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Organization. The appendix is organized as follows:

• App. A contains the requisite material for error feedback and SGD convergence analysis.
• App. B details the important technical lemmas needed for the theoretical convergence of

LASER.
• App. C provides the proof for Theorem 1 whereasApp. D contains the proofs of all technical

lemmas.
• App. E provides additional details about the noisy channel and Algorithm 1.
• App. F contains additional experimental details and results.

A ERROR FEEDBACK AND SGD CONVERGENCE TOOLBOX

In this section we briefly recall the main techniques for the convergence analysis of SGD with error
feedback (EF-SGD) from Stich & Karimireddy (2020). We consider k = 1 clients with a compressor
Cr(·) and without any channel communication noise ZP (Sec. 2):

θt+1 = θt − Cr(et + γtgt)

et+1 = (et + γtgt)− Cr(et + γtgt).
(EF-SGD)

Now we define the virtual iterates {θ̃t}t≥0 which are helpful for the convergence analysis:

θ̃t ≜ θt − et. (6)

Hence θ̃t+1 = θt − et − γtgt = θ̃t − γtgt. First we consider the case when f is quasi-convex
followed by the non-convex setting. In all the results below, we assume that the objective f is
L-smooth, gradient oracle g has (M,σ2)-bounded noise, and that Cr(·) satisfies the δr compression
property (Assumptions 2, 3, and 4).

f is quasi-convex:

The following lemma gives a handle on the gap to optimality E∥θ̃t − θ⋆∥2.
Lemma 1 ((Stich & Karimireddy, 2020, Lemma 8)). Let {θt, et}t≥0 be defined as in EF-SGD.
Assume that f is µ-quasi convex for some µ ≥ 0. If γt ≤ 1

4L(1+M) for all t ≥ 0, then for {θ̃t}t≥0

defined in Eq. (6),

E∥θ̃t+1 − θ⋆∥2 ≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 −

γt
2
E(f(θt)− f⋆) + γ2

t σ
2 + 3LγtE∥θt − θ̃t∥2 .

(7)

The following lemma bounds the squared norm of the error, i.e. E∥et∥2, appearing in Eq. (7).
Recall that a positive sequence {at}t≥0 is τ -slow decreasing for parameter τ ≥ 1 if at+1 ≤ at and
at+1(1 + 1/2τ) ≥ at. The sequence {at}t≥0 is τ -slow increasing if {a−1

t }t≥0 is τ -slow decreasing
(Stich & Karimireddy, 2020, Definition 10).
Lemma 2 ((Stich & Karimireddy, 2020, Lemma 22)). Let et be as in (EF-SGD) for a δr-approximate
compressor Cr and stepsizes {γt}t≥0 with γt+1 ≤ 1

10L(2/δr+M) , ∀t ≥ 0 and {γ2
t }t≥0

2
δr

-slow
decaying. Then

E
[
3L∥et+1∥2

]
≤ δr

64L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2 . (8)

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:

3L

T∑
t=0

wtE∥et∥2 ≤
1

8L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
+ σ2

T∑
t=0

wtγt .
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The following result controls the summations of the optimality gap that appear when combining
Lemma 1 and Lemma 2.
Lemma 3 ((Stich & Karimireddy, 2020, Lemma 13)). For every non-negative sequence {rt}t≥0 and
any parameters d ≥ a > 0, c ≥ 0, T ≥ 0, there exists a constant γ ≤ 1

d , such that for constant
stepsizes {γt = γ}t≥0 and weights wt := (1− aγ)−(t+1) it holds

ΨT :=
1

WT

T∑
t=0

(
wt

γt
(1− aγt) rt −

wt

γt
rt+1 + cγtwt

)
= Õ

(
dr0 exp

[
−aT

d

]
+

c

aT

)
.

Combining the above lemmas, we obtain the following result for the convergence rate of EF-SGD.
Theorem 2 ((Stich & Karimireddy, 2020, Theorem 22)). Let {θt}t≥0 denote the iterates of the error
compensated stochastic gradient descent (EF-SGD) with constant stepsize {γt = γ}t≥0 and with
a δr-approximate compressor on a differentiable function f : Rd → R under Assumptions 2 and 3.
Then, if f

• satisfies Assumption 1 for µ > 0, then there exists a stepsize γ ≤ 1
10L(2/δr+M) (chosen as in

Lemma 3) such that

where the output θout ∈ {θt}T−1
t=0 is chosen to be θt with probability proportional to (1−µγ/2)−t.

• satisfies Assumption 1 for µ = 0, then there exists a stepsize γ ≤ 1
10L(2/δr+M) (chosen as in

Lemma 3) such that

Ef(θout)− f∗ = O
(
L(1/δr +M)∥θ0 − θ⋆∥2

T
+

σ∥θ0 − θ⋆∥√
T

)
,

where the output θout ∈ {θt}T−1
t=0 is chosen uniformly at random from the iterates {θt}T−1

t=0 .

f is non-convex:

Now we consider the case where f is an arbitrary non-convex function. The above set of results
extend in a similar fashion to this setting too as described below:
Lemma 4 ((Stich & Karimireddy, 2020, Lemma 9)). Let {θt, et}t≥0 be defined as in EF-SGD. If
γt ≤ 1

2L(1+M) for all t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (6),

E[f(θ̃t+1)] ≤ E[f(θ̃t)]−
γt
4
E∥∇f(θt)∥2 +

γ2
tLσ

2

2
+

γtL
2

2
E∥θt − θ̃t∥2 . (9)

Lemma 5 ((Stich & Karimireddy, 2020, Lemma 22)). Let et be as in (EF-SGD) for a δr-approximate
compressor Cr and stepsizes {γt}t≥0 with γt+1 ≤ 1

10L(2/δr+M) , ∀t ≥ 0 and {γ2
t }t≥0

2
δr

-slow
decaying. Then

E
[
3L∥et+1∥2

]
≤ δr

64L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2 . (10)

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:

3L

T∑
t=0

wtE∥et∥2 ≤
1

8L

T∑
t=0

wt

(
E∥∇f(θt−i)∥2

)
+ σ2

T∑
t=0

wtγt .

Lemma 6 ((Stich & Karimireddy, 2020, Lemma 14)). For every non-negative sequence {rt}t≥0 and
any parameters d ≥ 0, c ≥ 0, T ≥ 0, there exists a constant γ ≤ 1

d , such that for constant stepsizes
{γt = γ}t≥0 it holds:

ΨT :=
1

T + 1

T∑
t=0

(
rt
γt
− rt+1

γt
+ cγt

)
≤ dr0

T + 1
+

2
√
cr0√

T + 1
.
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Now we have the final convergence result for the non-convex setting.

Theorem 3 ((Stich & Karimireddy, 2020, Theorem 22)). Let {θt}t≥0 denote the iterates of the error
compensated stochastic gradient descent (EF-SGD) with constant stepsize {γt = γ}t≥0 and with
a δr-approximate compressor on a differentiable function f : Rd → R under Assumptions 2 and 3.
Then, if f is an arbitrary non-convex function, there exists a stepsize γ ≤ 1

10L(1/δr+M) (chosen as in
Lemma 6), such that

E∥∇f(θout)∥2 = O

(
L(1/δr +M)(f(θ0)− f⋆)

T
+ σ

√
L(f(θ0)− f⋆)

T

)
.

where the output θout ∈ {θt}T−1
t=0 is chosen uniformly at random from the iterates {θt}T−1

t=0 .

B TECHNICAL LEMMAS FOR LASER CONVERGENCE

Towards the convergence analysis of LASER for k = 1, we rewrite the Algorithm 1 succinctly as:

θt+1 = θt −Z(α,β) (Cr(et + γtgt))

et+1 = (et + γtgt)− Cr(et + γtgt) ,
(LASER)

where the channel corrupted gradient approximation Z(α,β)(·) is given by

Z(α,β)(Cr(et + γtgt)︸ ︷︷ ︸
=PQ⊤

) ≜
r∑

i=1

(
pi +

∥pi∥√
αi
·Z(i)

m

)(
qi +

∥qi∥√
βi

·Z(i)
n

)⊤

, (11)

and α = (αi)
r
i=1 and β = (βi)

r
i=1 are appropriate power allocations to transmit the respective left

and right factors P = [p1, . . . ,pr] ∈ Rm×r and Q = [q1, . . . , qr] ∈ Rn×r for the decomposition
Cr(et + γtgt) = PQ⊤. Z(i)

m ∈ Rm and Z(i)
n ∈ Rn denote the independent channel noises for each

factor i ∈ [r].

Thus we observe from LASER that it has an additional channel corruption in the form of Z(α,β)(·)
as compared to the EF-SGD. Now in the remainder of this section, we explain how to choose the
power allocation (α,β) (App. B.1), how to control the influence of the channel Z(α,β)(·) on the
convergence of LASER (App. B.2), and utilize these results to establish technical lemmas along the
lines of App. A for LASER (App. B.3).

B.1 POWER ALLOCATION

In this section, we introduce the key technical lemmas about power allocation that are crucial for the
theoretical results. We start with the rank one case.

Lemma 7 (Rank-1 power allocation). For a power P > 0 and m,n ∈ N with m ≤ n, define the
function fP : R+ × R+ → R+ as

fP (α, β) ≜
(
1 +

m

α

)(
1 +

n

β

)
,

and the constraint set SP ≜ {(α, β) : α ≥ 0, β ≥ 0, α+ β = P}. Then for the minimizer
(α⋆, β⋆) = argmin(α,β)∈SP

fP (α, β), we have

fP (α
⋆, β⋆) ≤ 1 +

4

m SNR

(
1 +

1

n SNR

)
, SNR ≜

P

mn
.

Further the minimizer is given by

α⋆ =


√
1 + P

n

(√
1+ P

m−
√

1+P
n

1
m− 1

n

)
, m ̸= n

P/2, m = n

β⋆ = P − α⋆.
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Lemma 8 (Rank-r power allocation). For a power P > 0, m,n, r ∈ N with m ≤ n, and positive
scalars κ1, . . . , κr > 0 with

∑
i κi = 1, define the function fP : (R+)

r × (R+)
r → R+ as

fP (α,β) ≜
r∑

i=1

κi

(
1 +

m

αi

)(
1 +

n

βi

)
, α = (αi)

r
i=1, β = (βi)

r
i=1,

and the constraint set SP ≜ {{(α,β) : α ≥ 0,β ≥ 0,
∑

i(αi + βi) = P}. Then there exists a
power allocation scheme (α⋆,β⋆) ∈ SP such that

min
(α,β)∈SP

fP (α,β) ≤ fP (α
⋆,β⋆) ≤ 1 +

4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
,

where SNR ≜ P
mn . Further (α⋆,β⋆) is given by

α⋆
i =


√
1 + Pi

n

(√
1+

Pi
m −

√
1+

Pi
n

1
m− 1

n

)
, m ̸= n

Pi/2, m = n

β⋆
i = Pi − α⋆

i ,

Pi = P

( √
κi∑

j

√
κj

)
.

Remark 1. In other words, we first divide the power P proportional to
√
κi for each i ∈ [r] and

further allocate this Pi amongst α⋆
i and β⋆

i as per the optimal rank one allocation scheme in Lemma 7.

B.2 CHANNEL INFLUENCE FACTOR

In this section we establish the bounds for the channel influence defined in Eq. (4) for both Z-SGD
and LASER. This helps us give a handle to control the second moment of the gradient corrupted by
channel noise.

Lemma 9 (Channel influence on Z-SGD). For the Z-SGD algorithm that sends the uncompressed
gradients directly over the noisy channel with power constraint P , we have

λZ-SGD =
1

SNR
, (12)

where SNR = P
mn .

Lemma 10. For the LASER algorithm with the optimal power allocation (α,β) (chosen as in
Lemma 8), we have

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
, (13)

where SNR = P
mn .

Remark 2. Note that for the optimal power allocation via Lemma 8, we need the positive scalars
κ1, . . . , κr. In the context of LASER, we will later see in the proof in App. D that κi ∝ ∥pi∥2.

Thus Lemma 9 and Lemma 10 establish that

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
≪ 1

SNR
= λZ-SGD.

In the low-rank Vogels et al. (2019) and constant-order SNR regime where r = O(1) and SNR =
Ω(1), we observe that λLASER is roughly O(m) times smaller than λZ-SGD.

Note on assumption between λLASER and δr. Recall from LASER that the local memory et has
only access to the compressed gradients and not the channel output. In an hypothetical scenario, where
it has access to the same, it follows that EZ∥Z(α,β)(Cr(M))−M∥2 ≤ (1− (δr − λLASER))∥M∥2.
Hence for the compression property in this ideal scenario, we need λLASER ≤ δr.
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B.3 OPTIMALITY GAP AND ERROR BOUNDS FOR LASER ITERATES

In this section, we characterize the gap to the optimality and the error norm for the LASER iterates
{θt}t≥0 (similar to Lemmas 1, 2, 2 and 5 for EF-SGD). Towards the same, first we define the virtual
iterates {θ̃t}t≥0 as follows:

θ̃t ≜ θt − et . (14)

Thus,

θ̃t+1 = θt+1 − et+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) . (15)

The following lemma controls the optimality gap E∥θ̃t − θ⋆∥2 when f is quasi-convex.
Lemma 11 (Descent for quasi-convex). Let {θt, et}t≥0 be defined as in LASER. Assume that f is

µ-quasi convex for some µ ≥ 0 and that Assumptions 2 and 3 hold. If γt ≤ 1
4L(1+M)

(
1−2λLASER
1+λLASER

)
for all t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (14),

E∥θ̃t+1 − θ⋆∥2 ≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 −

γt
2
E(f(θt)− f⋆) + γ2

t σ
2(1 + λLASER)

+ (3Lγt(1 + λLASER) + λLASER)E∥θt − θ̃t∥2 .
(16)

Notice that Lemma 11 is similar to Lemma 1 for noiseless EF-SGD except for an additional channel
influence factor λLASER. The following result bounds the error norm.
Lemma 12 (Error control). Let et be as in (LASER) for a δr-approximate compressor Cr and
stepsizes {γt}t≥0 with γt ≤ 1

10L(2/δr+M)(1+λLASER)
, ∀t ≥ 0 and {γ2

t }t≥0
2
δr

-slow decaying. Further
suppose that Assumption 5 holds. Then(

3L(1 + λLASER) +
λLASER

γt

)
E∥et+1∥2 ≤

δr
32L

t∑
i=0

(
1− δr

4

)t−i (
E∥∇f(θt−i)∥2

)
+ γtσ

2(1 + λLASER) .

(17)

Furthermore, for any 4
δr

-slow increasing non-negative sequence {wt}t≥0 it holds:(
3L(1 + λLASER) +

λLASER

γt

) T∑
t=0

wtE∥et∥2 ≤
1

6L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
+ σ2(1 + λLASER)

T∑
t=0

wtγt .

(18)

The following lemma establishes the progress in the descent for non-convex case.
Lemma 13 (Descent for non-convex). Let {θt, et}t≥0 be defined as in LASER and that Assump-
tions 2 and 3 hold. If γt ≤ 1

4L(1+M)(1+λLASER)
for all t ≥ 0, then for {θ̃t}t≥0 defined in Eq. (14),

E[f(θ̃t+1)] ≤ E[f(θ̃t)]−
γt
4
E∥∇f(θt)∥2 +

γ2
tLσ

2(1 + λLASER)

2

+ E∥θt − θ̃t∥2
(
L2γt
2

+ LλLASER

)
.

(19)

C PROOF OF THEOREM 1

Proof. We prove the bounds in (i) and (ii) when f is quasi-convex, (iii) when f is an arbitrary
non-convex function, and (iv) for Z-SGD.
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(i), (ii) f is µ-quasi-convex: Observe that the assumptions of Theorem 1 automatically satisfy the
conditions of Lemma 11. Denoting rt ≜ E∥θ̃t+1 − θ⋆∥2 and st ≜ E(f(θt)− f⋆), for any wt > 0
we obtain

wt

2
st

(16)
≤ wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + γtwtσ

2(1 + λLASER) + 3wt(L(1 + λLASER) +
λLASER

γt
)E∥et∥2 .

Taking summation on both sides and invoking Lemma 2 (assumption on wt verified below),

T∑
t=0

wt

2
st

(18)
≤

T∑
t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
+

1

6L

T∑
t=0

wt

(
E∥∇f(θt)∥2

)
.

Since f is L-smooth, we have ∥∇f(θt)∥2 ≤ 2L(f(θt)− f⋆). Now rewriting the above inequality,
we have

1

6

T∑
t=0

wtst ≤
T∑

t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
.

Substituting WT ≜
∑T

t=0 wt,

1

WT

T∑
t=0

wtst ≤
6

WT

T∑
t=0

(
wt

γt

(
1− µγt

2

)
rt −

wt

γt
rt+1 + 2γtwtσ

2(1 + λLASER)

)
=: ΞT .

Now it remains to derive the estimate for ΞT . Towards this, (i) if µ > 0 and with constant stepsize
γt = γ ≤ 1

10L( 2
δr

+M)(1+λLASER)
, we observe that (1− µγ

2 ) ≥
(
1− δr

16

)
and by (Stich & Karimireddy,

2020, Example 1), the weights wt =
(
1− µγ

2

)−(t+1)
are 2τ -slow increasing with τ = 2

δr
. Hence

the claim in (i) follows by applying Lemma 3 and observing that the sampling probablity to choose
θout from {θt}T−1

t=0 is same as wt.

For (ii) with constant stepsize and µ = 0, we apply Lemma 6 by setting the weights wt = 1.

(iii) f is non-convex The proof in this case is very similar to that of the above. Denoting rt ≜

4E[f(θ̃t)− f⋆], st ≜ E∥∇f(θt)∥2, c = 4Lσ2(1 + λLASER), and wt = 1, we have from Lemma 13
that

st
4

(19)
≤ rt

4γt
− rt+1

4γt
+

γtc

8
+ L

(
L

2
+

λLASER

γt

)
E∥et∥2.

Since L
2 ≤ 3L(1 + λLASER), multiplying both sides of the above inequality by wt and taking

summation, we obtain

1

4WT

T∑
t=0

wtst
(18)
≤ 1

WT

T∑
t=0

wt

(
rt
4γt
− rt+1

4γt
+

γtc

8

)
+

L

WT

(
T∑

t=0

wtst
6L

+
cwtγt
4L

)
,

which upon rearranging gives

1

WT

T∑
t=0

wtst≤
12

WT

T∑
t=0

wt

(
rt
4γt
− rt+1

4γt
+

3γtc

8

)
.

Now invoking Lemma 6 yields the final result in (iii).

Z-SGD: Recall from Z-SGD that the iterates {θt}t≥0 are given by

θt+1 = θt − γtZP (gt).

Thus Z-SGD can be thought of as a special case of EF-SGD with no compression, i.e. δr = 1,
and hence we can utilize the same convergence tools. It remains to estimate the first and second
moments of the stochastic gradientZP (gt). Recall from the definition ofZP in the noisy channel that
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ZP (gt) = gt+
∥gt∥√

P
Zt, where Zt is a zero-mean independent channel noise, and from Assumption 3

that gt = ∇f(θt) + ξt with a (M,σ2)-bounded noise ξt. Hence

E [ZP (gt)|θt] = E[gt|θt] = ∇f(θt),

E
[
∥ZP (gt)−∇f(θt)∥2|θt

]
= E

[
∥ZP (gt)− gt + gt −∇f(θt)∥2|θt

]
= E

[
∥ZP (gt)− gt∥2|θt

]
+ E

[
∥gt −∇f(θt)∥2|θt

]
4
= E

[
λZ-SGD∥gt∥2|θt

]
+ E∥ξt∥2

= λZ-SGD∥∇f(θt)∥2 + (1 + λZ-SGD)E∥ξt∥2

≤ (M + 1)(1 + λZ-SGD)∥∇f(θt)∥2 + (1 + λZ-SGD)σ
2.

Thus Z-SGD satifies the (M̃, σ̃2)-bounded noise condition in Assumption 3 with M̃ = (M +1)(1+
λZ-SGD) and σ̃2 = (1 + λZ-SGD)σ

2. Thus the claim (iv) follows from applying Theorem 2 and
Theorem 3 with the constants δr → 1,M → M̃, σ2 → σ̃2.

Finally, Lemma 9 and Lemma 10 establish the relation between the channel influence factors λZ-SGD
and λLASER.

D PROOF OF TECHNICAL LEMMAS

D.1 PROOF OF LEMMA 7

Proof. Since log(·) is a monotonic function, minimizing fP (α, β) over SP =
{(α, β) : α ≥ 0, β ≥ 0, α+ β = P} is equivalent to minimizing log fP (α, β) = log

(
1 + m

α

)
+

log
(
1 + n

β

)
. Define the Lagrangian L(α, β, λ) as

L(α, β, λ) ≜ log
(
1 +

m

α

)
+ log

(
1 +

n

β

)
+ λ(α+ β − P ).

Letting ∇αL = ∇βL = 0, we obtain that m
α(m+α) = n

β(n+β) . Now constraining α + β = P , we
obtain the following quadratic equation:

α2

(
1

m
− 1

n

)
+ 2α

(
1 +

P

n

)
−
(
P 2

n
+ P

)
= 0.

If m = n, the solution is given by α⋆ = β⋆ = P/2. If m ̸= n, the solution is given by

α⋆ =

√
1 +

P

n


√
1 + P

m −
√
1 + P

n

1
m −

1
n

 , (20)

β⋆ = P − α⋆.

It is easy to verify that (α⋆, β⋆) is the unique minimizer to fP since it’s convex over SP . Now it
remains to show the upper bound for fP (α⋆, β⋆). Without loss of generality, in the reminder of the
proof we assume m < n and denote α⋆ by simply α. Rewriting the optimal α in Eq. (20) in terms of
SNR = P/mn, we obtain

α

mn
=

√
(1 + nSNR)(1 +m SNR)− (1 +mSNR)

n−m
. (21)

Now substituting this α and corresponding β in fP (α, β) =
(
1 + m

α

) (
1 + n

β

)
and rearranging the

terms, we get

fP (α, β) = 1 +
1

SNR

(
n−m

mn

) (
1

1− 2α
mn SNR

)
= 1 +

1

nSNR

( n
m − 1

1− 2α
mn SNR

)
.
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Let γ ≜ m
n < 1. Now we study the behavior of α in Eq. (21) as a function of γ. In particular,

define g(γ) ≜
√
1 + n SNR

√
1 + nγ SNR. Observe that g(1) = 1 + nSNR and g′(1) = n SNR

2 .
Rewriting Eq. (21) as a function of γ, we get

α

mn
=

g(γ)− (1 + nγ SNR)

n(1− γ)

=
g(1) + g′(1)(γ − 1)− (1 + nγ SNR) + g′′

2 (γ − 1)2 + g′′′

3! (γ − 1)3 + . . .

n(1− γ)

=
SNR

2
+

1

n

(
g′′

2
(1− γ)− g′′′

3!
(1− γ)2 + . . .

)
.

Utilizing the fact that g′′(1) = −1
4

n2SNR2

1+nSNR , g′′(1) = 3
8

n3SNR3

(1+nSNR)2 and so forth, we obtain

1− 2α

mn SNR
=

2(1− γ)

nSNR

(
1

2

1

4

n2 SNR2

1 + nSNR
+

1

3!

3

8

n3 SNR3

(1 + nSNR)2
(1− γ) + . . .

)
≥ 2(1− γ)

nSNR

1

2

1

4

n2 SNR2

1 + n SNR

=
(1− γ)

4

nSNR

1 + nSNR
.

Substituting this bound back in the experssion for fP yields the final bound:

fP (α, β) ≤ 1 +
4

nγ SNR

(
1 +

1

nSNR

)
= 1 +

4

m SNR

(
1 +

1

nSNR

)
.

D.2 PROOF OF LEMMA 8

Proof. To minimize fP (α,β) over SP = {{(α,β) : α ≥ 0,β ≥ 0,
∑

i(αi + βi) = P}, we con-
sider a slightly relaxed version that serves as an upper bound to this problem. In particular, first we
divide the power P into P1, . . . , Pr such that

∑
i Pi = P and Pi ≥ 0. Then for each Pi we find

the optimal αi and βi from rank-1 allocation scheme in Lemma 7 and compute the corresponding
objective value. In the end, we find a tractable scheme for division of power P among P1, . . . , Pr

minimizing this objective. Mathematically,

min
(α,β)∈SP

fP (α,β) ≤ min
{
∑

i Pi=P}
min

{(αi,βi):αi+βi=Pi,i∈[r]}

∑
i

κi

(
1 +

m

αi

)(
1 +

n

βi

)
= min

{
∑

i Pi=P}

∑
i

κi min
(αi,βi):αi+βi=Pi

(
1 +

m

αi

)(
1 +

n

βi

)
(Lemma 7)

≤ min
{
∑

i Pi=P}

∑
i

κi

(
1 +

4

mSNRi

(
1 +

1

nSNRi

))
, SNRi ≜

Pi

mn
,

= min
{
∑

i Pi=P}

(
1 +

4

m

∑
i

κi

SNRi
+

4

mn

∑
i

κi

SNR2
i

)
.

Choosing SNRi ∝
√
κi, i.e. SNRi = SNR

√
κi∑

j

√
κj

, and substituting this allocation above, we obtain

min
(α,β)∈SP

fP (α,β) ≤ 1 +
4

mSNR

(∑
i

√
κi

)2

+
4

mn SNR2 R

(∑
i

√
κi

)2

≤ 1 +
4

(m/r) SNR

(
1 +

4

(n/r) SNR

)
,

where we used the inequality
(∑

i

√
κi

)2 ≤ r together with the fact that
∑

i κi = 1.
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D.3 PROOF OF LEMMA 9

Proof. Recall from Z-SGD that the stochastic gradient reconstructed at the receiver after transmitting
g is yZ-SGD(g) ≜ ZP (g) = g+ ∥g∥√

P
Z, where Z is a zero-mean independent channel noise in Rm×n.

Thus

λZ-SGD =
1

∥g∥2
EZ∥yZ-SGD(g)− g∥2 =

1

∥g∥2
∥g∥2

P
E∥Z∥2 =

mn

P
=

1

SNR
.

D.4 PROOF OF LEMMA 10

Proof. In view of LASER, denote the error compensated gradient at time t as M = et + γtgt
and its compression as M r = Cr(M) =

∑r
i=1 piq

⊤
i with orthogonal factors {pi} and orthonormal

{qi} (without loss of generality). After transmitting these factors of M r via the noisy channel, we
obtain

yLASER(M r) = Z(α,β)(M r) =

r∑
i=1

(
pi +

∥pi∥√
αi
·Z(i)

m

)(
qi +

∥qi∥√
βi
·Z(i)

n

)⊤

.

Denote p̃i ≜ pi +
∥pi∥√

αi
· Z(i)

m , q̃i ≜ qi +
∥qi∥√

βi
· Z(i)

n , and Z = (Z(i)
m ,Z(i)

n )ri=1. We observe that
EZ [yLASER(M r)] = M r. Hence

EZ∥yLASER(M r)−M r∥2 = EZ∥
∑
i

p̃iq̃
⊤
i ∥2 − ∥M r∥2

=
∑
i

EZ∥p̃i∥2 EZ∥q̃i∥2 −
∑
i

∥p∥2∥q∥2

=
∑
i

∥p∥2∥q∥2
[(

1 +
m

αi

)(
1 +

n

βi

)
− 1

]

= ∥M r∥2
(∑

i

κi

(
1 +

m

αi

)(
1 +

n

βi

)
− 1

)
(Lemma 8)

= ∥M r∥2 (fP (α,β)− 1) ,

where we set κi = ∥pi∥2/∥M r∥2. Now choosing (α,β) = (α⋆,β⋆) as in Lemma 8 yields the
desired result.

D.5 PROOF OF LEMMA 11

Proof. From Eq. (15), we have that

θ̃t+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) .

Denoting ErrorZ = Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)), we observe that EZ [ErrorZ ] = 0 and
EZ∥ErrorZ∥2 ≤ λLASER∥Cr(et + γtgt)∥2 ≤ λLASER∥et + γtgt∥2 (see App. D.4). Thus

E∥θ̃t+1 − θ⋆∥2

= E∥θ̃t − θ⋆ − γtgt∥2 + E∥ErrorZ∥2

= E∥θ̃t − θ⋆∥2 − 2γtE⟨gt, θ̃t − θ⋆⟩+ γ2
t E∥gt∥2 + E∥ErrorZ∥2

≤ E∥θ̃t − θ⋆∥2 − 2γtE⟨gt,θt − θ⋆⟩+ 2γtE⟨gt,θt − θ̃t⟩+ γ2
t E∥gt∥2 + λLASERE∥et + γtgt∥2

= E∥θ̃t − θ⋆∥2 − 2γtE⟨gt,θt − θ⋆⟩+ 2γtE⟨gt,θt − θ̃t⟩(1 + λLASER) + γ2
t E∥gt∥2(1 + λLASER)

+ λLASERE∥et∥2

(Assump. 3)

≤ E∥θ̃t − θ⋆∥2 − 2γtE⟨∇f(θt),θt − θ⋆⟩+ 2γtE⟨∇f(θt),θt − θ̃t⟩(1 + λLASER)

+ (M + 1)(1 + λLASER)γ
2
t E∥∇f(θt)∥2 + γ2

t σ
2(1 + λLASER) + λLASERE∥et∥2. (22)
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Now we closely follow the steps as in the proof of (Stich & Karimireddy, 2020, Lemma 8). Since f
is L-smooth, we have ∥∇f(θt)∥2 ≤ 2L(f(θt)− f⋆. Further, by Assumption 1,

−2⟨∇f(θt),θt − θ⋆⟩≤ − µ∥θt − θ⋆∥2 − 2(f(θt)− f⋆) ,

and since 2⟨a, b⟩ ≤ α∥a∥2 + α−1∥b∥2 for α > 0, a, b ∈ Rd, we have

2⟨∇f(θt), θ̃t − θt⟩ ≤
1

2L
∥∇f(θt)∥2 + 2L∥θt − θ̃t∥2≤f(θt)− f⋆ + 2L∥θt − θ̃t∥2 .

And by ∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1 + β−1)∥b∥2 for β > 0 (via Jensen’s inequality), we observe

−∥θt − θ⋆∥2 ≤ −
1

2
∥θ̃t − θ⋆∥2 + ∥θt − θ̃t∥2 .

Plugging these inequalities in Eq. (22), we obtain that

E∥θ̃t+1 − θ⋆∥2

≤
(
1− µγt

2

)
E∥θ̃t − θ⋆∥2 − γt (1− λLASER − 2L(M + 1)(1 + λLASER)γt)E(f(θt)− f⋆)

+ γ2
t σ

2(1 + λLASER) + (µγt + 2Lγt(1 + λLASER))E∥et∥2.

Utilizing the fact that γt ≤ 1−2λLASER
4L(M+1)(1+λLASER)

and µ ≤ L yields the desired claim.

D.6 PROOF OF LEMMA 12

Proof. The proof of Lemma 12 is very similar to that of Lemma 2 for EF-SGD. In that proof,
a key step is to establish that (3L(2/δ + M)γ2

t ) ≤ δ
64L and (3Lγt 4/δ) ≤ 1. In our setting,

γt ≤ 1
10L(2/δr+M)(1+λLASER)

and λLASER ≤ 1
10(2/δr+M) . Thus(

3L(1 + λLASER) +
λLASER

γt

)
γ2
t

(
2

δr
+M

)
= 3L

(
2

δr
+M

)
(1 + λLASER)γt · γt + λLASER

(
2

δr
+M

)
γt

≤ 3

10
· γt +

1

10
· γt

=
4

10

1

10L( 2
δr

+M)(1 + λLASER)

≤ δr
32L

.

Similarly,

4

δr
(3L(1 + λLASER)γt + λLASER) = 3L(1 + λLASER)

4

δr
γt + λLASER

4

δr

≤ 6

10
+

2

10
≤ 1.

D.7 PROOF OF LEMMA 13

Proof. From Eq. (15), we have that

θ̃t+1 = θ̃t − γtgt + Cr(et + γtgt)−Z(α,β) (Cr(et + γtgt)) .

Denoting ErrorZ = Cr(et + γtgt) − Z(α,β) (Cr(et + γtgt)), we observe that EZ [ErrorZ ] = 0

and EZ∥ErrorZ∥2 ≤ λLASER∥Cr(et + γtgt)∥2 ≤ λLASER∥et + γtgt∥2 (see App. D.4). Using the
smoothness of f ,

23



Under review as a conference paper at ICLR 2024

f(θ̃t+1) ≤ f(θ̃t)− γt⟨∇f(θ̃t), gt⟩+ ⟨f(θ̃t),ErrorZ⟩+
L

2
∥ − γtgt + ErrorZ∥2

Taking expectation on both sides,

Ef(θ̃t+1) ≤ Ef(θ̃t)− γtE⟨∇f(θ̃t),∇f(θt)⟩+
L

2

(
γ2
t E∥gt∥2 + λLASERE∥et + γtgt∥2

)
.

Rewriting ⟨∇f(θ̃t),∇f(θt)⟩ = ∥∇f(θt)∥2 + ⟨∇f(θ̃t)−∇f(θt),∇f(θt)⟩ and using ⟨a, b⟩ ≤
1
2∥a∥

2 + 1
2∥b∥

2, we can simplify the expression as

⟨∇f(θ̃t)−∇f(θt),∇f(θt)⟩ ≤
1

2
∥∇f(θt)−∇f(θ̃t)∥2 +

1

2
∥∇f(θt)∥2

≤L2

2
∥θt − θ̃t∥2 +

1

2
∥∇f(θt)∥2 .

Pluggin this inequality back together with E∥gt∥2 ≤ (M + 1)E∥∇f(θt)∥2 + σ2, we get

Ef(θ̃t+1) ≤ Ef(θ̃t)−
γt
2
(1− 2γtL(M + 1)(1 + λLASER))E∥∇f(θt)∥2 +

Lγ2
t σ

2(1 + λLASER)

2

+ L

(
Lγt
2

+ λLASER

)
E∥et∥2.

Now utilizing the fact γt ≤ 1
4L(M+1)(1+λLASER)

establishes the desired result.

E ADDITIONAL DETAILS ABOUT NOISY CHANNEL AND LASER

E.1 CHANNEL TRANSFORMATION

Recall from Eq. (2) in Sec. 2 that the server first obtains y =
∑k

i=1 aigi +Z, where ∥aigi∥2 ≤ P
(note that we use the constant scheme Pt = P as justified in Sec. 4.2). Now we want to show that for
estimating the gradient sum

∑
i gi through a linear transformation on y, the optimal power scalars

are given by ai =
√
P

maxj ∥gj∥
, ∀i ∈ [k], which yields the channel model in (noisy channel).

Towards this, first let k = 2 (the proof for general k is similar). Thus our objective is

min
a1,a2,b

E
∥∥∥y
b
− g1 − g2

∥∥∥2 .
For any a1, a2, b, we have that

E
∥∥∥y
b
− g1 − g2

∥∥∥2 = min
a1,a2,b:∥aigi∥2≤P

E
∥∥∥∥g1

(a1
b
− 1
)
+ g2

(a2
b
− 1
)
+

Z

b

∥∥∥∥2
= min

a1,a2,b:∥aigi∥2≤P
E
∥∥∥∥∇f(θ)(∆1 +∆2) + ∆1 ξ1 +∆2 ξ2 +

Z

b

∥∥∥∥2 , ∆i =
ai
b
− 1

= min
a1,a2,b:∥aigi∥2≤P

(
∥∇f(θ)∥2(∆1 +∆2)

2 +∆2
1 E∥ξ1∥2 +∆2

2 E∥ξ2∥2 +
E∥Z∥2

b2

)
,

where we used the fact that g1 = ∇f(θ)+ξ1 and g2 = ∇f(θ)+ξ2 with zero-mean and independent
ξ1, ξ2, and Z. We now observe that for any fixed b the optimal ai’s are given by a1 = a2 = b, i.e.
∆1 = ∆2 = 0. To determine the optimal b, we have to solve

max b s.t. ∥b gi∥2 ≤ P,

which yields b⋆ =
√
P/maxi ∥gi∥. The proof for general k is similar.

E.2 DETAILED STEPS FOR ALGORITHM 1

Recall from Algorithm 1 that power allocation among clients is done via the function
POWERALLOC({Cr(M j),M j}). The theoretically optimal power allocation is discussed in
App. B.1, and given explicitly in Lemma 8. However we empirically observe that we can re-
lax this allocation scheme and even simpler schemes suffice to beat the other considered baselines.
This is detailed in App. F.6.
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E.3 CONSTANT-ORDER SNR

As discussed in Sec. 3.2 and established in Lemmas 9 and 10 of App. B.2, we have that

λLASER ≤
4

(m/r) SNR

(
1 +

1

(n/r) SNR

)
≪ 1

SNR
= λZ-SGD.

In the low-rank Vogels et al. (2019) and constant-order SNR regime where r = O(1) and SNR =
Ω(1), we observe that λLASER is roughly O(m) times smaller than λZ-SGD. Note that this is only a
sufficient theoretical condition to ensure that the ratio between λLASER and λZ-SGD is smaller than
one. In fact, a much weaker condition that P/4r2 > 1 suffices. To establish this, we note

λLASER

λZ-SGD
=

4r

m

(
1 +

r

nSNR

)
=

4r

m

(
1 +

rm

P

)
=

4r

m
+

4r2

P
.

The first term is usually negligible since we always fix the rank r = 4, which is much smaller
compared to m in the architectures we consider. Thus if P/4r2 > 1, we see that the above
ratio is smaller than one. Note that the constant-order SNR assumption already guarantees this:
SNR = Ω(1)⇒ P ≳ mn⇒ P ≳ r2, since r is smaller than both m and n. On the other hand, for
the RESNET18 architecture with L = 61 layers and r = 4, the power levels P = 250, 500 violate
the above condition as P/(Lr2) < 4 (note that the budget P here is for the entire network and hence
replaced by P/L). But empirically we still observe the accuracy gains in this low-power regime
(Fig. 2 in the paper).

F EXPERIMENTAL DETAILS

We provide technical details for the experiments demonstrated in Sec. 4.

F.1 WIKITEXT-103 EXPERIMENTAL SETUP

This section concerns the experimental details used to obtain Fig. 1 and Table 1 in the main text.
Table 6 collects the settings we adopted to run our code. Table 7 describes the model architecture,
with its parameters, their shape and their uncompressed size.

Table 6: Default experimental settings for the GPT-2 model used to learn the WIKITEXT-103 task.

Dataset WIKITEXT-103
Architecture GPT-2 (as implemented in Pagliardini (2023))

Number of workers 4
Batch size 15 per worker
Accumulation steps 3

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 20000
Weight decay 1× 10−3

Dropout 0.2
Sequence length 512
Embeddings 768
Transformer layers 12
Attention heads 12

Power budget 6 levels: 10k, 40k, 160k, 640k, 2560k, 10240k
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Repetitions 1
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Table 7: Parameters in the GPT-2 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

transformer.wte 50304× 768 50304× 768 155 MB
transformer.wpe 512× 768 512× 768 1573 KB
transformer.h.ln_1 (×12) 768 768× 1 (12×) 3 KB
transformer.h.attn.c_attn (×12) 2304× 768 2304× 768 (12×) 7078 KB
transformer.h.attn.c_proj (×12) 768× 768 768× 768 (12×) 2359 KB
transformer.h.ln_2 (×12) 768 768× 1 (12×) 3 KB
transformer.h.mlp.c_fc (×12) 3072× 768 3072× 768 (12×) 9437 KB
transformer.h.mlp.c_proj (×12) 768× 3072 768× 3072 (12×) 9437 KB
transformer.ln_f 768 768× 1 3 KB

Total 496 MB
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F.2 CIFAR10 EXPERIMENTAL SETUP

This section concerns the experimental details used to obtain Fig. 2 and Table 3 in the main text.
Table 8 collects the settings we adopted to run our code. Table 9 describes the model architecture,
with its parameters, their shape and their uncompressed size.

Table 8: Default experimental settings for the RESNET18 model used to learn the CIFAR10 task.

Dataset CIFAR10
Architecture RESNET18

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate Grid-searched in {0.001, 0.005, 0.01, 0.05} for each power level
# Epochs 150
Weight decay 1× 10−4,

0 for BatchNorm parameters

Power budget 10 levels: 250, 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Repetitions 3, with varying seeds

Table 9: Parameters in the ResNet18 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

layer4.1.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.1.conv1 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv1 512× 256× 3× 3 512× 2304 4719 KB
layer3.1.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.1.conv1 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv1 256× 128× 3× 3 256× 1152 1180 KB
layer2.1.conv2 128× 128× 3× 3 128× 1152 590 KB
layer2.1.conv1 128× 128× 3× 3 128× 1152 590 KB
layer2.0.conv2 128× 128× 3× 3 128× 1152 590 KB
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 524 KB
layer2.0.conv1 128× 64× 3× 3 128× 576 295 KB
layer1.1.conv1 64× 64× 3× 3 64× 576 147 KB
layer1.1.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv1 64× 64× 3× 3 64× 576 147 KB
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 131 KB
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 33 KB
linear 10× 512 10× 512 20 KB
conv1 64× 3× 3× 3 64× 27 7 KB
Bias vectors (total) 38 KB

Total 45 MB
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F.3 CIFAR100 EXPERIMENTAL RESULTS

This section concerns experimental results on CIFAR100. We used the same RESNET18 architecture
as for CIFAR10 (except for the final layer, adapted to the 100-class dataset). We once again compared
LASER to the usual baselines. Fig. 4 and Table 12 collect the results that we obtained. It can be
seen that LASER outperforms the other algorithms with an even wider margin compared to the
CIFAR10 and WIKITEXT-103 tasks, with a power gain of around 32× across different accuracy
targets. SIGNUM is much more sensitive to noise and performs much worse than the other algorithms;
therefore, we decided to leave out its results in order to improve the quality of the plot. Table 10
collects the settings we adopted to run our code. Table 11 describes the model architecture, with its
parameters, their shape and their uncompressed size.

Table 10: Default experimental settings for the RESNET18 model used to learn the CIFAR100 task.

Dataset CIFAR100
Architecture RESNET18

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate Grid-searched in {0.001, 0.005, 0.01, 0.05} for each power level
LR decay /10 at epoch 150
# Epochs 200
Weight decay 1× 10−4

0 for BatchNorm parameters

Power budget 10 levels: 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)

Repetitions 3, with varying seeds
Compression Rank 4 for LASER; 0.2 compression factor for other baselines

Table 11: Parameters in the ResNet18 architecture, with their shape and uncompressed size.

Parameter Gradient tensor shape Matrix shape Uncompressed size

layer4.1.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv2 512× 512× 3× 3 512× 4608 9437 KB
layer4.1.conv1 512× 512× 3× 3 512× 4608 9437 KB
layer4.0.conv1 512× 256× 3× 3 512× 2304 4719 KB
layer3.1.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.1.conv1 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv2 256× 256× 3× 3 256× 2304 2359 KB
layer3.0.conv1 256× 128× 3× 3 256× 1152 1180 KB
layer2.1.conv2 128× 128× 3× 3 128× 1152 590 KB
layer2.1.conv1 128× 128× 3× 3 128× 1152 590 KB
layer2.0.conv2 128× 128× 3× 3 128× 1152 590 KB
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 524 KB
layer2.0.conv1 128× 64× 3× 3 128× 576 295 KB
layer1.1.conv1 64× 64× 3× 3 64× 576 147 KB
layer1.1.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv2 64× 64× 3× 3 64× 576 147 KB
layer1.0.conv1 64× 64× 3× 3 64× 576 147 KB
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 131 KB
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 33 KB
linear 100× 512 100× 512 205 KB
conv1 64× 3× 3× 3 64× 27 7 KB
Bias vectors (total) 38 KB

Total 45 MB
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Figure 4: Test accuracy (higher the better) for a given
power budget on CIFAR-100 for different algorithms.
The advantage of LASER is evident across the entire
power spectrum.

Table 12: Power required (lower the better) to
reach the given target accuracy on CIFAR-100.
LASER requires 16− 32× lesser power than
the Z-SGD to achieve the same targetaccuracy.
Equivalently, LASER tolerates more channel
noise than the Z-SGD for the same target ac-
curacy as is partly supported by our theoretical
analysis.

Target Power required Reduction
LASER Z-SGD

65% 500 8000 16×
68% 1000 32000 32×
70% 2000 64000 32×
71% 8000 256000 32×
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F.4 MNIST EXPERIMENTAL SETUP

This section concerns the experimental details used to obtain Table 4 in the main text. Table 13
collects the settings we adopted to run our code.

Table 13: Default experimental settings for the 1-LAYER NN used to learn the MNIST task.

Dataset MNIST
Architecture 1-LAYER NN

Number of workers 16
Batch size 128 per worker

Optimizer SGD
Momentum 0.9
Learning rate 0.01
# Epochs 50
Weight decay 1× 10−4,

Power budget 3 levels: 0.1, 1, 10
Power allocation Proportional to norm of compressed gradients (uncompressed gradients for Z-SGD)

Repetitions 3, with varying seeds
Compression Rank 2 for LASER; 0.1 compression factor for other baselines

F.5 RANK-ACCURACY TRADEOFF

There exists an inherent tradeoff between the decomposition rank r (and hence the compression factor
δr) and the final model accuracy. In fact, a small rank r implies aggressive compression and hence
the compression noise dominates the channel noise. Similarly, for a high decomposition rank, the
channel noise overpowers the compression noise as the power available per each coordinate is small.
We empirically investigate this phenomenon for CIFAR10 classification over various power regimes
in Fig. 5.
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Figure 5: Final accuracy vs. compression rank tradeoff for CIFAR-10 classification, for low, medium and high
power regimes. Rank-4/Rank-8 compression is optimal for all the three regimes. It reveals two interesting
insights: (i) performance is uniformly worse in all the regimes with overly aggressive rank-one compression,
and (ii) higher rank compression impacts low power regime more significantly than the medium and high-power
counterparts. This confirms with the intuition that at low power (and hence noisier channel), it is better to
allocate the limited power budget appropriately to few “essential” rank components as opposed to thinning it out
over many.

As Fig. 5 reveals, either Rank-4 or Rank-8 compression is optimal for all the three power regimes.
Further we observe two interesting trends: (i) the final accuracy is uniformly worse in all the regimes
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with overly aggressive rank-one compression, and (ii) higher rank compression impacts the low power
regime more significantly than the medium and high-power counterparts. This is in agreement with
the intuition that at low power (and hence noisier channel), it is better to allocate the limited power
budget appropriately to few “essential” rank components as opposed to thinning it out over many.
This phenomenon can be theoretically explained by characterizing the compression factor δr as a
function of rank r and its effect on the model convergence. While the precise expression for δr is
technically challenging, given the inherent difficulty in analyzing the PowerSGD algorithm Vogels
et al. (2019), we believe that a tractable characterization of this quantity (via upper bounds etc.) can
offer fruitful insights into the fundamental rank-accuracy tradeoff at play.
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Figure 6: Fraction of energy in the top 8 components
of the gradients of three layers in the network: the first
and last hidden layer, and one central layer.

To further shed light on this phenomenon, we
trained the noiseless SGD on CIFAR10 and cap-
tured the evolution across the epochs of the en-
ergy contained in the top eight components of
each gradient matrix. As illustrated in Fig. 6, we
observe that for the first and last hidden layers,
80% of the energy is already captured in these
eight components. On the other hand, for the
middle layer this fares around 55%. It is inter-
esting to further explore this behavior for GPT
models and other tasks.

F.6 POWER ALLOCATION ACROSS WORKERS
AND NEURAL NETWORK PARAMETERS

The choice of power allocation over the layers
of the network is perhaps the most important
optimization required in our experimental setup.
Notice that, because of Eq. (2), all clients must
allocate the same power to a given gradient, since otherwise it would be impossible to recover the
correct average gradient. However, workers have a degree of freedom in choosing how to distribute
the power budget among gradients, i.e. among the layers of the network, and this power allocation
can change over the iterations of the model training.

App. B.1 analyzes power allocation optimality from a theoretical point of view. On the experimental
side, simpler schemes are enough to get significant gains over the other baselines. As a matter of fact,
we considered the following power allocation scheme for the experiments: at each iteration, each
worker determines locally how to allocate its power budget across the gradients. Then, we assume
that this power allocation choice is communicated by the client to the server noiselessly. The server
then takes the average of the power allocation choices, and communicates the final power allocation
to the clients. The clients then use this power allocation to send the gradients to the server via the
noisy channel.

For the determination of each worker’s power allocation, three schemes were considered:

• uniform power to each gradient;
• power proportional to the Frobenius norm (or the square of it) of the gradients;
• power proportional to the norm of the compressed gradients (i.e., the norm of what is actually

communicated to the server).

For Z-SGD, where there is no gradient compression, the best power allocation turned out to be the
one proportional to the norm of the gradients, independently of the power constraint imposed. For all
the other algorithms, the best is power proportional to the norm of the compressed gradients.

F.7 STATIC VS. DYNAMIC POWER POLICY

As discussed in Sec. 4.2, we analyzed different power allocation schemes across iterations, when
a fixed budget in terms of average power over the epochs is given. Fig. 3 shows the results for
decreasing power allocations, while Fig. 7 here shows their increasing counterparts. We observe
that LASER exhibits similar gains over Z-SGD for all the power control laws. Further, constant

31



Under review as a conference paper at ICLR 2024

power remains the best policy for both LASER and Z-SGD. Whilst matching the constant power
performance, the power-decreasing control performs better than the increasing counterpart for Z-SGD,
especially in the low-power regime, where the accuracy gains are roughly 4− 5%.
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Figure 7: Final accuracy vs. power budget P with various power control schemes, for distributed training
across 16 workers with RESNET18 on CIFAR10. For each budget P , we consider three increasing power control
laws, as studied in the literature [1], that satisfy the average power constraint: (i) constant power, Pt = P , (ii)
piecewise constant, with the power levels Pt ∈ {P/3, 2P/3, P, 4P/3, 5P/3}, and (iii) linear law between the
levels P/3 and 5P/3. The performance of increasing power allocation schemes is equal or worse compared to
their decreasing counterparts of Fig. 3.
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F.8 BASELINES IMPLEMENTATION

In this section we describe our implementation of the baselines considered in the paper.

F.8.1 COUNT-MEAN SKETCHING

Algorithm 2 COUNT-MEAN SKETCHING

1: function COMPRESS(gradient matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to mn× (compression factor).
4: If the resulting b is less than 1, we set b = 1.
5: Sample a set of mn indices I i.i.d. between 0 and b− 1 using the same seed on all workers.
6: Sample a set of mn signs (+1 or −1) S i.i.d. using the same seed used for I .
7: Ĉ ← 0 ∈ Rb

8: for j = 0, . . . ,mn− 1 do
9: Ĉ(I(j))← Ĉ(I(j)) + S(j)×M(j)

10: end for
11: return Ĉ
12: end function
13: function AGGREGATE+DECOMPRESS(worker’s values Ĉ1 . . . Ĉk)
14: Sample I and S as before, using the same seed.
15: M̂ ← 0 ∈ Rn×m

16: M̂(I)← 1
k

∑k
i=1 Ĉi(I)⊙ S

17: return M̂
18: end function

Power is allocated proportional to compressed gradients’ norms. The algorithm is implemented
without local error feedback, since error feedback causes the algorithm to diverge. The compression
factor was grid-searched in {0.1, 0.2, 0.5, 0.8} and 0.2 was finally chosen as the overall best.

F.8.2 RANDOM K

Algorithm 3 Random K

1: function COMPRESS(gradient matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to mn× (compression factor).
4: If the resulting b is less than 1, we set b = 1.
5: Sample a set of b indices I without replacement, using the same seed on all workers.
6: return Looked up values S = M(I).
7: end function
8: function AGGREGATE+DECOMPRESS(worker’s values S1 . . . Sk)
9: M̂ ← 0 ∈ Rn×m

10: M̂(I)← 1
k

∑k
i=1 Si

11: return M̂
12: end function

Power is allocated proportional to compressed gradients’ norms. The algorithm is implemented with
local error feedback. The compression factor was grid-searched in {0.1, 0.2, 0.5, 0.8} and 0.2 was
finally chosen as the overall best.
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F.8.3 SIGNUM

Algorithm 4 SIGNUM

1: function COMPRESS(gradient matrix M ∈ Rn×m)
2: Compute the signs S ∈ {−1, 1}n×m of M
3: return S
4: end function
5: function AGGREGATE+DECOMPRESS(worker’s signs S1 . . . Sk)
6: return SIGN(

∑k
i=1 Si)

7: end function

We implemented SIGNUM following Bernstein et al. (2018). We run it in its original form, without
error feedback. Power is allocated proporional to the compressed gradients’ norms. Since the
compressed gradients are simply the sign matrices, in this case power is allocated proportional to the
square root of the number of parameters in each layer

√
mn. Unlike the other baselines, SIGNUM

does not require any compression factor.
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