Table 1. We complement the ablation on memory propagation and temporal selection and add explanations.

Memory	Memory Selection EgoSchema Global Breakpoint Explanation								
×	×	34.4	52.5	21.6	Uniform sampling 64 frames				
\checkmark	×	37.3	69.1	23.0	No propagated memory, concatenate time indicators with questions for selection				
×	\checkmark	38.4	43.8	39.1	No temporal selection, adopt memories of final 4 clips				
\checkmark	\checkmark	44.1	90.4	54.9	Full architecture of VideoStreaming				

User: What challenges does the protagonist in the movie face to achieve his goal?

Text-only LLM: I don't see a specific movie mentioned in your question. Could you please provide the title of the movie you're referring to?

VideoStreaming: The protagonist in the movie confronts a series of obstacles in his endeavor to accomplish a remarkable feat. He must devise a method to access the towering structures, tackle the complexities of setting up the wire, maintain his equilibrium and concentration while suspended on a tightrope, and manage the risks associated with installing the equipment on the towers.

Figure 1. Visualization of the grounding results and comparison of text-only LLM and VideoStreaming with the reformulated question.

 Table 2. We compare using ViT based model and the language model Phi with different layers as the streaming encoder.

Encoder 1	Layers	s Params l	EgoSchema	Next-QA	Global	Breakpoint
MC-ViT	24	0.4B	32.3	53.1	71.2	40.4
Phi	4	0.3B	36.4	59.6	77.3	46.2
Phi	8	0.7B	39.8	63.2	84.3	49.2
Phi	12	1.0B	42.5	65.1	87.4	51.2
Phi	16	1.3B	44.1	66.2	90.4	54.9
Phi	24	2.0B	43.8	66.0	90.0	53.7

Table 3. We compare with LLaMA-VID on EgoSchema, Next-QA and MovieChat-1K benchmarks.

Method	Params	EgoSchema	Next-QA	Global	Breakpoint
LLaMA-VID	13B	35.5	50.3	62.3	46.1
Ours	7B+1.3B	44.1	66.2	90.4	54.9

Table 4. We compare with VideoChat2 on EgoSchema, MLVU and VideoMME medium and long subset (denoted as VideoMME-M and VideoMME-L).

Method	EgoSchema	a MLVU	VideoMME-M	VideoMME-L
VideoChat2	54.4	44.5	37.0	33.2
Ours	48.1	51.7	43.1	39.6

Table 5. We compare using different layers of Phi and Vicuna as the streaming encoder.

Encoder	Layers	Params	EgoSchema	Next-QA	Global	Breakpoint
Phi	8	0.7B	39.8	63.2	84.3	49.2
Vicuna	3	0.7B	36.6	58.4	77.8	46.3
Phi	16	1.3B	44.1	66.2	90.4	54.9
Vicuna	6	1.3B	39.5	64.1	85.5	50.1

Table 6. We ablate different settings, including memory propagation, temporal selection, the number of summarization tokens and the number of selected clips, on hour-long MovieNet-QA benchmark from three perspectives.

Memory	Selection	P	V	Overview	Plot	Temporal
X	X	-	-	1.98	2.23	1.39
\checkmark	×	16	4	2.51	2.61	1.63
X	\checkmark	16	4	2.24	2.77	1.52
\checkmark	\checkmark	16	4	2.65	3.13	1.88
\checkmark	\checkmark	4	4	2.53	2.82	1.73
\checkmark	\checkmark	4	8	2.58	3.02	1.83
\checkmark	\checkmark	16	8	2.68	3.17	1.95

Table 7. We compare the performance and average number of sampled frames with clip-based and frame-based sampling.

Sampling Metric EgoSchema Global Breakpoint MovieNet-Avg							
Clip	Acc	44.1	90.4	54.9	2.56		
	Frames	176	464	464	6032		
E	Acc	44.0	90.7	54.2	2.61		

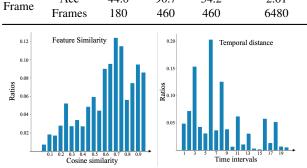


Figure 2. Visualization of the feature similarity and temporal distance of selected clips.