene-decoupled mod-
ule (TDSDM) including the context semantic injection (CSI) and
the object semantic injection (OSI), the fine-grained vision augmen-
tation (FVA), and the last part is the global encoder that consists of
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a 𝑁𝑇 -layer Transformer and a MLP-based regressor. The TDSDM
is used to decouple scenes. The CSI module provides a general de-
scription of the scene and generates semantic features of the scene,
while the OSI module provides descriptions of objects within the
scene and generates semantic features of the objects in the scene.
The FVA module provides fine-grained visual augmentation, which
involves enhancing a snippet-level spatiotemporal feature with
𝑇 frame-level CLIP features. The augmented features finally pass
through a global encoder to aggregate context overall snippets in a
video and then predict anomaly scores.

3.2 Spatiotemporal Features Extraction
The spatiotemporal features extraction aims to extract the one
spatiotemporal feature for each video snippet that contains 𝑇 con-
secutive frames (here𝑇 = 16 following [5, 7, 35, 42, 56]). Specifically,
given the 𝑖-th video snippet of dimension𝑇 ×𝐻 ×𝑊 ×𝐶 is fed into
the pre-trained I3D feature extractor that fine-tuned on Kinetics-
400 dataset, extracting the spatiotemporal features ¤F𝐼3𝐷

𝑖
∈ R𝐷𝐼 ,

where the 𝐻 ,𝑊 and 𝐶 are the height, width and channel of each
frame, respectively, and 𝐷𝐼 is the dimension of extracted features.
Then the extracted features pass through a linear project layer
𝑓𝐼3𝐷 (·) : R𝐷𝐼 → R𝐷 to produce the F𝐼3𝐷

𝑖
∈ R𝐷 for fitting the

subsequent modules. Following [5, 7, 35, 42, 56], we divide each
video into 32 snippets by conducting the average temporal pooling
in the training stage.

3.3 Text-Driven Scene-Decoupled Module
3.3.1 Context Semantic Injection (CSI). The CSI module is
used to obtain a general description of the scene and to fuse the
semantic features of the context with the spatiotemporal features.
With the help of the powerful detection ability of the CLIP, we
use this VLM model to detect the different scenarios in zero-shot
for each video snippet. Firstly, the 365 scene categories borrowed
from the Places365 dataset [55] are fed into the CLIP’s text encoder,
achieving the scene weight matrice:

W𝑆 = E𝑇 ( [𝑠𝑐𝑒𝑛𝑒1, 𝑠𝑐𝑒𝑛𝑒2, ..., 𝑠𝑐𝑒𝑛𝑒365]), (1)

where the W𝑆 ∈ R365×𝐷𝐶 indicates the weight matrices of scenes,
the E𝑇 (·) denotes the text encoder of CLIP, and the 𝑠𝑐𝑒𝑛𝑒𝑖 denotes
the 𝑖-th category of Places365, e.g. schoolhouse, shopping mall,
parking garage, etc. Then we feed the𝑇 frames into the CLIP visual
encoder for each video snippet to obtain the visual representations:

F𝐶𝐿𝐼𝑃𝑖 = E𝑉 ( [I𝑖,1, I𝑖,2, ..., I𝑖,𝑇 ]), (2)

where the F𝐶𝐿𝐼𝑃
𝑖

∈ R𝑇×𝐷𝐶 are the visual features of 𝑖-th snippet
produced by the CLIP, the E𝑇 (·) denotes the visual encoder of CLIP,
I𝑖, 𝑗 ∈ R𝐶×𝐻×𝑊 denotes the 𝑗-th frame of the 𝑖-th snippet. Thus, the
matching probabilities between each frame and the scene categories
can be obtained by

P𝑆𝑐𝑒𝑛𝑒𝑖 = SoftMax(∥F𝐶𝐿𝐼𝑃𝑖 ∥2 ⊗ ∥W𝑆 ∥𝑇2 ), (3)

where the P𝑆𝑐𝑒𝑛𝑒
𝑖

∈ R𝑇×365 denotes the matching probabilities of
the 𝑇 frames of the 𝑖-th snippet, ∥ · ∥2 is the 𝑙2 norm, and the ⊗
represents the matrix multiplication operation. We average the
probabilities across the 𝑇 frames and take the 𝐾 scene categories

which have the top-𝐾 probabilities as the label scenarios:

[𝑠𝑐𝑒𝑛𝑒1, 𝑠𝑐𝑒𝑛𝑒2, ..., 𝑠𝑐𝑒𝑛𝑒𝐾 ] = topK(Avg(P𝑆𝑐𝑒𝑛𝑒𝑖 )), (4)

where the Avg(·) : R𝑇×365 → R365 denotes the average operation,
and the topK(·) indicates that take the 𝐾 scene categories from
the Places365 according to the top-𝐾 probabilities. To obtain the
semantic scene feature of 𝑖-th snippet, we put the𝐾 scene categories
into a guided language textT𝑆 = “The video footage could include the
following scenes: {𝑠𝑐𝑒𝑛𝑒1}, {𝑠𝑐𝑒𝑛𝑒2}, ..., {𝑠𝑐𝑒𝑛𝑒𝐾 }.” , then feeding the
above text into the CLIP text encoder E𝑇 (·) to extract the context
semantic feature F𝑆𝑐𝑒𝑛𝑒

𝑖
∈ R𝐷 :

F𝑆𝑐𝑒𝑛𝑒𝑖 = 𝑓𝑠𝑐𝑒𝑛𝑒 (E𝑇 (T𝑆 )), (5)

where 𝑓𝑠𝑐𝑒𝑛𝑒 (·) : R𝐷𝐶 → R𝐷 is the linear projection layer. Finally,
both the spatiotemporal feature F𝐼3𝐷

𝑖
∈ R𝐷 and the scene clue

feature F𝑆𝑐𝑒𝑛𝑒
𝑖

pass through the fusion layer to produce the scene-
attended feature F̂𝐼3𝐷

𝑖
∈ R𝐷 , which is computed by the multi-head

cross-attention followed by a feedforward (FFN) layer [43]:

F̂𝐼3𝐷𝑖 = Cross-Attention(F𝐼3𝐷𝑖 , F𝑆𝑐𝑒𝑛𝑒𝑖 ), (6)

where the Cross-Attention(x, y) for each head computes dot-product
attention as follows:

Cross-Attention(x, y) = Attention(xW𝑄 , yW𝐾 , yW𝑉 )

= SoftMax
(
xW𝑄 (yW𝐾 )𝑇

√
𝐷

)
yW𝑉 ,

(7)

whereW𝑄 ,W𝐾 ,W𝑄 ∈ R𝐷×𝐷𝐻 are learnable matrices with 𝐷𝐻 =

𝐷/𝑁𝐻 , where 𝑁𝐻 is the number of attention heads.

3.3.2 Object Semantic Injection (OSI). The OSI module is used
to provide descriptions of objects within the scene and generate
semantic features of the objects in the scene. Similar to the design
of the CSI module, the OSI module powered by the CLIP detects
objects in zero-shot mode. In detail, we feed 1,000 object categories
borrowed from the ImageNet-1K [33] into the CLIP’s text encoder
to obtain the object weight matrice:

W𝑂 = E𝑇 ( [𝑜𝑏 𝑗𝑒𝑐𝑡1, 𝑜𝑏 𝑗𝑒𝑐𝑡2, ..., 𝑜𝑏 𝑗𝑒𝑐𝑡1000]), (8)

where the W𝑂 ∈ R1000×𝐷𝐶 indicates the weight matrices of ob-
jects. With the extracted fine-grained visual feature according to
Equation (2), the match probabilities between each frame and the
object classes are computed by

P𝑂𝑏 𝑗𝑒𝑐𝑡
𝑖

= SoftMax(∥F𝐶𝐿𝐼𝑃𝑖 ∥2 ⊗ ∥W𝑂 ∥𝑇2 ) . (9)

Similar to the Equation (4), the 𝐾 objects classes are obainted as
follows:

[𝑜𝑏 𝑗𝑒𝑐𝑡1, 𝑜𝑏 𝑗𝑒𝑐𝑡2, ..., 𝑜𝑏 𝑗𝑒𝑐𝑡𝐾 ] = topK(Avg(P𝑂𝑏 𝑗𝑒𝑐𝑡
𝑖

)), (10)

then these object categories are put into the text T𝑂 = “The video
footage could include the following objects: {𝑜𝑏 𝑗𝑒𝑐𝑡1}, {𝑜𝑏 𝑗𝑒𝑐𝑡2}, ...,
{𝑜𝑏 𝑗𝑒𝑐𝑡𝐾 }.” , thus the object semantic feature F𝑂𝑏 𝑗𝑒𝑐𝑡

𝑖
∈ R𝐷 for 𝑖-th

snippet is extracted as follows,

F𝑂𝑏 𝑗𝑒𝑐𝑡
𝑖

= 𝑓𝑜𝑏 𝑗𝑒𝑐𝑡 (E𝑇 (T𝑂 )), (11)
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where 𝑓𝑜𝑏 𝑗𝑒𝑐𝑡 (·) : R𝐷𝐶 → R𝐷 is the linear projection layer. The
object feature F𝑂𝑏 𝑗𝑒𝑐𝑡

𝑖
and the scene-attended feature F̂𝐼3𝐷

𝑖
are fused

with using the cross-attention, being the object-attended feature:

F̃𝐼3𝐷𝑖 = Cross-Attention(F̂𝐼3𝐷𝑖 , F𝑂𝑏 𝑗𝑒𝑐𝑡
𝑖

) . (12)

3.4 Fine-grained Visual Augmentation (FVA)
The purpose of the FVA is to enhance a snippet-level spatiotemporal
feature with𝑇 frame-level CLIP features, thus enhancing the visual
expression capability of the features. To this end, we first obtain
the fine-grained feature F̂𝐶𝐿𝐼𝑃

𝑖
computed by the F𝐶𝐿𝐼𝑃

𝑖
with the

Self-Attention(F𝐶𝐿𝐼𝑃
𝑖

):

Self-Attention(x) = Attention(xW𝑄 , xW𝐾 , xW𝑉 ), (13)

where W𝑄 ,W𝐾 ,W𝑄 are learnable matrices as the same to Equa-
tion (7).

Finally, we can achieve the augmented spatiotemporal feature
F̄𝐼3𝐷
𝑖

∈ R𝐷 that augmented by the frame-level fine-grained features
as follows:

F̄𝐼3𝐷𝑖 = Cross-Attention(F̃𝐼3𝐷𝑖 , F̂𝐶𝐿𝐼𝑃𝑖 ). (14)

3.5 Network Training
In the weakly supervised VAD task, each training video is annotated
with a binary label 𝑦 ∈ {0, 1} to denote whether this video is an
abnormal video or not. When the enhanced features of all snippets
within one video are produced, we employ a 𝑁𝑇 -layer Transformer
to model the global context of all snippets, and then we use a
regressor to predict the anomaly scores:

s = Θ(Transformer(𝑁𝑇 ×) (F̄𝐼3𝐷 )), (15)

where s ∈ R𝑁𝑆 is the anomaly scores of all snippets within one
video and Θ(·) : R𝐷 → R is the regressor that is implemented by a
three-layer multi-layer perceptron (MLP).

Following the previous works, we adopt the binary cross-entropy
loss to train the model, which classifies a video into abnormal or
normal classes. Specifically, we average the top-𝑁𝑆 anomaly scores
as follows:

𝑠 =
1
𝑁𝑆

∑︁
𝑠𝑖 ∈T𝑁𝑆

(s) 𝑠𝑖 , (16)

where T𝑁𝑆
(s) indicates the set of top-𝑁𝑆 scores in s. Then the MIL

loss is defined by

L𝑀𝐼𝐿 = −𝑦𝑙𝑜𝑔(𝑠) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑠). (17)

4 EXPERIMENTS
4.1 Datasets and Evaluation Metric
4.1.1 Datasets. We conduct experiments to fully evaluate our
proposed framework based on public datasets for VAD task, Shang-
haiTech [19], UCF-Crime [35] , TAD [26], XD-Violence(XD) [47]
and NWPU campus [3]. The large-scale dataset NWPU is the only
one that considers scene-dependent anomalies. It is originally de-
signed for the unsupervised setting, including only normal videos
for training. To adapt it to the weakly supervised setting, we reorga-
nize the dataset by selecting both normal and abnormal videos for
the training set. Additionally, we ensure that the anomalies present

Table 1: The statistics of five datasets under the weakly-
supervised setting, i.e. TAD, XD-Violence (XD), re-organized
NWPU Campus (NWPU), and the UCF_SHT which merged
the UCF-Crime and ShanghaiTech datasets. Whether a
dataset is scene-dependent (SD) or not is also indicated.

Dataset Training set Test set #Anomaly SD#Frames #Videos #Frames #Videos types

TAD [26] 449,292 400 88,052 100 7 %

XD [47] 16,378,527 3,954 2,335,801 800 6 %

NWPU [3] 905,532 316 560,541 231 28 !

UCF_SHT 12,804,648 1,848 12,520,52 489 24 !

in the test set are also included in the training set, which is a funda-
mental assumption in scene-dependent VAD. The reorganized split
consists of 316 training videos and 231 test videos. More details are
provided in the supplementary material. To further valid the perfor-
mance of detecting the scene-dependent anomalies, we merge the
two scene-agnostic datasets UCF-Crime and ShanghaiTech into one
dataset (i.e.merging the two training/test sets into one training/test
set), named UCF_SHT. Due to the anomaly type of the two datasets
being different, e.g. the appearance of a car is an abnormal event in
ShanghaiTech while that event is normal in UCF-Crime, therefore
the anomalies in UCF_SHT are scene-dependent. The statistics of
all datasets are presented in Table 1.

4.1.2 Evaluation Metric. For the performance evaluation, fol-
lowing the common practice [3, 5, 7, 19, 35, 42, 48, 56], we adopt
the frame-level area under the ROC curve (AUC) as the evaluation
metric for TAD, NWPU campus, and UCF_SHT datasets, and use
the average precision (AP) for the XD-Violence dataset. A higher
AUC or AP denotes better performance.

4.2 Implementation Details
The proposed method is implemented in Pytorch. We employ the
pre-trained CLIP (ViT-L/14) backbone to extract the features of
F𝐶𝐿𝐼𝑃
𝑖

, F𝑆𝑐𝑒𝑛𝑒
𝑖

and F𝑂𝑏 𝑗𝑒𝑐𝑡
𝑖

. The dimension of feature 𝐷 is set to
512. The top-𝐾 in Equation (4) and Equation (10) is set to 5. The
number of Transformer layer 𝑁𝑇 is set to 2 on UCF_SHT, TAD, and
XD-Violence datasets, and set to 5 for the NWPU dataset. The 𝑁𝑆
in Equation (16) is set to 3. We train the proposed model on one
NVIDIA Tesla V100 GPU in an end-to-end manner using the SGD
optimizer for 50 epochs, the weight decay is set to 0.0005, the batch
size is 32 and the learning rate is set to 0.0005 for TAD, UCF_SHT,
and XD-Violence datasets and 0.005 for NWPU dataset.

4.3 Ablation Studies
To fully validate the effectiveness of the proposed method, we
carefully examine the design of each module in our framework
and investigate the performance of various model variants on two
scene-dependent datasets i.e. UCF_SHT and NWPU, and two scene-
agnostic datasets, i.e. XD-Violence and TAD.

4.3.1 Effectiveness of the Proposed Modules. The major con-
tribution modules in the proposed framework are text-driven scene-
decoupled module (TDSDM) and fine-grained visual augmentation
(FVA). Therefore, we first conduct ablation studies to investigate
the effectiveness of two modules by leaving out either one or both
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Table 2: Ablation studies of variant components of our pro-
posed framework.

Index TDSDM FVA UCF_SHT (%) NWPU (%) XD (%) TAD (%)

1 % % 79.92 69.73 74.86 87.63
2 ! % 85.36 77.90 83.31 90.06
3 % ! 80.94 70.01 76.68 88.57
4 ! ! 85.94 80.22 84.69 93.90
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Figure 3: The performance with a variant number of 𝐾 in the
top-𝐾 selection in CSI and OSI module. Best viewed in color.
of them from our proposed framework. When the TDSDM and FVA
both are removed, we only use the global encoder to produce the
anomaly scores. Performances are reported in Table 2.

The results from the table show that solely employing the TDSDM
or FVA both improves the performance. By adding to the TDSDM,
we can observe that the improvements on scene-dependent datasets
(UCF_SHT and NWPU) are more significant than the performances
on the scene-agnostic datasets (XD-Violence and TAD), e.g. 69.73%
v.s. 77.90% on NWPU compared with 87.63% v.s. 90.06% on TAD.
For the FVA module, the results show that the performances have
also been improved not only on the scene-dependent datasets but
also on the scene-agnostic datasets. Besides, the synergy of TDSDM
with FVA boosts performance significantly.

4.3.2 Effectiveness of the Designs in TDSDM. We then con-
duct experiments to study the effectiveness of the varied compo-
nents in the core module of TDSDM. This module mainly has two
components: 1) the context semantic injection (OSI) and 2) the ob-
ject semantic injection (OSI). Each above component is validated in
Table 3. The framework contains FVA and a global encoder when
removing both two parts. The CSI is employed to obtain the general
semantic meaning of the scene. From the results, we can observe
that performance has significant improvements by considering
the context semantic meaning, especially on two scene-dependent
datasets, i.e. from the AUC of 80.94% to 85.61% on UCF_SHT and
70.01% to 78.05% on NWPU. The OSI module is mainly used to
obtain the semantic meanings of the objects within the scene. With
the help of the OSI (Index 3 in table), performances on all four
datasets are improved, e.g. from 88.57% of AUC on TAD to 93.28%.
In addition, the model achieves the best performance on all datasets
by employing all components of TDSDM.

4.3.3 Impact of the hyperparameter top-𝐾 . To investigate the
impact of the variant 𝐾 in Equation (4) and Equation (10) for select-
ing the top-𝐾 scenes and top-𝐾 objects, we conduct experiments
that vary the𝐾 from 1 to 20, reporting the results in Figure 3. Specif-
ically, we choose the 𝐾 = 5 because the model achieves the best
performance. Additionally, we observe that the performance varies
slights with different 𝐾 , e.g. from 93.64% to 93.90% on TAD, which
denotes the model is not sensitive to the 𝐾 .

Table 3: Ablation studies of variant components of the pro-
posed TDSDM.

Index CSI OSI UCF_SHT (%) NWPU (%) XD (%) TAD (%)

1 % % 80.94 70.01 76.68 88.57
2 ! % 85.61 78.05 84.02 92.83
3 % ! 85.53 78.32 83.96 93.28
4 ! ! 85.94 80.22 84.69 93.90

Table 4: Ablation studies of variant CLIP backbones.

Index Backbone UCF_SHT (%) NWPU (%) XD (%) TAD (%)

1 ViT-B/16 85.78 80.15 84.14 93.89
2 ViT-B/32 85.43 80.01 84.27 94.49
3 ViT-L/14 85.94 80.22 84.69 93.90

4.3.4 Impact of the Number of Layers in Global Encoder.
We further conduct experiments to investigate the impact of the
number of Transformer layers 𝑁𝑇 in the global encoder, which
varies the 𝑁𝑇 from 1 to 6, and results are provided in Figure 5. From
the figure, we observe that setting to 2 or 5 for the Transformer
layers is sufficient, because themodel achieves the best performance
when the 𝑁𝑇 is set to 2 on the UCF_SHT, XD-Violence, and TAD,
but the best setting is 5 for the NWPU dataset.

4.3.5 Impact of Variant CLIP backbones. The pre-trained CLIP
backbone is employed in our framework to extract both fine-grained
visual and text features. Thus we investigate the impact of the CLIP
backbones, such as ViT-B/16, ViT-B/32, and ViT-L/14, results are
reported in Table 4. From the results, we can observe that the
model obtains the best performance when we select the ViT-L/14 as
the backbone. Besides, the results show that the model can obtain
the approximate performances by using the ViT-B/16 or ViT-B/32
compared with the ViT-L/14.

4.4 Qualitative Results
4.4.1 Predicted Anomaly Scores. We first visualize the anomaly
scores predicted by the proposed framework on test sets of two
scene-dependent datasets (UCF_SHT and NWPU) and two scene-
agnostic datasets (XD-Violence and TAD), where a higher predicted
score indicates a higher probability that the event is anomalous,
results are shown in Figure 4.

For the evaluation of scene-dependent datasets, our proposed
method effectively detects scene-dependent anomalous events. For
example, in the scene-dependent dataset UCF_SHT, the appearance
of a bicycle in the scene sh®®own in video 01_0139 is considered
an anomalous event, while the appearance of a bicycle in the video
Normal_Videos_210 is considered as a normal event. Similarly, in
the scene-dependent dataset NWPU, the appearance of a bicycle
in the scene shown in video D235_07 is considered an anomalous
event, while the appearance of a bicycle in the scene shown in
video D031_09 is considered as a normal event. From the results
in the figure, we can see that for the abnormal videos 01_0139 and
Normal_Videos_210, our model produces high prediction scores for
anomalous snippets, while producing low prediction scores for
normal videos. In different scenes where the same event occurs,
such as the appearance of a bicycle in the two scenes mentioned
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Figure 4: Visualization of anomaly scores predicted on the test sets of two scene-dependent datasets (UCF_SHT and NWPU)
and two scene-agnostic datasets (XD-Violence and TAD). Best viewed in color.
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Figure 5: The performance with a different number of Trans-
former layers in the global encoder. Best viewed in color.

above, our model generates different anomaly scores. This indicates
that our model can detect scene-dependent anomalous events.

For scene-agnostic datasets (XD-Violence and TAD), our model
also accurately predicts anomalous events while generating low
anomaly scores for normal events. Additionally, from the video
Bullet.in.the.Head.1990 in XD-Violence, it can be seen that our model
can detect discontinuous anomalous events within a video.

4.4.2 Generated Scene Text Results. In the CSI module, we ini-
tially use CLIP for scene classification and then generate textual de-
scriptions of scenes to obtain their semantic features. Consequently,
we analyzed the generated scene text, i.e. the guided language text
T𝑆 , as illustrated in Figure 7. We select scenes from four datasets:
UCF_SHT, NWPU, XD-Violence, and TAD, and generate textual
descriptions of these scenes. From the results of the generated text
descriptions, it is evident that the descriptions of the scenes are
fairly accurate. For instance, the first image depicts a scene of a
store selected from UCF-Crime, and the third image depicts a scene
of a campus selected from the NWPU dataset. Both the generated
text accurately describes the scenes.

4.4.3 Generated Object Text Results. Similarly, in the OSI mod-
ule, textual descriptions are primarily used to exploit objects within
scenes, enhancing the representation capability of features. There-
fore, we qualitatively analyze the precision of the generated text

NWPU Training Set NWPU Test Set

Figure 6: t-SNE visualizations of the scene semantic features
on NWPU dataset, where different colors represent different
scenes. Best viewed in color.
for scene objects, as shown in Figure 8. The results from the fig-
ures show that the textual descriptions can capture the key objects
within the scenes. For instance, the sliding door and the dog in the
first scene, and various objects like motorcycles, bicycles, traffic
lights, and aircraft in the other open scenes.

4.4.4 Visualization of Scene Semantic Features. After obtain-
ing the generated textual descriptions of scenes T𝑆 , we used CLIP’s
text encoder to obtain semantic features of the scenes F𝑆𝑐𝑒𝑛𝑒

𝑖
. We

investigated the precision of the generated scene text in Section
4.4.2. To further confirm the quality of the obtained scene semantic
features (whether different scenes are distinguishable in the feature
space), we conducted a visualization of the scene semantic features.

The scene-dependent dataset NWPU provides scene labels for
each video, so we visualized the scene semantic features separately
for the NWPU training and test sets. As shown in Figure 6, it can be
observed that most points corresponding to the same scene cluster
together and are separated from points corresponding to different
scenes. This indicates that the generated scene semantic features
can effectively distinguish between scenes, thus addressing the
scene-dependent video anomaly detection task.

4.5 Comparison to State-of-the-Art
Finally, we compared our proposed method with the state-of-the-
art (SOTA) weakly supervised VAD methods. Since existing weakly
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Figure 7: Visualization results of textual scene descriptions in the CSI module, in which the images are from the UCF_SHT,
NWPU, XD-Violence, and TAD datasets. We use the top-5 scene categories as a general description of the scene.
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Figure 8: Visualization results of textual object descriptions in the OSI module, which the images are from the UCF_SHT,
NWPU, XD-Violence, and TAD datasets. We use the top-5 scene categories as object descriptions of the scene.

Table 5: The comparison of AUC(%) performance on
UCF_SHT, NWPU, and TAD, and AP (%) performance on XD-
Violence (XD) with SOTAmethods. ∗ indicates that the result
is reported from [25, 42], and † indicates that the results are
obtained by re-training the official codes with different input
modalities. The best result under the same settings is bolded
and the second best is underlined.

Method UCF_SHT (%) NWPU (%) XD (%) TAD (%)

Sultani et al. [35] 77.85† 65.47† 75.68* 81.42*
RTFM [42] 81.32† 70.57† 77.81 88.15†
S3R [46] - - 80.26 -
MGFN [5] 81.45† 70.39† 79.19 88.30†
UR-DMU [56] 80.53† 70.46† 81.66 89.16†
Cho et al. [6] - - 81.30 -
UMIL [25] 81.63† 72.18† 81.80† 92.93
Zhang et al. [52] - - 81.43 91.66
TEVAD [4] - - 79.80 -
CLIP-TSA [14] - - 82.19 -
VadCLIP [48] 82.15† 72.64† 84.51 92.70†

Ours 85.94 80.22 84.69 93.90

supervised approaches have not been tested on scene-dependent
datasets, we retrained and tested these methods on two scene-
dependent datasets using publicly available code from these works,
attempting to keep the original settings as consistent as possible
during training. Given that our model was trained for 50 epochs, to
ensure a fair comparison, these retrained models were trained for
at least 50 epochs. The performance results are shown in Table 5.

From the comparison results on scene-dependent datasets, our
method achieved the best performance on both datasets, indicating
that our model can effectively detect scene-dependent anomalies.

Furthermore, compared to other SOTA methods, the performance
improvement of our model on both scene-dependent datasets is
significant. For instance, compared to the UR-DMU [56], our model
improved performance from 80.53% to 85.94% on the UCF_SHT
dataset and from 70.46% to 80.22% on the NWPU dataset. It is worth
noting that compared to VadCLIP [48], which also utilizes CLIP,
our model shows a significant improvement. For example, on the
NWPU dataset, our model achieved a performance improvement
of 7.58% compared to VadCLIP. For the scene-agnostic datasets
XD-Violence and TAD, our proposed method also achieved the best
performance. On the TAD dataset, our method surpasses by ∼1%
AUC compared to the second-best performing method, UMIL [25],
which also utilizes CLIP. Taking into account the results above, our
method is effective not only on scene-dependent datasets but also
achieves good performance on scene-agnostic datasets.

5 CONCLUSION
In this work, we propose a text-driven scene-decouple (TDSD)
framework to address weakly supervised video anomaly detection
(VAD). By utilizing CLIP to decouple scenes and inject semantic
features of scenes and objects separately into the model, we endow
the model with the capability to handle scene-dependent anomalies.
This paper is also the first work to address scene-dependent weakly
supervised VAD. To better evaluate our proposed framework, we
reorganized the scene-dependent dataset NWPU to suit a weakly
supervised setting. Additionally, we merged the UCF-Crime and
ShanghaiTech datasets into the scene-dependent UCF_SHT dataset
to facilitate a more comprehensive evaluation. Experimental re-
sults demonstrate that our approach achieves significant improve-
ments compared to other methods on two scene-dependent datasets,
UCF_SHT and NWPU. Furthermore, it achieves the best perfor-
mance on two scene-agnostic datasets, XD-Violence and TAD.
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