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ABSTRACT

We combine the two major approaches to causal inference: the conventional sta-
tistical approach based on weighting and the end-to-end learning with adversarial
networks. Causal inference concerns the expected loss in a distribution differ-
ent from the training distribution due to intervening on the input variables. Re-
cently, the representation balancing approach with neural networks has repeatedly
demonstrated superior performance for complex problems, owing to its end-to-
end modeling by adversarial formulation. However, some recent work has shown
that the limitation lies in the unrealistic theoretical assumption of the invertibility
of the representation extractor. This inherent difficulty stems from the fact that the
representation-level discrepancy in representation balancing accounts only for the
uncertainty of the later layers than the representation, i.e., the hypothesis layers
and the loss. Therefore, we shed light once again on the conventional weighting-
based approach, retaining the spirit of end-to-end learning. Most conventional
statistical methods are based on inverse probability weighting using propensity
scores, which involves nuisance estimation of propensity as an intermediate step.
They often suffer from inaccurate estimation of the propensity scores and instabil-
ity due to large weights. One might be tempted to jointly optimize the nuisance
and the target, though it may lead to an optimistic evaluation, e.g., avoiding noisy
instances by weighting less when noise levels are heterogeneous. In this paper,
we propose a simple method that amalgamates the strengths of both approaches:
adversarial joint optimization of the nuisance and the target. Our formulation fol-
lows the pessimistic evaluation principle in offline reinforcement learning, which
brings provable robustness to the estimation uncertainty of the nuisance and the
instability due to extreme weights. Our method performed consistently well un-
der challenging settings with heterogeneous noise. Our code is available online:
https://anonymous.4open.science/r/NuNet-002A.

1 INTRODUCTION

Causal inference enables us to assess a treatment action’s impact on the decision-making process
under uncertainty. Its application originated in the policy-making field (LaLonde, 1986) includ-
ing healthcare (Sanchez et al., 2022). Recently, the focus was expanded to individualized decision-
making such as precision medicine (Sanchez et al., 2022), recommendation (Schnabel et al., 2016;
Bonner and Vasile, 2018), and advertisement (Sun et al., 2015; Wang et al., 2015) with the help of
advanced machine learning-based methods.

We estimate the causal effect of a treatment action (e.g., prescription of a specific medicine). That
is, we need accurate predictions of both potential outcomes with and without the treatment to take
its difference since the supervision of the actual effect itself is never given. With observational data,
where the action is not assigned completely at random but selected by past decision-makers, the
model should generalize not only to the factual data distribution but also to the biasedly missing
counterfactual outcome of the action that was not selected. This is called the fundamental problem
of causal inference (Shalit et al., 2017).

Conventional statistical methods for causal inference deal with this action selection bias by matching
extraction or importance sampling at the input feature level (Rosenbaum and Rubin, 1983). Among
others, inverse probability weighting using propensity scores (IPW) (Austin, 2011) is a represen-
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tative and versatile approach. The IPW method first learns the policy of the past decision makers
(propensity) and then trains a target model with weights of the inverse of propensities, i.e., an esti-
mate of the rarity of the observed action. This two-step estimation strategy defines the fundamental
limitation of the weighting approach. The problems are twofold: 1) the overall accuracy depends
on the precision of the propensity score estimation at the first stage, and 2) even if the propensity
score was precise, the weights could be assigned skewed toward a small fraction of the whole train-
ing sample, resulting in high estimation variance (Kang et al., 2007). The overall accuracy can only
be guaranteed asymptotically, limiting its applicability to modern non-asymptotic situations such as
high dimensional models as DNNs for capturing complex heterogeneity or complex action spaces.

Various countermeasures have been tried to alleviate this problem, such as doubly robust (DR)
methods (Kang et al., 2007; Kennedy, 2020; Dudík et al., 2014) and double machine learning
(Chernozhukov et al., 2018; Nie and Wager, 2021), which are clever combinations of outcome pre-
diction models and only weighting its residuals using estimated propensity. Nevertheless, the IPW-
based approach’s limitation is the instability of the two-step procedure in non-asymptotic situations.
Its large estimation variance is problematic in cases of high dimensional covariates or cases where
the propensity score is close to 0 or 1 and thus the effective sample size is limited (Athey et al.,
2018).

As in various other fields, advancement with deep neural networks (DNN) has gained substan-
tial attention in causal inference literature (Li and Zhu, 2022). One of the notable advancements
made when Shalit et al. (2017) and Johansson et al. (2016) introduced DNN to causal inference
was representation-level balancing through distribution discrepancy measures. The representation
extracted from the input covariates is encouraged to be balanced, i.e., independent of the action,
by measuring and minimizing the discrepancy between the representation distributions conditioned
on the action. While the gold standard of causal inference is randomized controlled trials (RCTs),
which are costly in many real-world scenarios, this technique allows the construction of hypotheses
on a balanced representation space that would virtually mimic RCTs. The performance of repre-
sentation balancing is guaranteed by a generalization error upper-bound (Shalit et al., 2017) in a
non-asymptotic manner. This results in an end-to-end training procedure, free from the concerns in
the intermediate estimation problem.

However, an unrealistic assumption in its theoretical guarantees has been highlighted in several re-
cent studies (Johansson et al., 2019; Zhao et al., 2019; Wu et al., 2020). When the representation
becomes degenerate and not invertible, the difference in errors arising from varying input distribu-
tions is overlooked. Such oversight stems from the inherent challenge of not addressing uncertainty
within the representation extractor The representation discrepancy upper-bounds error only from the
uncertainty in the later layers than the representation, i.e., the hypothesis layers and the loss.

Contribution We elevate the conventional two-step weighted estimation with the spirit of end-
to-end adversarial training rather than representation-level balancing at risk of bias. We define the
worst-case loss with respect to the nuisance model uncertainty inspired by the pessimism princi-
ple in offline reinforcement learning. Our adversarial loss simultaneously accounts for the true
propensity’s uncertainty and the statistical instability due to weighting. We apply our framework to
the doubly robust learner (Kennedy, 2020), an extension of IPW. The proposed method performed
consistently well on datasets with heterogeneous noise, including real-world datasets, in which non-
adversarial losses tend to be too optimistic.

2 PROBLEM SETTING

We consider a standard causal inference framework. We have observational data D =
{(x(n), a(n), y(n))} consisting of i.i.d. instances of d-dimensional background feature x(n) ∈ X ⊂
Rd, a treatment action a(n) ∈ A = {0, 1}, and a continuous or binary outcome y(n) ∈ Y , where
n is the sample instance index. In the Neyman-Rubin potential outcome framework (Rubin, 2005),
the potential outcomes of both factual and counterfactual actions are expressed as random variables
{Ya}a∈{0,1}, of which only the factual outcome is observed

(
y(n) = ya(n)

)
and the counterfactual

one y1−a(n) is missing.
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Our goal is to learn a potential outcome function f : X × A → Y to estimate the causal effect
τ̂(x) := f̂(x, a = 1)− f̂(x, a = 0) under the given background feature x, or to learn τ̂ directly. The
estimated effect τ̂(x) is expected to approximate the true individualized causal effect defined as the
conditional average treatment effect (CATE).

τ(x) = E [Y1 − Y0|x]

A typical metric for the estimation accuracy is the MSE of τ(x), also known as the precision in
estimating heterogeneous effects (PEHE).

PEHE(τ̂) = Ex

[
(τ(x)− τ̂(x))

2
]

As a sufficient condition for consistent learnability of the CATE, we follow the standard set of
assumptions in the potential outcome framework (Imbens and Rubin, 2015).

• Y (n) ⊥⊥ A(n′) ∀n ̸= n′ (Stable Unit Treatment Value Assumption)
• (Y0, Y1) ⊥⊥ A | X (unconfoundedness)
• 0 < µ(a|x) < 1 ∀x, a (overlap)

3 RELATED WORK

Inverse probability weighting with propensity scores (IPW) and its extension IPW is a well-
known and universal approach to various causal inference problems, where the density is balanced
by weighting using estimated propensity scores. The extended approach called orthogonal statistical
learning including the DR-Learner (Kennedy, 2020) and the R-Learner (Nie and Wager, 2021) also
exploit outcome prediction models. These methods have been shown to be robust to estimation
errors for the first-stage nuisance parameter, i.e., the errors do not affect the final estimation in the
first-order sense of the Taylor expansion. Nonetheless, high estimation variance is a drawback of
this approach when applied to non-asymptotic situations (Athey et al., 2018). Aiming at robustness
for complex DNN-based models, we therefore develop a unified framework that is based on the
orthogonal method but also cares extreme weights as in (Athey et al., 2018).

Representation balancing and decomposition Starting with (Johansson et al., 2016; Shalit et al.,
2017), a number of causal inference methods based on DNNs and representation balancing have
been proposed (Li and Zhu, 2022). The representation-based methods have been demonstrated to
be superior in complex problems such as nonlinear responses (Johansson et al., 2016), large ac-
tions spaces (Tanimoto et al., 2021) including continuous (Lopez et al., 2020) or structured spaces
(Harada and Kashima, 2021), and so forth. These are end-to-end methods based on adversarial for-
mulations. They virtually evaluate the worst-case with respect to the uncertainty of the model by
distribution discrepancy between the representations of covariates in treated and control groups. On
the other hand, representation balancing has certain limitations in an unrealistic theoretical assump-
tion that the representation extractor should be invertible. It is shown that unobservable error terms
arise when the invertibility is violated (Johansson et al., 2019; Zhao et al., 2019; Wu et al., 2020).

A solution to this problem is the representation decomposition (Hassanpour and Greiner, 2020;
Wu et al., 2022; Cheng et al., 2022). They aim to identify confounding factors that affect both action
selection and the outcomes and weights with only those factors. While it is an exciting approach, it
is not guaranteed as a joint optimization. Joint optimization approaches have also been proposed for
ATE estimation (Shi et al., 2019), though it may lead to cheating by less weighting to noisy regions
especially under noise heterogeneity. Thus, we aim at a principled and versatile method without
representation extraction while incorporating the advantages of end-to-end modeling by adversarial
formulation.

Distributionally robust optimization A similar framework aims at robust training concerning
the deviation between the empirical and test distributions (Rahimian and Mehrotra, 2019). This
approach and ours both account for distributional uncertainties and care for the worst possible cases
in each setting. On the other hand, they do not suppose a significant difference between the training
and test distributions but deal only with small perturbations. As a result, they do not face the main
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problem that motivates this study, namely, extreme weighting by inverse probability. The uncertainty
we seek to address appears in the density ratio of the test distribution to the training distribution,
which can be roughly estimated from the association between background features and actual actions
taken, but remains uncertain. Thus, although the problem and the approaches are similar, there is a
significant difference from our setting.

Pessimism in offline reinforcement learning Recent efforts in offline reinforcement learn-
ing revealed the benefit of pessimism on the candidate assessment (Rashidinejad et al., 2021;
Buckman et al., 2021). In reinforcement learning, we consider modeling the cumulative expected re-
ward in the long run as the Q function for assessing each action at each time step. The Q function is
supposed to be maximized with respect to action a during the inference phase. If the estimation error
on an action is optimistic, i.e., if the Q value is overestimated, the action is likely to be selected over
other better candidates. Therefore, conservative modeling of Q-function is preferable (Kumar et al.,
2020), i.e., training a model to estimate below the true value when uncertain. The provable benefit
of pessimism has been revealed in recent years (Buckman et al., 2021).

Our strategy also goes along with this direction. While offline reinforcement learning estimates the
Q function and then optimizes it, we estimate the weighted loss and then optimize. We apply this
pessimism principle to weighted estimation in causal inference; that is, our method pessimistically
estimates the weighted loss with respect to the uncertainty of the weights.

4 NUISANCE-ROBUST WEIGHTING NETWORK

4.1 ADVERSARIAL REFORMULATION OF PLUG-IN NUISANCE

Inspired by pessimism in offline reinforcement learning, we build a causal inference method by the
same principle. Most conventional causal inference methods employ a plug-in estimation approach:
1) estimate the nuisance propensity model µ̂ with its empirical evidence Ê (e.g., the cross entropy
loss with the action as the label) and 2) plug it into the target empirical risk L̂ (e.g., the MSE related
to the CATE estimator τ̂θ)

θ̂ = argmin
θ

L̂(θ; µ̂), where µ̂ = argmin
µ

Ê(µ) (1)

as a substitute for the true propensity µ∗ = argminµ E(µ). The specific form of the empirical loss
L̂ is discussed in Section 4.2.

The accuracy of the nuisance µ does not ultimately matter. Thus, it could be suboptimal to estimate
and fix µ̂ without considering the subsequent estimation of the target parameter θ̂. we establish
an error bound for any µ, in which we utilize Ê as auxiliary evidence. Here, analogous to the
effectiveness analysis of pessimism in offline reinforcement learning (Buckman et al., 2021), the
sub-optimality compared to the true best parameter θ∗ := argminθ L(θ;µ

∗) can be decomposed
into optimistic/underestimation side and pessimistic/overestimation side.
Theorem 4.1 (Adaptation from Theorem 1 in (Buckman et al., 2021)). For any space Θ, true popu-
lation loss L(·;µ∗), and proxy objective Ĵ(·),

L(θ̂;µ∗)− L(θ∗;µ∗) ≤ inf
θ∈Θ

{
Ĵ(θ)− L(θ∗;µ∗)

}
+ sup

θ∈Θ

{
L(θ;µ∗)− Ĵ(θ)

}
, (2)

where θ̂ = argminθ∈Θ Ĵ(θ) and θ∗ = argminθ∈Θ L(θ;µ∗).

Proof. It follows from the definition of θ̂ and θ∗. Details are given in Appendix A.

This analysis illustrates the asymmetry in the meaning of the estimation errors on the optimistic
(Ĵ(θ) < L(θ;µ∗)) and pessimistic sides of the loss function (Ĵ(θ) > L(θ;µ∗)). The first term (2)
corresponds to the estimation error on the pessimistic side and is infimum with respect to θ, so it is
sufficient if it is small for one θ. On the other hand, the optimistic error in the second term should be
uniformly small for all θ. Unlike the pessimistic side, the optimistic error even for a single candidate
can mislead the entire estimation process. This fact leads to the pessimism principle: “Be pessimistic
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when uncertain.” Following this principle, we focus on the optimistic error, i.e., the second term in
(2), and enforce it to be bounded for all θ ∈ Θ.

Here, it would be instructive to see what optimism would result when we use the weighted risk as
objective Ĵ(θ) = L̂(θ;µ) with a false propensity score µ. The error is decomposed as follows.

L(θ;µ∗)− L̂(θ;µ) = L(θ;µ∗)− L(θ;µ)︸ ︷︷ ︸
(a)

+L(θ;µ)− L̂(θ;µ)︸ ︷︷ ︸
(b)

(3)

The first term (a) is related to the uncertainty of the nuisance and can be majorized by maximizing
the objective function with respect to µ. Therefore, we define an uncertainty set U such that µ∗ is
included and take the worst case among them.

U =

{
µ

∣∣∣∣ Ê(µ) ≤ min
µ′

Ê(µ′) + c

}
(4)

On the other hand, weights biased toward some samples for the pessimistic evaluation would
decrease the effective sample size (Swaminathan and Joachims, 2015; Tanimoto et al., 2022).
Thus we have to care about the statistical stability under µ, which appears as (b) in (3).
Swaminathan and Joachims (2015) proposed a pessimistic evaluation of logged bandits under true
values of µ, and Tanimoto et al. (2022) analyzed the sample complexity of linear class with weighted
loss, both of which imply that we can majorize this term using the mean square of the weights.
Though it depends on the class Θ, we now assume there exists a majorizer R(µ) ≥ (b), and let a
stability constrained setR as

R = {µ | R(µ) ≤ C} . (5)

Now we can define our pessimistic loss as follows.

Ĵ(θ) = max
µ∈U∩R

L̂(θ;µ), (6)

where U is defined as (4) andR as (5). Our loss upper-bounds the optimistic evaluation error.
Theorem 4.2 (Uniform bound with the pessimistic objective). Suppose we have a model class Θ

and a loss L such that a stability constrained set R as (5) can be defined with R so that L̂(θ;µ) −
L(θ;µ) ≤ R(µ) for all θ ∈ Θ. Let the objective Ĵ defined as (6) with sufficiently large parameters
c and C so that µ∗ ∈ U ∩ R, i.e., Ê(µ∗) ≤ minµ′ Ê(µ′) + c and R(µ∗) ≤ C. Then for all θ ∈ Θ
we have

L(θ;µ∗) ≤ Ĵ(θ) + C.

Proof. It follows from the definition of U ,R and R. Details can be found in Appendix Appendix A.

Note that the nuisance uncertainty tolerance c does not appear in this optimistic error upper bound.
Being too pessimistic with large c will lead to a large pessimistic-side error in (2). Therefore, U
should be as small as possible while containing µ∗.

4.2 NUISANCE-ROBUST TRANSFORMED OUTCOME REGRESSION NETWORK

Under the aforementioned approach, next, we will discuss the application of our nuisance-robust
loss to specific estimation methods. Among two-step methods of the form (1), a simple but clever
method to directly estimate CATE is the transformed outcome regression (Athey and Imbens, 2016).
This method estimates the target CATE without estimating each potential outcome. Based on pre-
trained and fixed µ̂, the transformed outcome z is defined as follows.

z(n) = y
(n)
1

a(n)

µ̂
(
x(n)

) − y
(n)
0

(
1− a(n)

)
1− µ̂

(
x(n)

) (7)

The transformed outcome is equivalent to CATE in expectation supposed that µ̂ is accurate: E[z|x] =
τ(x) = E[Y1 − Y0|x] (see Appendix B for detail). Therefore, at the population level, the model τ̂θ
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that minimizes MSE with respect to z is consistent with that of minimizing PEHE. And, unlike
CATE, z can be calculated from observed values, since the unobserved potential outcome y1−a

would be multiplied by 0 and eliminated. We call this approach transformed outcome regression
with propensity weighting (PW), or PWNet in short.

While we do not suffer from estimation errors in potential outcomes, z in PWNet (7) has a large
variance in general. Therefore, we can also utilize pre-trained potential outcome models f̂a(x) ≃
E[Ya|x] to reduce the variance in the transformed outcome. Kennedy (2020) proposed using the
plug-in CATE estimate f̂1(x

(n)) − f̂0(x
(n)) with residual adjusted with weights. Despite being a

plug-in method, the estimation error of these models (f1, f0) does not necessarily ruin the later step.
If either (f1, f0) or µ is accurate, z works as an accurate target, which is called the double robustness
(Kennedy, 2020). This method is called the doubly robust learner or DRNet.

Taking DRNet as a baseline plug-in method, we formulate our proposed method nuisance-robust
transformed outcome regression, NuNet. Our transformed outcome zµ with mutable nuisance µ is
defined as follows.

z(n)µ = f̂1(x
(n))− f̂0(x

(n)) +
y
(n)
1 − f̂1(x

(n))

µ(x(n))
a(n) − y

(n)
0 − f̂0(x

(n))

1− µ(x(n))
(1− a(n)). (8)

We start with a pre-trained nuisance µ0 and randomly initialized parameter θ and perform adversarial

optimization of them as in (6) with the MSE L̂(θ;µ) = 1
N

∑
n

(
z
(n)
µ − τθ(x

(n))
)2

. While DRNet

uses pre-trained and fixed nuisance models f̂1, f̂0, and µ̂ for training τ̂θ, we utilize pre-trained µ0 for
initialization but update simultaneously with θ. Although f0 and f1 are also nuisance parameters,
the uncertainty of them do not differ among the target parameter space, thus we need not take care.
Excluding the error correction term in (8), a disturbance (∆f0,∆f1) can be absorbed by translation
τ ← τ +∆f1 −∆f0.

4.3 IMPLEMENTATION OF CONSTRAINTS FOR GRADIENT-BASED UPDATE

We defined the evidence level Ê(µ) and the statistical stability R(µ) as constraints in Section 4.1.
Typical constraint implementation is as regularization term such as αmax{0, Ê(µ) − Ê(µ0) − c},
where µ0 is the pre-trained and fixed propensity model. However, since−L̂(θ;µ) is not convex with
respect to µ, the regularization cannot reproduce the constrained optimization within U . µ would di-
verge to extreme values to increase L̂(θ;µ) with no regard for the increase in the regularization term.
Therefore, for Ê, we employ a (simplified version of) augmented Lagrangian method (Bertsekas,
2014). We use the regularization term αk max{0, Ê(µ)− Ê(µ0)− c}, where αk = α0γ

k with the
training epoch k. Note that the hyperparameters α0 and γ are for optimization and could be tuned
only by the training data. The only statistical hyperparameter here is the tolerance c, which is to be
selected by validation.

For the statistical stability R, we employ squared weights simply as a regularization term. Let
w

(n)
µ = a(n)

µ(x(n))
+ 1−a(n)

1−µ(x(n))
the weight under the nuisance function µ. Finally, our adversarial

objective at the k-th iteration is the following.

Ĵ(θ, µ) =
1

N

∑
n

(
z(n)µ − τθ(x

(n))
)2

− αk max{0, Ê(µ)− Ê(µ0)− c} − β
1

N

∑
n

(
w(n)

µ

)2

.

(9)

In each iteration, we minimize Ĵ(θ, µ) with respect to θ and maximize with respect to µ. Overall,
our loss controls the optimistic side error due to the uncertainty of µ (3-a) by maximizing the first
term with respect to µ under the likelihood constraint in the second term, while simultaneously
controlling the optimistic side error of the weighted empirical loss (3-b) by flattening the weight
with the third term. The whole algorithm is summarized in Algorithm 1 and Figure 1 illustrates the
architecture.
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Algorithm 1 Nuisance-Robust Transformed Outcome Regression Network (NuNet)

Input: Training data D = {(x(n), a(n), y(n))}n, hyperparameters α0, γ, β, c, validation ratio r
Output: Trained network parameter θ and validation error

1: Train f1, f0, µ by an arbitrary supervised learning method, e.g.:
f̂a ← argminfa

1
N

∑
n:a(n)=a(y

(n) − fa(x
(n)))2 for each a ∈ {0, 1},

µ0 ← argminµ− 1
N

∑
n a

(n) log µ(x(n)) + (1− a(n)) log(1− µ(x(n)))
2: Split train and validation Dtr, Dval by the ratio r
3: k ← 0
4: while Convergence criteria is not met do
5: for each sub-sampled mini-batch from Dtr do
6: Update parameters with objective (9) and step sizes ηθ, ηµ from optimizes:
7: θk+1 ← θk − ηθ∇θĴ(θ, µ)

8: µk+1 ← µk + ηµ∇µĴ(θ, µ)
9: αk+1 ← γαk

10: k ← k + 1
11: Check convergence criterion with validation error 1

Nval

∑
n∈Dval

(z
(n)
µ0 − τθ(x

(n)))2

12: return θ and the last validation error for model selection
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̂ȳ
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[提案法]

̂f1

y

̂f1, ̂f0

τθ

μ

L̂(θ; μ)̂τ
zμ

max{0, ̂E(μ) − ̂E(μ0) − c}

Gradient Reversal Layer

R(μ)

Figure 1: The architecture of NuNet. Gray boxes are fixed during the training. The nuisance func-
tion µ is trained to maximize the empirical loss L̂(θ;µ) while minimizing the other terms. This
adversarial formulation can be expressed as joint minimization with the gradient reversal layer.

5 EXPERIMENT

5.1 SETTINGS

Synthetic data generation We followed the setup of (Curth and van der Schaar, 2021b) for syn-
thetic data generation processes and model hyperparameters, except for our noise heterogeneous
setting. We generated d = 25 dimensional multivariate normal covariates including 5 confounding
factors that affect outcome and treatment selection, 5 outcome-related factors, and 5 purely CATE-
related factors. The true outcome and CATE models were nonlinear. Other details are described in
Appendix C.

In addition to the original additive noise (AN) setting y = ytrue + ε, we also tested on the multi-
plicative noise (MN) setting y = ytrue(1 + ε), where ε is drawn from a normal distribution with its
average noise level was adjusted to the one in AN. Most causal inference literature uses synthetic
data or semi-synthetic data where only covariates are real and synthesizes outcomes with additive
noise, which do not reflect the heterogeneity of the real environment. Noise heterogeneity is critical
since the optimistic-side error will likely emerge, and naive joint optimization suffers. We therefore
set this up as a simple data generation model with heterogeneous noise.

Real-world dataset Most well-established semi-synthetic datasets have real-world covariates and
synthesized outcomes and do not reproduce up to noise heterogeneity, while the Twins dataset from
(Almond et al., 2005) had both potential outcomes recorded. The first-year mortality of twins born
at low birth weights was treated as potential outcomes for the heavier and lighter-born twins, respec-
tively, and weighted subsampling was performed to reproduce the missing counterfactuals. The test
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Table 1: PEHE on additive noise dataset (mean ± standard error on 10 runs). The best results are
shown in bold, and comparable results are italicized and underlined.

Method N=500 1000 2000 5000 10000 20000

TNet 18.55 ± 0.88 13.89 ± 1.10 5.02 ± 0.14 1.96 ± 0.06 1.22 ± 0.03 0.88 ± 0.02
TARNet 18.21 ± 1.12 8.77 ± 0.35 4.28 ± 0.19 1.74 ± 0.06 1.06 ± 0.02 0.76 ± 0.03
CFR 17.90 ± 1.18 8.77 ± 0.35 4.28 ± 0.19 1.71 ± 0.05 1.05 ± 0.02 0.76 ± 0.03
SNet3 13.10 ± 0.65 7.73 ± 0.34 3.85 ± 0.11 1.54 ± 0.05 0.99 ± 0.02 0.62 ± 0.01
SNet 14.14 ± 0.57 7.17 ± 0.29 3.39 ± 0.11 1.26 ± 0.03 0.74 ± 0.02 0.43 ± 0.01
PWNet 18.46 ± 0.82 13.03 ± 0.54 15.97 ± 0.68 20.99 ± 1.25 25.31 ± 2.32 19.21 ± 1.36
DRNet 16.56 ± 0.75 11.58 ± 0.66 3.91 ± 0.14 1.45 ± 0.04 1.14 ± 0.11 0.66 ± 0.03

NuNet 15.78 ± 0.69 11.43 ± 0.48 4.02 ± 0.09 1.52 ± 0.07 0.86 ± 0.01 0.54 ± 0.01

target is the difference between the noisy potential outcomes τ (n) = y
(n)
1 − y

(n)
0 instead of CATE

E[τ (n)|x]. We followed (Curth and van der Schaar, 2021a) for sampling strategy and other details.

Also, the Jobs dataset from (LaLonde, 1986) has a randomized test set based on an experimental
job training program and an observational training set. Although we do not have both potential out-
comes, we can substitute the CATE in PEHE with the transformed outcome since the true propensity
is known as constant in the randomized test set, as proposed in (Curth et al., 2021). A detailed justi-
fication for this evaluation can be found in Appendix B. Most popular semi-synthetic datasets used
in causal inference evaluation have generated outcomes and do not reproduce noise heterogeneity in
real situations. That is why we used these datasets with real outcomes.

Baseline methods We compared several representative methods for causal inference with DNN.
TNet was a simple plug-in method that estimates each potential outcome with separate two net-
works and then outputs the difference between their predictions. SNet and SNet3 were decom-
posed representation-based methods that shared representation extractors for outcome and propen-
sity estimation layers. They have three kinds of extractors, namely, outcome-only, propensity-
only, and shared representation for confounders. SNet3 was a modified version, not using
weighting in (Curth and van der Schaar, 2021b), of what was originally proposed as DR-CFR
(Hassanpour and Greiner, 2019) and DeR-CFR (Wu et al., 2022) for simultaneous optimization
of the weights and the outcome model. SNet was an even more flexible architecture than
SNet3 that had shared and independent extractors for each potential outcome, proposed in
(Curth and van der Schaar, 2021b). PWNet and DRNet were DNN implementations of transformed
outcome methods (Athey and Imbens, 2016; Kennedy, 2020), in which networks in the first step
were independent for each potential outcome and propensity. In the second step, a single CATE
network was trained. Our proposed NuNet is based on DRNet architecture.

Hyparparameters and model selection We set the candidates of the hyperparameters as α0 ∈
{1, 10}, γ ∈ {1.01, 1.03, 1.05}, and β ∈ {10, 100, 300}. For the experiment with Twins, we fixed
them as α0 = 10, γ = 1.03, β = 100. The tolerance was fixed at c = 0.03. Model selection,
including early stopping, was performed on the evidence measure of each method with 30% of the
training data held out for validation. That is, for transformed outcome methods, we evaluated the
MSE with respect to the transformed outcome z in each method. For our proposed NuNet, we used
the pre-trained and fixed transformed outcome for validation, just as in DRNet.

5.2 RESULTS

AN setting The results are shown in Table 1. Our proposed NuNet outperformed or was at least
comparable to, DRNet, the baseline plug-in method of NuNet. On the other hand, representation-
based methods (SNet3 and SNet) outperformed the transformed outcome methods (PWNet, DRNet,
and NuNet). The shared representation extractor of the confounding factors could be an effective
inductive bias, especially with small sample sizes. SNet is overall more accurate than SNet3 since it
can also share parameters for components common to both potential outcomes.

MN setting Table 2 shows the results in PEHE. Our proposed method outperformed other base-
lines when the sample size was relatively sufficient. Unlike the AN setting, the multiplicative (het-
erogeneous) noise setting tends to be optimistic. The pessimistic evaluation with more emphasis on
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Table 2: PEHE on multiplicative noise dataset
Method N=500 1000 2000 5000 10000 20000

TNet 22.03 ± 1.23 17.59 ± 0.89 11.97 ± 0.40 5.93 ± 0.16 3.76 ± 0.08 2.52 ± 0.11
TARNet 20.75 ± 0.99 13.06 ± 0.53 10.25 ± 0.36 5.27 ± 0.18 3.17 ± 0.08 2.10 ± 0.09
CFR 20.30 ± 1.05 13.06 ± 0.53 10.10 ± 0.32 5.22 ± 0.18 3.16 ± 0.08 2.07 ± 0.09
SNet3 17.83 ± 0.94 15.44 ± 0.65 11.12 ± 0.36 5.71 ± 0.25 3.61 ± 0.14 2.46 ± 0.09
SNet 18.44 ± 0.86 15.73 ± 0.58 11.22 ± 0.33 5.47 ± 0.17 3.12 ± 0.08 2.01 ± 0.07
PWNet 18.97 ± 0.90 13.14 ± 0.54 15.95 ± 0.64 21.08 ± 1.22 25.63 ± 2.31 20.92 ± 2.09
DRNet 19.96 ± 1.01 15.34 ± 0.75 9.93 ± 0.40 4.80 ± 0.21 3.20 ± 0.24 1.83 ± 0.10

NuNet 19.96 ± 1.20 15.54 ± 0.57 9.83 ± 0.45 4.67 ± 0.32 2.44 ± 0.09 1.50 ± 0.06

Table 3: MSE for noisy CATE on real-world datasets (mean ± standard error on 5 runs).
Method Twins Jobs

N=500 1000 2000 5000 11400 N=2570

TNet 0.354 ± .004 0.350 ± .002 0.329 ± .001 0.324 ± .002 0.322 ± .001 9.42 ± .12
TARNet 0.336 ± .003 0.336 ± .002 0.326 ± .001 0.320 ± .001 0.321 ± .001 9.33 ± .02
CFR 0.322 ± .001 0.324 ± .002 0.323 ± .002 0.321 ± .001 0.321 ± .001 9.33 ± .02
SNet3 0.331 ± .002 0.330 ± .002 0.322 ± .001 0.319 ± .001 0.320 ± .001 9.38 ± .06
SNet 0.333 ± .002 0.331 ± .002 0.323 ± .001 0.320 ± .001 0.320 ± .001 9.36 ± .06
PWNet 0.330 ± .001 0.327 ± .001 0.324 ± .001 0.322 ± .002 0.323 ± .001 8.82 ± .03
DRNet 0.340 ± .002 0.338 ± .001 0.322 ± .001 0.323 ± .001 0.323 ± .001 9.10 ± .02

NuNet 0.326 ± .002 0.323 ± .002 0.320 ± .001 0.321 ± .001 0.319 ± .001 8.62 ± .06

hard instances would be a reasonable explanation for the superiority of the proposed method. Even
though representation decomposition should also be useful in the MN setting since the data genera-
tion model was the same as the AN setting except for noise, the weighting approach was superior to
the representation decomposition method without weighting. Combining representation decomposi-
tion and weighting is a promising future direction. Simultaneous optimization is required and our
approach based on plug-in (multi-step) baseline methods cannot be simply applied.

Real-world datasets Experiments on Twins data also showed the superiority of NuNet in most
cases as in Table 3. Note that the test target τ (n) is noisy, and the value contains the noise variance.
In the small sample cases as N = 500, the methods with fixed outcome models (TNet and DR-
Net) underperformed compared to the methods without outcome models or shared representations.
NuNet based on DRNet should suffer the same disadvantage, though it still showed superior per-
formance to those baseline methods. Table 3 also showed the results on Jobs data, which exhibits
similar trends. Although the accuracy of PWNet is relatively high, probably due to the low dimen-
sionality of d = 8, the proposed DRNet-based method still outperformed other baseline methods.
Note that the evaluation metric for Jobs, the MSE with respect to the transformed outcome, also
contains constant noise.

6 CONCLUSION

We proposed NuNet to unify the two steps of nuisance estimation and target estimation in a single
step based on the pessimism principle. We have empirically demonstrated that existing methods not
based on weighting and methods based on weighting with a two-step strategy tend to be optimistic,
and the proposed method exhibited superior performances, especially in noise heterogeneity. To the
best of our knowledge, our approach is the first attempt at a principled solution based on pessimism,
and it sheds light on the approach for making various multi-step inference methods end-to-end.

Limitation and future work Our framework has wide potential applications to plug-in methods,
not only the proposed method. On the other hand, it cannot be applied to methods that are originally
formulated as joint optimization of models and weights, such as representation decomposition. Such
models that have representation shared by the model and weights often exhibit effective inductive
bias, which is another aspect of the combination of the weighting approach and DNNs. Deriving
a pessimism-based theoretical framework for such methods and investigating principled learning
methods would be a promising future direction for versatile causal inference methods.

9



Under review as a conference paper at ICLR 2024

REFERENCES

D. Almond, K. Y. Chay, and D. S. Lee. The costs of low birth weight. The Quarterly Journal of
Economics, 120(3):1031–1083, 2005.

S. Athey and G. Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings of
the National Academy of Sciences, 113(27):7353–7360, 2016.

S. Athey, G. W. Imbens, and S. Wager. Approximate residual balancing. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 80(4):597–623, 2018.

P. C. Austin. An introduction to propensity score methods for reducing the effects of confounding
in observational studies. Multivariate Behavioral Research, 46(3):399–424, 2011.

D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press, 2014.

S. Bonner and F. Vasile. Causal embeddings for recommendation. In ACM conference on recom-
mender systems (RecSys), pages 104–112, 2018.

J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset policy
optimization. In International Conference on Learning Representations (ICLR), 2021.

M. Cheng, X. Liao, Q. Liu, B. Ma, J. Xu, and B. Zheng. Learning disentangled representations
for counterfactual regression via mutual information minimization. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1802–1806, 2022.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins.
Double/debiased machine learning for treatment and structural parameters. The Econometrics
Journal, 21(1):C1–C68, 2018.

A. Curth and M. van der Schaar. On inductive biases for heterogeneous treatment effect estimation.
Advances in Neural Information Processing Systems (NeurIPS), 34:15883–15894, 2021a.

A. Curth and M. van der Schaar. Nonparametric estimation of heterogeneous treatment effects:
From theory to learning algorithms. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1810–1818. PMLR, 2021b.

A. Curth, D. Svensson, J. Weatherall, and M. van der Schaar. Really doing great at estimating cate?
a critical look at ml benchmarking practices in treatment effect estimation. In NeurIPS Datasets
and Benchmarks, 2021.

M. Dudík, D. Erhan, J. Langford, and L. Li. Doubly robust policy evaluation and optimization.
Statistical Science, 29(4):485–511, 2014.

S. Harada and H. Kashima. Graphite: Estimating individual effects of graph-structured treatments.
In ACM International Conference on Information & Knowledge Management (CIKM), pages 659–
668, 2021.

N. Hassanpour and R. Greiner. Counterfactual regression with importance sampling weights. In
International Joint Conference on Artificial Intelligence (IJCAI), pages 5880–5887, 2019.

N. Hassanpour and R. Greiner. Learning disentangled representations for counterfactual regression.
In International Conference on Learning Representations (ICLR), 2020.

G. W. Imbens and D. B. Rubin. Causal inference in statistics, social, and biomedical sciences.
Cambridge University Press, 2015.

F. D. Johansson, U. Shalit, and D. Sontag. Learning representations for counterfactual inference. In
International Conference on Machine Learning (ICML), pages 3020–3029, 2016.

F. D. Johansson, D. Sontag, and R. Ranganath. Support and invertibility in domain-invariant repre-
sentations. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
527–536, 2019.

10



Under review as a conference paper at ICLR 2024

J. D. Kang, J. L. Schafer, et al. Demystifying double robustness: A comparison of alternative
strategies for estimating a population mean from incomplete data. Statistical Science, 22(4):523–
539, 2007.

E. H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects. arXiv
preprint arXiv:2004.14497, 2020.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages
1179–1191, 2020.

R. J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data.
The American economic review, pages 604–620, 1986.

Z. Li and Z. Zhu. A survey of deep causal model. arXiv preprint arXiv:2209.08860, 2022.

R. Lopez, C. Li, X. Yan, J. Xiong, M. Jordan, Y. Qi, and L. Song. Cost-effective incentive allocation
via structured counterfactual inference. In AAAI Conference on Artificial Intelligence (AAAI),
volume 34, pages 4997–5004, 2020.

X. Nie and S. Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108
(2):299–319, 2021.

H. Rahimian and S. Mehrotra. Distributionally robust optimization: A review. arXiv preprint
arXiv:1908.05659, 2019.

P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell. Bridging offline reinforcement learning
and imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems
(NeurIPS), 34, 2021.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies
for causal effects. Biometrika, 70(1):41–55, 1983.

D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of
the American Statistical Association, 100(469):322–331, 2005.

P. Sanchez, J. P. Voisey, T. Xia, H. I. Watson, A. Q. O’Neil, and S. A. Tsaftaris. Causal machine
learning for healthcare and precision medicine. Royal Society Open Science, 9(8):220638, 2022.

T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. Recommendations as treat-
ments: Debiasing learning and evaluation. In international conference on machine learning, pages
1670–1679. PMLR, 2016.

U. Shalit, F. D. Johansson, and D. Sontag. Estimating individual treatment effect: generalization
bounds and algorithms. In International Conference on Machine Learning (ICML), pages 3076–
3085, 2017.

C. Shi, D. Blei, and V. Veitch. Adapting neural networks for the estimation of treatment effects.
Advances in neural information processing systems, 32, 2019.

W. Sun, P. Wang, D. Yin, J. Yang, and Y. Chang. Causal inference via sparse additive models with
application to online advertising. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

A. Swaminathan and T. Joachims. Counterfactual risk minimization: Learning from logged bandit
feedback. In International Conference on Machine Learning (ICML), pages 814–823. PMLR,
2015.

A. Tanimoto, T. Sakai, T. Takenouchi, and H. Kashima. Regret minimization for causal inference
on large treatment space. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 946–954, 2021.

A. Tanimoto, S. Yamada, T. Takenouchi, M. Sugiyama, and H. Kashima. Improving imbalanced
classification using near-miss instances. Expert Systems with Applications, 201:117130, 2022.

11



Under review as a conference paper at ICLR 2024

P. Wang, W. Sun, D. Yin, J. Yang, and Y. Chang. Robust tree-based causal inference for complex ad
effectiveness analysis. Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining, 2015.

A. Wu, J. Yuan, K. Kuang, B. Li, R. Wu, Q. Zhu, Y. T. Zhuang, and F. Wu. Learning decomposed
representations for treatment effect estimation. IEEE Transactions on Knowledge and Data Engi-
neering, 2022.

X. Wu, Y. Guo, J. Chen, Y. Liang, S. Jha, and P. Chalasani. Representation bayesian risk decompo-
sitions and multi-source domain adaptation. arXiv preprint arXiv:2004.10390, 2020.

H. Zhao, R. T. Des Combes, K. Zhang, and G. Gordon. On learning invariant representations for
domain adaptation. In International Conference on Machine Learning (ICML), pages 7523–7532.
PMLR, 2019.

12



Under review as a conference paper at ICLR 2024

A PROOFS

Theorem A.1 (Adaptation from Theorem 1 in ). For any space Θ, true population loss L(·;µ∗),

and proxy objective Ĵ(·),

L(θ̂;µ∗)− L(θ∗;µ∗) ≤ inf
θ∈Θ

{
Ĵ(θ)− L(θ∗;µ∗)

}
+ sup

θ∈Θ

{
L(θ;µ∗)− Ĵ(θ)

}
,

where θ̂ = argminθ∈Θ Ĵ(θ) and θ∗ = argminθ∈Θ L(θ;µ∗).

Proof.

L(θ̂;µ∗)− L(θ∗;µ∗) = inf
θ∈Θ

L(θ̂;µ∗)− Ĵ(θ̂) + Ĵ(θ̂)− Ĵ(θ)︸ ︷︷ ︸
≤0 ∀θ∈Θ

+Ĵ(θ)− L(θ∗;µ∗)


≤ L(θ̂;µ∗)− Ĵ(θ̂) + inf

θ∈Θ

{
Ĵ(θ)− L(θ∗;µ∗)

}
≤ sup

θ∈Θ

{
L(θ;µ∗)− Ĵ(θ)

}
+ inf

θ∈Θ

{
Ĵ(θ)− L(θ∗;µ∗)

}

Theorem A.2 (Uniform bound with the pessimistic objective). Suppose we have a model class Θ

and a loss L such that a stability constrained set R as (5) can be defined with R so that L̂(θ;µ) −
L(θ;µ) ≤ R(µ) for all θ ∈ Θ. Let the objective Ĵ defined as (6) with sufficiently large parameters
c and C so that µ∗ ∈ U ∩ R, i.e., Ê(µ∗) ≤ minµ′ Ê(µ′) + c and R(µ∗) ≤ C. Then for all θ ∈ Θ
we have

L(θ;µ∗) ≤ Ĵ(θ) + C.

Proof.

L(θ;µ∗)− Ĵ(θ) = L(θ;µ∗)− max
µ∈U∩R

{
L̂(θ;µ)− L(θ;µ) + L(θ;µ)

}
≤ L(θ;µ∗)− max

µ∈U∩R
{−C + L(θ;µ)} (Def. of R andR)

≤ L(θ;µ∗) + C − L(θ;µ∗) = C (µ∗ ∈ U ∩R)

B EQUIVALENCE BETWEEN THE TRANSFORMED OUTCOME AND THE CATE
IN EXPECTATION

Our empirical risk and the evaluation criteria are based on the method of transformed outcome .
The IPW transformed outcome z in (7) is equivalent to the CATE in the sense of its conditional
expectation:

E[z|x] = EY0,Y1,A∼µ(x)

[
Y1

A

µ(x)
− Y0

1−A

1− µ(x)

∣∣∣∣x]
= E[Y1 − Y0|x] =: τ(x).

Then, letting z = τ(x) + ε with E[ε|x] = 0, we have

Ez,x[(z − τ̂)2] = Eε,x[(τ(x) + ε− τ̂)2]

= Ex[(τ(x)− τ̂)2] + 2Ex[Eε[ε|x](τ(x)− τ̂)] + Eε,x[ε
2]

= PEHE + ExV[ε].
The MSE on z is equivalent to our final metric PEHE except for a constant term. The same equiv-
alence can be derived for the doubly robust transformed outcome in (8). This equivalence justifies
our employed MSE on z as the empirical risk L̂ and the evaluation metric.
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C EXPERIMENTAL DETAILS

C.1 SIMULATION ENVIRONMENT

Our synthetic data in the additive noise (AN) setting was identical to the setting used in , which
was inspired by the decomposed covariate setting used in . We used d = 25 dimensional normal
covariates x. Out of 25 covariates, there were do = 5 outcome-related covariates xo that affect
only potential outcomes, dc = 5 confounders xc that affect both potential outcomes and treatment
assignment, and dt = 5 covariates that affect treatment effect xt.

The expected potential outcomes were calculated as follows.

E[Y0|x] = 1⊤
[
xc

xo

]2
,

E[Y1|x] = E[Y0|x] + τ(x),

Squaring works on an element-by-element basis where 1 = [1, · · · , 1]⊤, squaring ·2 is element-wise,
and the treatment effect τ(x) was defined as

τ(x) = 1⊤x2
t .

The true propensity that affects the treatment assignment was defined as

µ(x) = µ(a = 1|x) = σ(ξ(1⊤x2
c/dc − ω)),

where σ was the sigmoid, ξ was the strength of selection and was set as ξ = 3, and ω was adaptively
set so that the median of the inside σ would be 0.

The expected factual outcome is defined as follows.
ȳ = AE[Y1|x] + (1−A)E[Y0|x]

where A ∼ Bernoulli(µ(A = 1|x)). In the AN setting, the outcome was observed with additive
noise as

y = ȳ + ε,

where ε ∼ N (0, 1). In the multiplicative noise (MN) setting, it was
y = ȳ(1 + ε′),

where ε′ ∼ N (0, ξ) with its standard deviation ξ = 2
/(√

Var[E[Y1|x]] +
√

Var[E[Y0|x]]
)

.

C.2 ARCHITECTURE AND HYPERPARAMETERS

Synthetic data experiment We followed the implementation of for the synthetic data experi-
ment. We employed the multi-layer perceptron with representation (input-side) layers and hypothe-
sis (output-side) layers. For the separated models (TNet, PWNet, DRNet, and NuNet), the represen-
tation layers were 3 layers with 200 units each and the hypothesis layers were 2 layers with 100 units
each, for each prediction of y0, y1, and a. SNet3 had 3 representations of outcome-only (50 units× 3
layers), treatment-only (50 units× 3 layers), and shared representation layers (150 units× 3 layers).
SNet had 5 representations for outcome related 3 representations (y1-only, y0-only, and outcome-
shared, of 50 units × 3 layers), treatment-only (100 units × 3 layers), and shared for outcomes and
treatment (100 units × 3 layers). We used the exponential linear unit (ELU) activations and the
optimizer was Adam . For NuNet, we applied model selection for the training epochs with the same
validation data due to the instability of adversarial training. NuNet sometimes diverges within the
minimum training epochs or the early-stopping patience epochs of 10. Therefore, it would be better
to keep the best-so-far parameters in each epoch and output it.

Real-world dataset experiment We followed for the Twins experiment. The representation lay-
ers and the hypothesis layers were only 1 in all methods. For NuNet, instead of model selection of
epochs, shorter minimum epochs of 40 were used to avoid overfitting the pre-trained µ, as opposed
to 200 in other methods as in .

Infrastructure All the experiments were run on a machine with 28 CPUs (Intel(R) Xeon(R) CPU
E5- 2680 v4 @ 2.40GHz), 250GB memory, and 8 GPUs (NVIDIA GeForce GTX 1080 Ti).
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