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1 ADDITIONAL EXPERIMENTAL RESULTS

1.1 DATASETS

The additional experiments are also conducted on four benchmarks: MNIST (LeCun et al., 2010),
SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky & Hinton, 2009), and CIFAR100 (Krizhevsky &
Hinton, 2009).

1.2 COMPARATIVE STUDIES

Compared with Prior Works when setting α to 0.1 and 0.25: We set the α value in Dirichlet
distribution D(α) (Zhu et al., 2021) to 0.1 and 0.25, and run all methods under limited communication
budgets (10 rounds) on four datasets. We report the results in Table 1. As shown in Table 1, when
communication budgets are limited (10 rounds) and the α value is set to 0.25 and 0.10, our method
can still learn a model outperforming competing works by a remarkable margin.

Impact of the smooth parameter τ in Eq. 6: We conduct a study on four datasets to explore the
impact of smooth parameter τ in Eq. 6. We set the τ value to 1.0, 5.0, and 10.0, respectively. As
shown in Table 2, we achieve the highest performance in most cases when we set τ to 5.0. Therefore,
we set τ in Eq. 6 to 5.0 for all our experiments.

2 DISCUSSIONS

Why does utilizing meta-knowledge decrease the required communication rounds? Our method
utilizes extracted meta knowledge as normal training data to train a global model on the server.
The meta knowledge is extracted from original data via a bi-level optimization, which encodes the
"gradient of gradient" with respect to the model. The optimization methods based on the second order
gradient generally have a higher convergence speed than the methods using the first order gradient
(Battiti, 1992; Xie et al., 2022). Therefore, utilizing meta-knowledge endows our algorithm with a
fast convergence speed and decreases the communication round number.

Why increasing the meta knowledge size can not necessarily improve final performance? In
the meta knowledge extraction process, the calculated meta-knowledge in each batch represents
the average of the model update direction. The average gradient is stable when the batch number
increases in a certain range (from ×1 to ×10). As a result, increasing the meta-knowledge sizes
does not necessarily increase the performance. Intuitively, the meta knowledge is highly dense and
compressed, encoding the knowledge from original data (Zhou et al., 2022). In principle, using the
meta knowledge approximates employing the original data. As the amount of information in the
original data is constant, the training performance will not necessarily increase as the meta knowledge
size increases.

We conduct an experiment on MNIST to show the information change between meta knowledge
with different sizes. Concretely, we set the meta-knowledge size (S) as 10, 20, 30, 40, 50, 60, 70,
and 80, respectively. As earth mover’s distance (EMD) has been utilized to compute a structural
distance between two data sets to determine their similarity (Zhang et al., 2020), we use it to evaluate
differences according to meta-knowledge with different sizes. The results are listed in Table 3. It
can be seen that the EMDs with respect to meta-knowledge sizes are stable, indicating the amount of
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Table 1: Results with 10 rounds.

Setting FedAvg FedProx FedDistill FedEnsem FedGen FedMK
MNIST

α=0.10 61.95% 61.41% 58.46% 67.89% 64.83% 77.37%
α=0.25 69.52% 68.43% 71.78% 72.23% 73.41% 90.07%

SVHN
α=0.10 20.10% 18.39% 25.44% 24.60% 24.38% 57.24%
α=0.25 23.56% 25.01% 22.70% 23.21% 28.79% 65.66%

CIFAR10
α=0.10 23.71% 21.88% 24.93% 24.80% 20.16% 38.45%
α=0.25 21.85% 22.17% 20.84% 23.98% 22.94% 40.75%

CIFAR100
α=0.10 10.19% 9.41% 12.41% 10.64% 10.79% 18.62%
α=0.25 11.73% 10.43% 8.73% 12.42% 8.22% 22.14%

Table 2: Impact of the smooth parameter τ .

τ=1.0 τ=5.0 τ=10.0
MNIST

α=0.50 91.70% 92.95% 91.79%
α=0.75 91.90% 92.86% 92.23%
α=1.0 91.53% 93.63% 91.91%

SVHN
α=0.50 72.24% 74.11% 71.60%
α=0.75 71.47% 74.90% 74.03%
α=1.0 71.74% 74.84% 72.19%

CIFAR10
α=0.50 47.72% 47.33% 46.62%
α=0.75 48.17% 49.04% 49.27%
α=1.0 47.82% 50.32% 48.54%

CIFAR100
α=0.50 26.06% 26.74% 26.45%
α=0.75 26.93% 27.43% 26.98%
α=1.0 25.43% 28.20% 26.15%

information in the meta-knowledge does not change significantly with respect to the meta knowledge
size.

The possibility of restoring original data from meta-knowledge. We conduct an experiment on
MNIST to explore the possibility of restoring data from extracted meta-knowledge. The results are
shown in Figure 1. The original images are shown in the top row, and the extracted meta-knowledge
is shown in the middle row. We feed the extracted meta-knowledge and a trained model to Deep
Leakage (Zhu & Han, 2020), which is one of the state-of-the-art methods for restoring data from
leaked knowledge. The data restored by Deep Leakage is shown in the bottom row. It can be seen
that it is hard to construct correspondence between entries in restored data and original data.

The difference between FedGen and FedMK: There are significant differences between FedGen
(Zhu et al., 2021) and our FedMK, which are listed as follows:

- [Local model training by original data v.s. Meta Knowledge extraction]: FedGen utilizes original
data on local clients to train local models, while our method conducts meta knowledge extraction
to synthesize meta knowledge, which is used for global model training on a server. In FedGen, the
trained local models might diverge due to the data distribution variations among clients.

- [Global model aggregation v.s. Global model training]: FedGen constructs a global model by
aggregating uploaded local models; while our method learns a global model based on meta knowledge
uploaded from clients. In our method, the global model learning utilizes knowledge from all active
clients, therefore mitigating the bias issue compared to FedGen.

- [The role of conditional generator]: The conditional generator in FedGen is trained on the server
and transmitted to clients. On clients, it is used as a constraint in the local model training. On the
contrary, the conditional generator in our method is trained and utilized on the server, participating
in the global model training. Compared to FedGen, our method has a less communication cost
without performance deterioration. In conclusion, compared to FedGen, our method performs more
effectively and efficiently under both practical and pathological non-iid settings.
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Table 3: EMDs with respect to meta-knowledge sizes.

Meta-Knowledge size(S) 10 20 30 40 50 60 70 80

Difference w.r.t. S=10 0 10 20 30 40 50 60 70

EMD(metaS,meta10) 0.000 0.023 0.054 0.046 0.053 0.045 0.045 0.043

meta-knowledge

restored data by deep leakage based on meta-knowledge

original image

Figure 1: The visualization of original images (the top row), extracted meta-knowledge (the middle
row), and restored data by deep leakage based on extracted meta-knowledge (the bottom row).

Algorithm 1: FedMK

Input: Original data D; global parameters WG; generator parameter wG ; the communication
budget .

Output: Optimal W∗
G

1 while not over the communication budget do
2 the server selects active clients C uniformly at random, broadcasts WG to the selected clients

C.
3 ▷Federated Meta Knowledge Extraction on selected clients C:
4 for all user c ∈ C in parallel do
5 wc ←WG;
6 for t = 1, ..., #Round do
7 conduct the conditional initialization: D̂c

ini ← D̂c′

t−1, c
′ ∼ randint[1, C], c′ ̸= c;

8 calculate dynamic weights by Eq. 6;
9 generate D̂c by Eq. 3;

10 end
11 send the D̂c to the server.
12 end
13 ▷Global Model Training on the server:
14 update generator parameter wG by Eq. 9;
15 generate D̂pseu by the updated generator G;
16 update global parameter WG by Eq. 10.
17 end
18 return WG as W∗

G;

3 ALGORITHM

The algorithm of FedMK is illustrated in Alg. 1.
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