A Fairness metric

Dynabench comprises four dynamic tasks with multiple rounds of datasets that will grow over time.
Given that here we have to be able to evaluate a wide variety of models, both in the loop and outside
of it, we employ a black box post hoc approach, i.e., one that can be applied post-data collection to
existing data, on any uploaded model, without requiring anything other than its predictions. One
straightforward way to measure fairness then, is to apply clearly delimited, heuristic perturbations to
existing evaluation datasets, and measure whether performance drops. Such an approach is similar
to recent works that use grammars to heuristically generate pairs of examples varying in gender
[58]] and/or race [67] in that they utilize predefined lists of words. However, because we also want
to ensure minimal consequences on our classification labels, we adopted an approach that is more
targeted than grammars and also preserves the original input data distribution: we replace each word
in the input data that has a clear signal about race/ethnicity and/or gender identity with a similar word
referring to another group, rerun inference, and measure how many labels flipped (i.e., the difference
in microaverage accuracy).

For race/ethnicity, we seeded first names across four demographic groups from a public dataset of
4,250 first names from US mortgage lending applications [69,70]]. These names cover 85.6 percent of
the U.S. population, are based on the 1990 Census information on first name frequencies [70], and are
licensed under a very permissive license (Creative Commons Attribution 4.0 International License).
Names were associated with mutually exclusive demographic groups recognized by the 2000 and 2010
US Government Census—we selected the four groups with the most names: Asian/Pacific Islander,
Black, Hispanic, white. Note: there is nothing inherently “racial” about particular names—for
example, each demographic group had at least a few people named “Anna” or “Benjamin” [[/0]—
although there are statistical trends. We selected all names for which a plurality of people of that
name identified with one of the races or ethnicities, then took the 200 most frequent. We then also
augmented that list with additional names popular in the literature [7}48]]. To construct our permuted
test dataset, whenever we encountered a name in the input data from one of our lists, we randomly
selected a name from a different race/ethnicity list and substituted it. Whenever we encountered a
name in the input data which was not present in our list of names, we left it unperturbed.

For gender identity, we investigate two kinds of perturbations: names and noun phrases. For names,
we affiliated the names from our race/ethnicity list with statistically likely genders, based on the U.S.
Social Security Association’s Lists of Baby Names (1980-2019), and performed perturbations as
we did for race/ethnicity For noun phrases (i.e., pronouns and nouns), we adopted a slightly more
structured approach: we still replaced words based on pair-based word lists, but we didn’t do so
randomly, as that could result in ungrammatical sentences (e.g., one can’t replace a pronoun, like
“her” with a noun like “dad” and expect no effect on the classification label). Words in the paired list
that either exclusively referred to women (e.g., her, sister) or to men (e.g., his, brother) were selected
by taking the union of existing popular word lists [80, [81] that had been recently extended [[13| 14]

Given that our perturbations are heuristic, some noise is to be expected. For example, for the names
perturbations, content relevant for the classification can be affected when the name is part of a
phrase referring to a known named entity. Consider “I’ve always enjoyed eating at Red Robin”
being perturbed to “I’ve always enjoyed eating at Red Kayla”. To mitigate this issue, we first ran
an off-the-shelf named entity recognition system, and did not perturb any examples for which the
system found a familiar named entityﬂ We observe that there are very few noisy examples (less
than 5) resulting from NER errors. Finally, there is one irreducible type of noise arising from our
heuristic approach—perturbing gender-explicit information occasionally results in unusual examples
and may have consequences for the classification label: For NLI, the following hypothesis “Mothers
should nurse at night” became “Fathers should nurse at night” in the context of “Failing to nurse at
night can lead to painful engorgement or even breast infection”. Based on spot checks performed
by the authors, we conclude that noise resulting from explicit gender information is also rare (only
three out of 122 spot-checked sentences). Although our approach yields enough signal to evaluate
whether model performance depends on race/ethnicity and gender identity, future work exploring
more flexible and adaptable approaches is encouraged.

"https://www.ssa.gov/oact/babynames/
8For a discussion of non-binary gender, see the Broader Impact Statement.
“We use the NER pipeline from spaCy [29], which was trained on OntoNotes 5.

18


https://www.ssa.gov/oact/babynames/

B Robustness metric

For the robustness evaluation, we use a post hoc black box approach similar to the fairness evaluation.
We use TextFlint [24]], an open source library for measuring model robustness that covers a wide
range of text transformations. We apply a family of universal transformations from TextFlint,
namely Contraction, Keyboard, Ocr, Punctuation, SpellingError, Typos and WordCase, as
we focus on typographical errors for our robustness perturbations.

The robustness metric is computed as the percentage of unchanged predictions before and after
perturbation. The assumption is that a robust model should not change its predictions upon such
perturbations in input. That is to say, a model is deemed more robust if it has a higher robustness
metric (i.e., a lower difference between original and perturbed examples).

C Model Details

We selected and trained a diverse set of models to demonstrate the value of the platform, as well
as to provide a sense of the current state of the art across our multiple metrics. We did not tune
hyperparameters, instead using default training hyperparameters.

Training Data The NLI models are trained on ANLI [49]] combined with MNLI [74], where ANLI
is upsampled by a ratio of 2 to balance the data. The QA models are trained on SQuAD [57]] combined
with Adversarial QA [1]]. The hate speech models are trained on rounds 0 through 4 of the Learning
from the Worst dataset [71], with an upsampling ratio for each of 1, 5, 100, 1, and 1, respectively.
The sentiment models are trained on of Dynasent [55]], where round 2 was upsampled by a ratio of
3. Learning from the Worst [[/1], provides the upsample ratios used for hate speech, and we also
performed early stopping for the hate speech transformers with the round 4 dev set. The rest of
the upsampling was done to give the Dynabench data more influence in the training routine, as the
leaderboard test sets on our evaluation platform are mostly comprised of Dynabench data.

Transformers All of the transformer models are the base versions provided in the HuggingFace
transformers library [76l], except ELECTRA which is the large discriminator version. ELECTRA-
large was used to test the capacity of our framework to handle larger transformer models.

We used the default training hyperparameters from HuggingFace’s transformers training scripts.

The T5 models were trained with early stopping on SQuAD + Adversarial QA for QA, and the last
round of the Dynabench data for the other tasks. For 2-way sequence classification, the model was
trained to predict the first token of one of the strings "0", "1". For 3-way sequence classification, it was
trained to predict the first token of one of the strings "0", "1", "2". There is no universal default way to
handle which token to output from the T5 for sequence classification, as every sequence classification
task is different. We used the training hyperparameters from the HuggingFace community T5 for text
classification example An exception is that we trained for 3 epochs for text classification to match
the BERT-style model default (the default for TS is 2).

FastText All of the FastText models were the text classification version trained with an initial
learning rate of 1, 25 epochs, 2-grams, bucket size of 200000, 50 dimensions, and hierarchical
SoftMax. This is the default, for large datasets, that is listed on FastText’s Website

BiDAF BiDAF was trained with the default settings from the AllenNLP [20] BiDAF trainer

Majority Baseline The majority label was determined from the corresponding train set. For
example, the MNLI train set has frequency-matched labels, and the ANLI train set has entailed,
neutral, contradictory splits of 52,111 / 68,789 / 41,965. So the majority baseline for NLI was to
always return neutral.

See https://huggingface.co/transformers/community.html and https://github.com/
patil-suraj/exploring-T5|

"https://fasttext.cc/docs/en/supervised-tutorial.html

"https://github.com/allenai/allennlp

19


https://huggingface.co/transformers/community.html
https://github.com/patil-suraj/exploring-T5
https://github.com/patil-suraj/exploring-T5
https://fasttext.cc/docs/en/supervised-tutorial.html
https://github.com/allenai/allennlp

D Screenshots

Please also see the screen recording provided in the supplementary material to get a better sense of
how the interface works.

OVERALL MODEL LEADERBOARD ? = B
Model Accuracy = Throughput _ Memory _ YFairness _ !Robustness _ ~ !Dynascore
% examples/second Gig % %
DeBERTa default params (anon_user) > 69.54 741 571 91.97 75.70 38.83
RoBERTa default params (anon_user) > 69.07 9.23 4.82 90.94 74.82 38.61
ALBERT default params (anon_user) > 67.29 9.60 218 89.94 7412 37.72
T5 default params (anon_user) > 67.16 7.10 10.62 91.89 73.47 3753
BERT default params (anon_user) > 64.82 9.39 413 9211 66.38 36.36
Majority Baseline (anon_user) > 32.41 77.33 1.15 100.00 100.00 2278
FastText default params (anon_user) > 31.29 73.94 220 83.23 69.14 2113
Previous = Next
Figure 2: NLI Dynaboard example.
OVERALL MODEL LEADERBOARD ?2 = 8
Model Accuracy = Throughput __ Memory __ !Fairness _ !Robustness _ ~ ! Dynascore
% examples/second GiB % %
Dataset Weights snli-test anli-r1-test — anli-r2-test — anli-r3-test —
mnli-test-mismatched mnli-test-matched
o
DeBERTa default params (anon_user) v 76.61 8.13 6.02 92.29 77.53
snli-test 85.88 9.48 6.32 92.63 76.99
anli-r1-test — 65.10 5.23 5.21 91.41 72.28
anli-r2-test — 44.40 4.99 4.69 92.30 70.45 3 8 . 7 O
anli-r3-test — 45.83 5.96 471 89.66 69.82
mnli-test-mismatched = 87.74 9.41 6.63 93.54 82.35
mnli-test-matched £ 88.31 9.38 6.67 92.29 82.33
RoBERTa default params (anon_user) > 76.00 10.24 5.15 91.48 76.72 38.40
ALBERT default params (anon_user) > 73.67 10.51 215 90.73 75.55 37.26
T5 default params (anon_user) > 73.77 79 10.31 91.81 75.00 37.25
BERT default params (anon_user) > 71.40 10.33 4.53 92.00 67.57 36.10
Majority Baseline (anon_user) > 32.06 99.00 1.16 100.00 100.00 16.92
FastText default params (anon_user) > 32.03 94.57 2.25 79.76 65.32 16.82

Previous = Next

Figure 3: NLI Dynaboard example, with dataset weight sliders and finer-grained metrics displayed.

20



OVERALL MODEL LEADERBOARD AL

Metric Weights Accuracy = Throughput _ Memory __ YFairness _ !Robustness _ ~ ! Dynascore

DeBERTa default params (anon_user) > 69.54 7.4 571 91.97 75.70 38.83
RoBERTa default params (anon_user) > 69.07 9.23 4.82 90.94 74.82 38.61
ALBERT default params (anon_user) > 67.29 9.60 218 89.94 7412 37.72
TS default params (anon_user) > 67.16 7.10 10.62 91.89 73.47 37.53
BERT default params (anon_user) > 64.82 9.39 413 92.11 66.38 36.36
Majority Baseline (anon_user) > 3241 77.33 1.15 100.00 100.00 22.78
FastText default params (anon_user) > 31.29 73.94 220 83.23 69.14 2113

Previous = Next

Figure 4: NLI Dynaboard example, with metric weight sliders in default configuration.

OVERALL MODEL LEADERBOARD ? = =S
Metric Weights Accuracy = Throughput !Fairness = !Robustness = ~ ! Dynascore
RoBERTa default params (anon_user) > 76.66 1043 524 91.56 77.03 15.76
DeBERTa default params (anon_user) > 77.16 8.27 6.06 92.34 77.78 15.75
ALBERT default params (anon_user) > 7417 10.69 215 90.79 75.75 15.44
T5 default params (anon_user) > 74.49 8.06 10.25 91.85 75.28 15.13
BERT default params (anon_user) > 72.23 10.52 457 92.06 67.81 14.98
Majority Baseline (anon_user) > 32.00 102.94 1.16 100.00 100.00 11.84
FastText default params (anon_user) > 32.22 98.32 2.25 79.02 64.64 1117

Previous = Next

Figure 5: NLI Dynaboard example, with both dataset weights and metric weight sliders modified.

21



Leaderboard Datasets

snli-test 85.88
mnli-test-mismatched 87.74
mnli-test-matched 88.31
anli-ri-test 65.10
anli-r2-test 44.40
anli-r3-test 45.83

Non-Leaderboard Datasets

superglue-winogender 59.55
mnli-dev-mismatched 88.27
mnli-dev-matched 89.13
snli-dev 85.49
hans > 73.68
nli-stress-test > 77.56
anli-r1-dev 63.90
anli-r2-dev 46.20
anli-r3-dev 45.42

Figure 6: DeBERTa on NLI example, part of the model page, showing non-leaderboard evaluation-
as-a-service dataset results as well.

22



	Introduction
	Objectives
	Related Work
	Backend: Evaluation-as-a-Service
	Metrics
	Tasks

	Frontend: Dynamic Leaderboard
	Background
	Converting between Metrics
	Weights and Customization
	Limitations & Future Work
	Results

	Conclusion
	Fairness metric
	Robustness metric
	Model Details
	Screenshots

