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Abstract
While previous optimization results have suggested that deep neural networks tend to favour low-rank
weight matrices, the implications of this inductive bias on generalization bounds remain underex-
plored. In this paper, we apply a chain rule for Gaussian complexity (Maurer, 2016a) to analyze
how low-rank layers in deep networks can prevent the accumulation of rank and dimensionality
factors that typically multiply across layers. This approach yields generalization bounds for rank
and spectral norm constrained networks. We compare our results to prior generalization bounds for
deep networks, highlighting how deep networks with low-rank layers can achieve better generaliza-
tion than those with full-rank layers. Additionally, we discuss how this framework provides new
perspectives on the generalization capabilities of deep networks exhibiting neural collapse.
Keywords: Gaussian complexity, Generalization bounds, Neural collapse, Low rank layers

1. Introduction

Deep learning has achieved remarkable success across a wide range of applications, including
computer vision (He et al., 2016; Simonyan and Zisserman, 2014), natural language processing
(Vaswani et al., 2017; Brown et al., 2020), decision-making in novel environments (Silver et al.,
2016), and code generation (Chen et al., 2021), among others. Understanding the reasons behind the
effectiveness of deep learning is a multi-faceted challenge that involves questions about architectural
choices, optimizer selection, and the types of inductive biases that can guarantee generalization.

A long-standing question in this field is how deep learning finds solutions that generalize well.
While good generalization performance by overparameterized models is not unique to deep learn-
ing—it can be explained by the implicit bias of learning algorithms towards low-norm solutions in
linear models and kernel machines (Bartlett et al., 2020; Muthukumar et al., 2020)—the case of deep
learning presents additional challenges. However in the case of deep learning, identifying the right
implicit bias and obtaining generalization bounds that depend on this bias are still open questions.

In recent years, Rademacher bounds have been developed to explain the complexity control in-
duced by an important bias in deep network training: the minimization of weight matrix norms.
This minimization occurs due to explicit or implicit regularization (Neyshabur et al., 2015; Bartlett
et al., 2017; Poggio et al., 2020; Xu et al., 2023). For rather general network architectures, Golowich
et al. (2018) showed that the Rademacher complexity is linear in the product of the Frobenius norms
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of the various layers. Although the associated bounds are usually orders of magnitude larger than
the generalization gap for dense networks, very recent results by Galanti et al. (2023) demonstrate
that for networks with structural sparsity in their weight matrices, such as convolutional networks,
norm-based Rademacher bounds approach non-vacuity.

An alternative hypothesis suggests that the correct implicit bias for stochastic gradient descent
(SGD) may be towards low-rank weight matrices. It is empirically well established that training of
deep networks induces a bias towards low rank of the weight matrices (Galanti et al., 2022; Huh et al.,
2023). In addition to such a bias for linear networks (in the matrix factorization problem (Gunasekar
et al., 2017; Ji and Telgarsky, 2020)), an empirical study by Gur-Ari et al. (2018) found that during
minimization SGD spans a small subspace, implying an effective bias on the rank of the weight
matrices. Additionally, Timor et al. (2022) discovered that in sufficiently deep ReLU networks, when
fitting the data, the weight matrices in the topmost layers become low-rank at the global minimum.
This observation is also related to the property of Neural Collapse (Papyan et al., 2020; Xu et al.,
2023; Rangamani et al., 2023) where the features and weights in the top layers of a deep network
“collapse” to low rank (rank 1 in the case of binary classification) structures. However, we are not
aware of a generally accepted theoretical statement explaining the role of low rank in generalization.

Our contributions. We compute the Gaussian complexity (Bartlett and Mendelson, 2002) of deep
networks with rank-constrained layers and obtain a bound on the generalization error that takes
advantage of rank-based complexity control. Our key insight is that by applying Maurer’s chain
rule for Gaussian complexity Maurer (2016a) (recently extended to Rademacher complexity (Chu
and Raginsky, 2023)), we can avoid rank and dimensionality factors multiplying across layers in
deep networks. As a result, we obtain a generalization bound for rank-constrained deep networks

that depends on the rank r, depth L, and width h as O
(∏L

i=1 ∥Wi∥2CL
1 Lr

√
h
m

)
. For the class

of rank-constrained deep networks, our bound improves upon the size-independent generalization
bounds obtained by Golowich et al. (2018).

Outline. We first introduce a few basic tools of statistical learning theory in section 2, and define
the class of spectral norm and rank constrained deep networks that we are primarily interested in.
In section 3 we show how existing proof techniques when applied to the class of rank constrained
functions, do not yield bounds that depend on the rank. Our main results are presented in section 4.
We discuss how our results compare to other norm based generalization bounds in section 5 including
their strengths and limitations. We conclude in section 6.

2. Preliminaries

Base settings. We consider the problem of training deep classifiers mapping inputs in X ⊆ Rd

to labels in Y ⊆ RC . We are studying deep neural networks which are written in the standard
form as fW(x) = WLϕ(WL−1ϕ(. . . ϕ(W1x) . . .)) where Wi ∈ Rhi×hi−1 is the weight matrix
corresponding to layer i of the deep network and ϕ : R → R is a Lipschitz activation function that is
applied coordinate-wise. We consider in this paper the Lipschitz constant of the activation to be 1,
which is the case for common activation functions in deep learning like ReLU and Leaky ReLU.
We will use FL to denote the class of spectral norm and rank bounded L-layer deep networks;

FL := {fW(x) = WLϕ(WL−1ϕ(. . . ϕ(W1x) . . .)) | ∥Wi∥2 ≤ Bi, rank(Wi) ≤ ri} (1)
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This function class is different from the Frobenius norm bounded class of functions considered in
Golowich et al. (2018). Working with the class of spectral norm bounded functions allows us to
obtain generalization bounds that depend on the rank of the weight matrices instead of the Frobenius
norm.

Gaussian and Rademacher complexity. Empirical Gaussian and Rademacher complexities,
denoted as ĜS(·) and R̂S(.) respectively, are two common measures used in statistical learning
theory to compute generalization bounds. They measure the size a function class F by mapping it to
the set of images of a sample S = {x1, . . . ,xm}, i.e., the set {[f(x1, . . . f(xm)|f ∈ F} ⊆ Rm, and
subsequently measuring its Gaussian or Rademacher width;

ĜS(F) =
1

m
Eγ sup

f∈F

m∑
i=1

γif(xi) and R̂S(F) =
1

m
Eσ sup

f∈F

m∑
i=1

σif(xi)

where γ = {γi}mi=1 is a sequence of Gaussian variables γi ∼ N (0, 1) and σ = {σi}mi=1 a sequence
of Rademacher variables P(σi = +1) = P(σi = −1) = 1/2. The measures evaluate the capacity of
a function class to fit random noise patterns, by measuring its correlation with a random sequence.
While most generalization bounds are based on Rademacher complexity, the two measures are nearly
interchangeable and only differ by a constant factor R̂S(F) ≤

√
π/2ĜS(F). While the empirical

complexities depend on the sample S, we can also take an expectation wrt. the sample to obtain the
true Gaussian or Rademacher complexities Gm(F) = ES [ĜS(F)], Rm(F) = ES [R̂S(F)].

Generalization in statistical learning. In machine learning we estimate the parameters of a
model fW through the minimization of a loss function g(z) = ℓ(fW(x),y) on a training set
S = {(xi,yi)}mi=1. This training set is assumed to be drawn i.i.d from a distribution D on X × Y .
While we minimize the loss on the training set, our goal is to find a solution that generalizes to
unseen data drawn from the same distribution. The gap between the performance of a model on
new, unseen data and its performance on the training set is called the generalization error ϵgen or
generalization gap of the model.

ϵgen := Ez∼D [g(z)]− 1

m

m∑
i=1

g(zi)

Statistical learning theory is concerned with providing guarantees on the generalization error of the
models we obtain from a given training dataset and procedure. One of the classical approaches for
proving generalization is the uniform convergence approach which aims to bound the generalization
gap by the size of the hypothesis class to which the model belongs. Different notions of the size
such as the VC dimension and Rademacher complexity have been used to provide bounds on the
generalization gap for statistical learning problems Shalev-Shwartz and Ben-David (2014); Mohri
et al. (2018). Since in this paper we compute the Gaussian complexity of rank-constrained deep
networks, we state the following result from Bartlett and Mendelson (2002) that shows how the
generalization gap of a deep network is bounded by its Gaussian complexity.

Theorem 1 (Gaussian Complexity Generalization Bound) Let H be a function class of hypothe-
ses composed with losses mapping from Z = X × Y to [0, 1]. Then, for any δ > 0, with probability
at least 1− δ over the draw of an i.i.d. sample S of size m, the following holds for all g ∈ H:

E[g(z)] ≤ 1

m

m∑
i=1

g(zi) +
√
2πĜS(H) +

√
9 log 2

δ

2m
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3. Gaussian Complexity for Rank-Dependent Bounds

Norm based definitions. Prior work on generalization bounds has typically focused on deep
networks where the weights layers are bounded in the Frobenius norm ||.||F . They usually proceed
by deriving a process to “peel” the layers of a deep network one by one in order to obtain a bound on
the Rademacher complexity of the whole network. For example Lemma 1 of Golowich et al. (2018)
makes use of the following peeling step;

Eσ

[
sup

f∈F ;W:∥W∥F≤B
g

(∥∥∥∥∥
m∑
i=1

σiϕ(Wf(xi))

∥∥∥∥∥
)]

≤ 2 · Eσ

[
sup
f∈F

g

(
B

∥∥∥∥∥
m∑
i=1

σif(xi)

∥∥∥∥∥
)]

which suggests a norm-based definition of Gaussian complexity for vector valued functions

Ĝnorm
S (F) = Eγ

[
sup
f∈F

∥∥∥∥∥ 1

m

m∑
i=1

γif(xi)

∥∥∥∥∥
]
. (2)

The problem to capture the effect of rank. This norm-based definition of Gaussian complexity
however does not help us obtain generalization bounds that depend on the rank of functions. We
can illustrate this with an example from the simple linear case. Consider the following classes
of linear functions bounded in spectral norm, F = {fW(x) = Wx| ∥W∥2 ≤ B} and F1 =

{fW(x) = Wx| ∥W∥2 ≤ B; rank (W) = 1}. We can show that Ĝnorm
S (F1) = Ĝnorm

S (F). To
see this let us denote v = 1

m

∑m
i=1 γixi. Then Ĝnorm

S (F1) = Eγ sup∥W∥2≤B ∥Wv∥2. If we set
W = B

∥v∥22
vv⊤ we find that W is rank-1 and maximizes ∥Wv∥2. We finally obtain the bound

Ĝnorm
S (F1) ≤ Bmaxi ∥xi∥2√

m
. We obtain a similar upper bound for Ĝnorm

S (F) even though we allow
for full rank matrices. Hence this norm-based definition of Gaussian complexity for vector-valued
functions does not help us distinguish between functions with different rank constraints, even though
allowing for higher rank functions should mean that we have a more expressive function class.

A suitable vector valued Gaussian complexity definition. In this paper, we instead use the
following definition of Gaussian complexity for vector valued functions, that introduces Gaussian
variables for each components of the function’s output representations. For a class of functions
F = {f : Rd → Rk};

ĜS(F) = Eγ

sup
f∈F

1

m

m,k∑
i=1,j=1

γjifj(xi)

 (3)

where fj denotes the jth output coordinate of f . This definition appears in Maurer (2016b) and is
shown to satisfy a vector contraction inequality under composition with L-Lipschitz functions. This
vector contraction inequality proves useful when bounding the composition of a class of networks
with a loss function (see Theorem 2).

E sup
f∈F

∑
i

γigi(f(xi)) ≤
√
2LE sup

f∈F

∑
i,j

γijfj(xi)

As we will show in subsequent section, this definition of Gaussian complexity also allows us to obtain
generalization bounds that are sensitive to the rank of linear functions, as well as deep networks.
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We will make use of the following theorem that puts together a few standard results to obtain a
generalization bound for vector-valued hypothesis classes. A Rademacher complexity version of the
following result is stated and proved in theorem 12 in appendix B.

Theorem 2 (Vector-valued Gaussian complexity Generalization Bound) Let F be a family of
neural networks mapping from X to Z and let H be a family of L-Lipschitz functions mapping from
Z to [0, 1]. Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample S of
size m, the following holds for all g ∈ H and f ∈ F:

E[g(f(x))] ≤ 1

m

m∑
i=1

g(f(xi)) +
√
LπĜS(F) +

√
9 log 2

δ

2m

In the next section we will derive bounds on the Gaussian complexity (as defined in (3)) of rank-
constrained deep networks. We can plug these into the setting of theorem 2 to obtain the correspond-
ing generalization bounds.

4. Gaussian Complexity Bound for Low Rank Deep Networks

Traditional approaches to obtaining bounds on the Rademacher or Gaussian complexity of deep
networks typically proceed by bounding the complexity of a single layer, then sequentially "peeling"
the layers to derive a complexity bound for the entire network. However, this method fails to account
for interactions across the layers of a deep network. In this section, we apply the chain rule developed
by Maurer (2016a) to obtain Gaussian complexity bounds for rank-constrained deep networks. We
demonstrate how low-rank layers can prevent the multiplication of rank and dimension-dependent
quantities across layers, leveraging this insight to establish a Gaussian complexity bound for low-rank
deep networks in Theorem 7.

4.1. Maurer’s chain rule

Our main result leverages a chain rule for the expected suprema of Gaussian processes developed by
Maurer (2016a). This chain rule is key in our demonstration and serves as an alternative to Golowich
et al. (2018) for "peeling" each layer of the deep neural network. Maurer’s Gaussian complexity
chain rule is presented as;

Theorem 3 (Maurer Gaussian Complexity Chain Rule) Let Y ⊆ Rp be finite, F a finite class of
functions f : Y → Rq. Then there are universal constants C1 and C2 such that for any y0 ∈ Y

G(F (Y )) ≤ C1L(F )G(Y ) + C2D(Y )R(F, Y ) +G(F (y0))

where G(·) denotes the unnormalized Gaussian complexity, L(F ) is the Lipschitz constant of the
set F , D(Y ) is the diameter of the set Y and R(F, Y ) can be thought of as the Gaussian average of
Lipschitz quotients of F . More precisely, these quantities are:

D(Y ) = sup
y,y′∈Y

∥y − y′∥ and R(F, Y ) = sup
y,y′∈Y,y ̸=y′

E sup
f∈F

⟨γ, f(y)− f(y′)⟩
∥y − y′∥

In the rest of this section we will bound each of the above quantities and put them together to obtain
a bound on the Gaussian complexity of deep networks. In our results we will be using normalized
versions of the Gaussian complexity, which means we will divide both sides of the chain rule by the
sample size m.
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4.2. Gaussian complexity and Diameter of deep networks

Our insight into how low rank deep networks can avoid multiplicative factors across layers in their
complexity stems from their diameter. We first illustrate this idea by computing a gaussian complexity
bound for deep linear networks.

Lemma 4 (Gaussian complexity of a deep linear network) Let the class of spectrally bounded
deep linear network FL = {fW(x) = WLWL−1 . . .W1x) | ∥Wi∥2 ≤ B,Wi ∈ Rhi×hi−1 , h0 =
d}. The Gaussian complexity of this function class is upper bounded as follow;

ĜS(F) ≤ R

√
hL ×mini rank (Wi)

m

L∏
i=1

||Wi||2

where hi denotes the width of hidden layer i, X = [x1, . . . ,xm]⊤, and maxi ∥xi∥ ≤ R.

Proof For single layer linear functions of width h, we can bound their Gaussian complexity as

R∥W∥F
√

h
m (see Lemma 10 in the appendix). We know that for rank-r matrices ∥W∥F ≤

∥W∥2 ×
√
r. For deep linear networks, we can plug in W =

∏L
i=1Wi into the above bound. The

bound follows from the fact that rank (W) ≤ mini rank (Wi) and ∥W∥2 ≤
∏L

i=1 ∥Wi∥2.

This observation that the complexity is controlled by the smallest rank matrix, and not the product of
the norms of the entire chain of matrices is favorable for avoiding exponential dependencies on the
depth for the rank. We now exploit this fact to bound the diameter of deep nonlinear networks. This
allows us to obtain favorable bounds on the intermediate diameter D(Fi(X)) for the map from the
input to the ith layer.

Lemma 5 (Diameter of the deep nonlinear network function class) Let the class of spectral norm
bounded deep networks with ℓ layers be Fℓ = {fW(x) = ϕ(Wℓϕ(Wℓ−1ϕ(. . . ϕ(W1x) . . .)) |
∥Wi∥2 ≤ B,Wi ∈ Rhi×hi−1 , h0 = d}, where ϕ is a Lipschitz continuous (L(ϕ) ≤ 1), piecewise
linear activation function (ReLU or Leaky ReLU). If X ∈ Rd×m is a given sample of data, the
diameter of the function class (projected onto the data sample) can be bounded as:

D(Fℓ(X)) ≤ ∥X∥F
√
2 min
1≤j≤ℓ

rank (Wj)× 2
ℓ∏

j=1

∥Wj∥2
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Proof The diameter of the image of a data sample X through a function class Fℓ is defined as
D(Fℓ(X)) = supf,f ′∈Fℓ

||f(X)− f ′(X)||F .

D(Fℓ(X)) = sup
j≤ℓ:Wj ,W′

j

||ϕ(Wℓϕ(. . . ϕ(W1X) . . .))− ϕ(W′
ℓϕ(. . . ϕ(W

′
1X) . . .))||F

≤ sup
j≤ℓ:Wj ,W′

j

||Wℓϕ(. . . ϕ(W1X) . . .)−W′
ℓϕ(. . . ϕ(W

′
1X) . . .)||F

= sup
j≤ℓ:Wj ,W′

j

√√√√ m∑
i=1

||Wℓϕ(. . . ϕ(W1xi) . . .)−W′
ℓϕ(. . . ϕ(W

′
1xi) . . .)||22

= sup
j≤ℓ:Wj ,W′

j

√√√√ m∑
i=1

||WℓD
i
ℓ−1 . . .D

i
1W1xi −W′

ℓD
′i
ℓ−1 . . .D

′i
1W

′
1xi||22

≤ sup
j≤ℓ:Wj ,W′

j

√√√√√ m∑
i=1

||WℓD
i
ℓ−1 . . .D

i
1W1︸ ︷︷ ︸

Ai

−W′
ℓD

′i
ℓ−1 . . .D

′i
1W

′
1︸ ︷︷ ︸

A′i

||2F ∥xi∥2

≤ sup
j≤ℓ:Wj ,W′

j

max
1≤i≤m

∥Ai −A
′i∥F ∥X∥F

Here {Di
j ,D

′i
j }ℓj=1 are diagonal matrices that correspond to the patterns of the piecewise linear

1-Lipschitz activation function ϕ for the two functions f, f ′ evaluated on input xi.
We will now proceed to bound max1≤i≤m ∥Ai−A

′i∥F through the rank and spectral norm of Ai,A
′i.

For a class of rank-constrained, spectral-norm bounded matrices {P|rank (P) ≤ r, ∥P∥2 ≤ B}, we
can bound its Frobenius norm diameter as ∥P−Q∥F ≤

√
2r × 2B.

Since the matrices Di
j may be full rank, we have that ∀i, rank

(
Ai
)
= rank

(
A

′i
)
≤ minj rank (Wj).

Since the entries of Di
j are bounded by 1 (L(ϕ) ≤ 1), we also have that ∀i, ∥Ai∥2 = ∥A′i∥2 ≤∏ℓ

j=1 ||Wj ||2.
Putting the above arguments together, we get the required bound on the diameter D(Fℓ(X)) ≤
∥X∥F

√
2minj rank (Wj)× 2

∏ℓ
j=1 ∥Wj∥2.

4.3. Gaussian average of Lipschitz coefficients

We now turn our attention to the next term in the chain rule – the Gaussian average of Lipschitz
coefficients R(F, Y ). In our case, we take F to be a linear transformation Wℓ, and Y to be the
output of the network until the previous layer ϕ(Wℓ−1 . . . ϕ(W1x) . . .). We can state the following:

Lemma 6 (Gaussian average of Lipschitz coefficients) Let F = {Wℓx | ∥Wℓ∥2 ≤ B,Wℓ ∈
Rhℓ×hℓ−1} be a layer of a deep network bounded in spectral norm and Fℓ−1 = {fW(x) =
ϕ(Wℓ−1ϕ(. . . ϕ(W1x) . . .)) | ∥Wi∥2 ≤ B,Wi ∈ Rhi×hi−1 , h0 = d} be the set of functions
from the input to the previous layer. Let X = [x1, . . . ,xm]⊤ be a data sample. Then R(·, ·) can be
expressed as;

R(F ,Fℓ−1) ≤ ||Wℓ||F
√
hℓ

7
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Proof Let us consider the projection of the function class Fℓ−1 onto the data sample X. That is, let
Zℓ−1 = f(X) and Z′

ℓ−1 = f ′(X) for f, f ′ ∈ Fell−1. From the definition of R(·, ·) we have that

R(F ,Fℓ−1) = sup
Zℓ−1,Z

′
ℓ−1

Eγ

[
sup

∥Wℓ∥2≤B

⟨Wℓ,Γ(Zℓ−1 − Z′
ℓ−1)⟩

||Zℓ−1 − Z′
ℓ−1||F

]

≤ sup
Zℓ−1,Z

′
ℓ−1

||Wℓ||F
||Zℓ−1 − Z′

ℓ−1||F
Eγ ||Γ(Zℓ−1 − Z′

ℓ−1)||F

In the above, Γ ∈ Rhℓ×m is a matrix of independent Gaussian variables.
We have that Eγ

[
∥Γ(Zℓ−1 − Z′

ℓ−1)∥F
]
≤

√
hℓ∥Zℓ−1 − Z′

ℓ−1∥F . Plugging this into the above
inequalities we get the desired result.

4.4. Main Result

We have introduced the chain rule that we employ, as well as our main insight into how low rank
deep networks avoid multiplying factors across layers. We are now ready to state and prove our main
theorem that bounds the Gaussian complexity of low rank deep networks.

Theorem 7 (Gaussian complexity of deep Lipschitz neural network) Let FL be the class of rank
and spectral norm constrained deep neural networks of depth L with a piecewise linear 1-Lipschitz
activation function ϕ (such as ReLU, Leaky ReLU).

FL := {fW(x) = WLϕ(WL−1ϕ(. . . ϕ(W1x) . . .)) | ∥Wi∥2 ≤ Bi, rank(Wi) ≤ ri}

The width of layer i is hi, which means the dimensions of Wi are hi × hi−1 with h0 = d. Let
X = [x1 . . .xm]⊤ ∈ Rm×d denote the matrix corresponding to the data sample S. We assume
that the data are all bounded, with maxi ∥xi∥ ≤ R. The Gaussian complexity of FL can be upper
bounded as:

ĜS(FL) ≲
||X||F
m

{(
||W1||F

√
h1

) L∏
i=2

C1∥Wi∥2 +
L∑
i=2

CL−i
1 C22

√
2riκi∥Wi∥F

√
hi

}
(4)

where κi ∝
(∏d

j=1,j ̸=i ∥Wj∥2
)

and ri = minj≤i(rank (Wj)).

Equation (4) presents our bound in full generality, without using the explicit bounds on the ranks of
the layers. When we further bound the Frobenius norms of each weight matrix in the above Theorem
as ||Wi||F ≤

√
rank (Wi)||Wi||2 ≤

√
rBi, and let h = maxi hi be the maximum width, we can

simplify the Gaussian complexity bound to O
(
CL
1

∏L
i=1BiRLr

√
h
m

)
.

4.5. Detailed proof of Theorem 7

Recalling Maurers chain rule on Gaussian processes, for any composition F ◦ Y we can write;

1

m
G(F ◦ Y ) ≤ C1

m
L(F )G(Y ) +

C2

m
D(Y )R(F, Y ) +

1

m
G(F (y0))

8
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where D(·) is the diameter of the function class and R(·, ·) is the average of Lipschitz coefficients.
We can omit the third term in the chain rule since we can choose y0 to be the zero function (which
can be obtained by setting the weight matrices to zero). WLOG we can drop the last term in the chain
rule. Let us define the image of the data up to layer i as Zi = f(X) for f ∈ Fi (similar to Lemma 6).

The base recursion of the chain. Given above notation, we observe ĜS(Zi) ≤ L(ϕ)ĜS((Fi−1).
This is a direct application of Talagrand’s contraction lemma. We can use this simple observation to
write the recursion;

ĜS(Fi) = C1L(ϕ)||Wi||2ĜS(Fi−1) + C2
1

m
D(Zi−1)R(Wi,Zi−1) ∀i > 1

ĜS(F1) ≤ ||W1||F ||X||F
√
h1
m

Complexity of first layer pre-activation.

In this recursion, we also used the fact that the Lipschitz coefficient of a linear transformation is its
spectral (or operator) norm measuring the maximum spread of the matrix; L(Wi) = ||Wi||2.

Getting to a closed form. Following induction until the end of the chain gives us, under the
convention that a product over an empty set is 1 and the sum over an empty set is 0:

ĜS(FL) =

(
L∏
i=2

C1L(ϕ)∥Wi∥2

)
ĜS(F1)︸ ︷︷ ︸

direct recursive contribution

+
L∑
i=2

 L∏
j=i+1

C1L(ϕ)∥Wj∥2

C2
1

m
D(Zi−1)R(Wi,Zi−1)


︸ ︷︷ ︸

sum of disturbance contributions

.

This closed form formula consists of all the directive recursive contributions occurring from the
first term in the chain rule C1L(F )G(Y ) plus a a contribution that is a sum of disturbance for every
additional layer we peel that comes from the second term in the chain rule C2D(Y )R(F, Y ). We
have bounded each of the terms in the above recursion in the prior subsections. ĜS(F1) follows
from standard computations (see lemma 10 in appendix), D(Zi−1) is computed in lemma 5 and
R(Wi,Zi−1) is computed in lemma 6.

Putting it all together. Using the bounds computed in the prior subsections, and using L(ϕ) ≤ 1
we can now stitch everything together to get the bound of our Theorem (ignoring constants):

ĜS(FL) ≲
||X||F
m

{(
||W1||F

√
h1

) L∏
i=2

C1∥Wi∥2 +
L∑
i=2

CL−i
1 C22

√
2riκi∥Wi∥F

√
hi

}
(5)

where κi ∝
(∏d

j=1,j ̸=i ∥Wj∥2
)

and ri = minj≤i(rank (Wj)). Now if we use the fact that we have
spectral norm bounded networks with a maximum layer rank ≤ r and layer width ≤ h, and that the

data sample is bounded as ∥xi∥2 ≤ R, our bound simplifies to ĜS(FL) ≲ CL
1

∏L
i=1 ∥Wi∥2RLr

√
h
m

9
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5. Discussion

Comparison with existing bounds. In the previous section we used a chain rule due to Maurer to
obtain Gaussian complexity bounds for rank-constrained deep networks. We now compare our result
to generalization bounds previously obtained in the literature. We present our bounds as well as the
bounds we compare to in Table 1. We find that our bounds compare favorably to existing bounds
when we evaluate them on the rank and spectral norm constrained class of deep networks. While our
bound contains an unfavorable factor CL

1 we believe this is an artifact of the current proof technique,
and may not be truly necessary. We focus our comparison to the other factors in our bound.

Source Original Bound Bound for networks in FL

Ours (2024) O
(∏L

i=1 ∥Wi∥2CL
1 Lr

√
h√

m

)
O
(∏L

i=1 ∥Wi∥2 ×
CL

1 Lr
√
h√

m

)
Golowich et al. (2018) O

(√
L
∏L

i=1 ∥Wi∥F√
m

)
O
(∏L

i=1 ∥Wi∥2 ×
√

LrL

m

)

Neyshabur et al. (2018) O

∏L
i=1 ∥Wi∥2 ×

√
L2h

∑L
i=1

∥Wi∥2F
∥Wi∥22

m

 O
(∏L

i=1 ∥Wi∥2 ×
√

L3rh
m

)

Bartlett et al. (2017) O

∏L
i=1 ∥Wi∥2 ×

(∑L
i=1

(
∥W⊤

i ∥2,1
∥W∥2

)2/3
)3/2

√
m

 O
(∏L

i=1 ∥Wi∥2 ×
√

L3rh
m

)

Table 1: Comparison of our results with other complexity bounds for deep networks. For each bound
we present both the original formulation and its evaluation on the spectral norm and rank
bounded deep network class FL. We denote the maximum rank of a network layer by r,
the maximum width of a layer by h and the depth of the network by L. We drop the factor
related to the maximum norm of the input data. This can be assumed to be a constant.

First we compare our bound to that of Golowich et al. (2018) who obtain norm based generalization
bounds through a careful analysis of Rademacher complexity. While their bound only has a mild
explicit dependence on the depth L, it involves the product of Frobenius norms of the layers, which
when evaluated on networks in FL, results in a bound that scales as

√
LrL/2. In constrast our bound

only scales as Lr
√
h (where h is the width of the layers).

Bartlett et al. (2017) obtain generalization bounds for deep networks by upper bounding the
Rademacher complexity using covering numbers. This leads to a bound that depends on the ∥ · ∥2,1
norms of the layers. Neyshabur et al. (2018) obtain a version of this bound through a PAC-Bayesian
analysis. Both of these bounds, when evaluated on our function class FL scale as

√
L3rh. Our bound

which scales as
√
L2r2h may be better for deeper networks that also find low rank solutions. This

tradeoff between depth and rank may be an interesting avenue for future research.
Our main point of contrast is the following. While complexity bounds for low rank deep networks are
typically obtained by plugging in low rank matrices in a norm based complexity bound, our approach
of applying Maurer’s chain rule, and showing that the diameter of the chain of deep networks only

10



GAUSSIAN COMPLEXITY LOW RANK

depends on the rank of the smallest rank matrix, allows us to avoid the rank factor multiplying across
layers, and obtain comparable if not better generalization bounds.

Neural Collapse improves the generalization bound. It was recently observed in experiments that
deep classifiers become dramatically simple in the top layers in a phenomenon called Neural Collapse
Papyan et al. (2020). The representations of examples belonging to the same class concentrate around
the mean vector, the mean vectors spread apart to form a simplex Equiangular Tight Frame (ETF),
the weight matrices and mean feature vectors become duals of each other, and the decision of the
deep network follows the nearest class center classification rule. More recently, it was also observed
that collapse occurs not just in the last layer of a deep network, but in intermediate layers as well
Rangamani et al. (2023). Neural collapse in intermediate layers also leads to low rank layers— in
fact the rank becomes precisely C − 1 where C is the number of classes.
This simplification in the description of the top layers of a deep network must surely provide some
benefit in the form of tighter generalization bounds. That is indeed the case. As a consequence of
Maurer’s chain rule, we can see that rank-1 layers ensure that all subsequent layers simply belong to
a simple R → R mapping that is composed with the bottom layers of the deep network. This leads
to the following bound on Rademacher complexity for networks with a rank-1 layer in the middle.

Theorem 8 (Theorem 4 of Golowich et al. (2018)) Let G be a class of functions from Rd to [−R,R].
Let Fℓ,a be the class of of ℓ-Lipschitz functions from [−R,R] to R, such that f(0) = a for some fixed
a. Letting Fℓ,a ◦ G := {f(g(·)) : f ∈ Fℓ,a, h ∈ H}, its Rademacher complexity satisfies

R̂S(Fℓ,a ◦ H) ≤ cℓ

(
R√
m

+ log3/2(m) · R̂S(H)

)
,

where c > 0 is a universal constant.

This means that neural collapse in the intermediate layers of a deep network will essentially drop all
of the collapsed layers from the generalization bound. The collapsed layers can be collected into the
R → R mapping Fℓ,a, and the Rademacher/Gaussian complexity of the entire network only depends
on the network mapping from the input to the layer just below the collapsed layers. The depth is
effectively decreased, and one can achieve a tighter generalization bound for deep networks that
exhibit neural collapse.

6. Conclusion

In this paper we explore how low rank layers in deep networks affect their generalization beyond
norm-based generalization bounds. We apply Maurer (2016a)’s chain rule to obtain gaussian
complexity bounds for deep networks with low rank layers where rank factors do not multiply across
layers. Our results also point to a possible rank-depth tradeoff for generalization bounds, that may
be of further interest. We also identify how networks that show neural collapse have a smaller
complexity than networks that do not show neural collapse, and suggest that neural collapse in
intermediate layers is favorable for generalization. Studying how other types of alignment across
layers can yield better generalization bounds for deep networks is another promising direction for
future work.

11
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Limitations. Our current results contain an undesirable exponential dependence on depth CL
1 which

we conjecture is an artifact of the proof technique rather than a fundamental flaw. An analogous
situation is the case of norm based generalization bounds from Neyshabur et al. (2015) that contained
a factor with exponential dependence on depth (2L) which was subsequently removed in later work.
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Appendix A. Rank-dependent separation for one-layer networks

We first recall Talagrand’s contraction lemma that helps us obtain gaussian complexity bounds for
the composition of a function with a fixed L-Lipschitz function ϕ.

Lemma 9 (Talagrand’s Contraction Lemma) Let ϕ : R 7→ R be an L-Lipschitz function, then
ĜS(ϕ ◦ H) ≤ L× ĜS(H) where ϕ ◦ H = {z 7→ ϕ(h(z)) : h ∈ H}.

We now present for the sake of completeness a straightforward derivation of the Gaussian complexity
of a shallow low rank nonlinear network.

Lemma 10 (Gaussian complexity of a shallow Lipschitz neural network) Let the class of spec-
trally bounded shallow Lipschitz network F = {fW(x) = ϕ(Wx) | ∥W∥2 ≤ B,W ∈ Rh×d}. The
Gaussian complexity of this function class is upper bounded as follow;

ĜS(F) ≤ L(ϕ)R
√

h× rank (W)

m
||W||2

where h denotes the width of the weight matrix W, X = [x1, . . . ,xm]⊤, and maxi ∥xi∥ ≤ R.

Proof We can write ĜS(F) = (1/m)Eγ supW⟨W,ΓX⟩ where Γ is a matrix containing the Gaussian
variables of our vector-valued Gaussian complexity definition in equation (3). By Cauchy-Schwartz,
we get that

sup
W

⟨W,ΓX⟩ ≤ ∥W∥F × ∥ΓX∥F ≤
√
rank (W)||W||2||ΓX||F

By using the fact that E|Y | ≤
√
EY 2 for any r.v. Y we get:

Eγ [∥ΓX∥F ] ≤
√

Eγ

[
∥ΓX∥2F

]
=
√
Eγ [Tr (X⊤Γ⊤ΓX)] =

√
Tr (XX⊤Eγ [Γ⊤Γ])

=
√
Tr (XX⊤ × hIm) ≤ R

√
hm

The bound follows by applying Talagrand’s contraction lemma on top of the above bound.

In particular, for full-rank matrices with bounded spectral norm we obtain that the Gaussian com-
plexity ĜS(F) ≤ L(ϕ)BR

√
hd∗/m where d∗ = min(d, h), whereas the low-rank bound leads to

the bound L(ϕ)BR
√
hr/m with r ≤ d∗. This shows that the Gaussian complexity of one layer of

rank-r linear functions is smaller than that of one layer full rank (d∗) functions by a factor of
√
r/d∗.

Appendix B. Rademacher complexity of vector-valued functions

Theorem 11 (Rademacher Generalization Bound.) Let G be a family of functions mapping from
Z to [0, 1]. Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample S of
size m, each of the following holds for all g ∈ G:

E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m

E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log 2

δ

2m
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Theorem 12 (Vector-valued contraction on Rademacher generalization bound) Let G be a fam-
ily of Lipschitz functions mapping from Z to [0, 1] with Lipschitz constant L and let F be a family of
neural networks mapping from X to Z . Then, for any δ > 0, with probability at least 1− δ over the
draw of an i.i.d. sample S of size m, each of the following holds for all g ∈ G and f ∈ F:

E[g(f(x))] ≤ 1

m

m∑
i=1

g(f(xi)) + 2
√
2LR̂S(F) + 3

√
log 2

δ

2m

Proof From Theorem 11 we have that;

E[g(f(x))] ≤ 1

m

m∑
i=1

g(f(xi)) + 2R̂S(G) + 3

√
log 2

δ

2m

Using Maurer’s result Maurer (2016b) on vector-valued Rademacher contraction we can write;

E[g(f(x))] ≤ 1

m

m∑
i=1

g(f(xi)) + 2R̂S(G) + 3

√
log 2

δ

2m

=
1

m

m∑
i=1

g(f(xi)) +
2

m
Eσ

[
sup
g◦f

∑
i

σig(f(xi))

]
+ 3

√
log 2

δ

2m

≤ 1

m

m∑
i=1

g(f(xi)) +
2

m

√
2LEσ

sup
f

∑
i,k

σikfk(xi)

+ 3

√
log 2

δ

2m

=
1

m

m∑
i=1

g(f(xi)) + 2
√
2LR̂S(F) + 3

√
log 2

δ

2m

Recent advances on Rademacher complexities derived a theorem for the chain rule:

Theorem 13 (Rademacher Chain Rule Chu and Raginsky (2023)) Let a countable 1 class F of
functions f : Rk → R and a countable set T ⊂ Rk×n be given. Assume that all f ∈ F are
uniformly Lipschitz with respect to the Euclidean norm i.e. supf∈F ∥f∥Lip ≤ L < ∞. Assume also
that R(T ) < ∞ and R(F(T )) < ∞. Then there exists a set S ⊂ Rk×n with G(S) ≤ R(T ) and
∥S∥∞,∞ ≤ ∥T∥∞,∞ such that

R(F(T )) ≤ LFR(T ) + ∆2(S)τ
b(F , S) +R(F(t))

for any t ∈ S, where ∆2(S) is the diameter of S with respect to the Frobenius norm, and where

τ(F , S) := sup
s,t∈S

E
[
supf∈F

∑n
i=1 σi|f(si)− f(ti)|

]
∥s− t∥2

1. Attention is restricted to countable classes in order to avoid dealing with various measure-theoretic technicalities which
can be handled in a standard manner by eg. imposing separability assumption on the relevant classes and processes.
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