
APPENDIX

A SRICS pseudocode

Algorithm 1 SRICS: Self-Supervised Relational RL with Independently Controllable Subgoals
Require: GNN Dynamical modelD, goal-conditional attention policy πθ , goal-conditional SAC trainer, num-

ber of training episodes K.
1: Train GNN Dynamical modelD on sequences uniformly sampled fromD using the loss described in Eq. 5

and estimate the interaction graph G.
2: for n = 1, ...,K episodes do
3: Sample goal sgoal and construct subgoal gi using G. B See Eq. 6
4: Collect episode data with policy πθ(at | st,gi).
5: Store transitions {

(
st,at, st+1,g

i
)
, . . .} into replay bufferR.

6: Sample transitions from replay buffer
(
s,a, s′,gi

)
∼ R.

7: Relabel gi goal components to a combination of future states and goal sampling distribution.
8: Compute selectivity reward signal R = rsel,i(s

′, s,gi). B See Eq. 7
9: Update policy πθ(at | st,gi) using R with SAC trainer.

10: end for

B Generalization to Unseen Combination of Objects

Train environment Evaluation
environment

Used objects

(a) Train and evaluation environments.

0 1 2 3 4 5

Training examples ×105

0.075

0.100

0.125

0.150

0.175

0.200

0.225
A

vg
.d

is
t.

Rearrange with 3 from 4 objects

seen
unseen

(b) Average distance to the goal posi-
tions, comparing SRICS performance on
seen and unseen combinations of 3 ob-
jects.

Figure 6: Generalization to unseen combination of objects.

To test our agent on a novel combination of objects, we modify the Multi-Object Rearrange envi-
ronment with 4 objects by deleting one of the objects from the table. We split possible combinations
of three objects on training and evaluation combinations as shown in Fig. 6a. We train the GNN
dynamical model on the training combinations and then average all interaction weights to estimate
the global interaction graph. Next, we train our SRICS agent on the training combinations and eval-
uate it on an unseen combination. The performance of SRICS on the unseen combination is close
to its performance on Multi-Object Rearrange with 3 objects (see Fig. 6b). This demonstrates that
agents equipped with object-centric representations and a compatible policy are not restricted to the
particular combination of objects they were trained on. Such agents should be able to learn how to
control many objects and reuse learned skills for manipulation over different scenes containing only
a random subset of objects.

C Multi-object Rearrange Environments

We implement several modifications of the original Multi-object Rearrange environment to study
how our agent performs in more challenging settings. First, we implement the Multi-object Rela-
tional Rearrange environment by incorporating additional constraints to the Multi-object Rearrange
environment. In particular, for the Multi-object Rearrange environment with 4 objects, we add one

12

spring connection and make one object static. The goals are sampled from a random arrangement of
the objects, where the constraints above are fulfilled. Next, we implement Multi-object Rearrange
with different objects by varying objects’ shapes (cube and cylinder), size, and mass. The manipu-
lation of such different objects is more challenging thus an agent has to learn more complex policy
(see Fig. 7 for the visualization of the environments)

(a) (b) (c)

Figure 7: Visualization of the Multi-object Rearrange environment with a) 4 objects, b) 6 different
objects and c) Multi-object Relational Rearrange environment.

D Additional Experimental Results

D.1 Larger Number of Different Objects

We have conducted several additional experiments to study how the SRICS method performs in a
more challenging environment with a larger number of different objects. In particular, we trained
the SRICS agent in the Multi-object Rearrange environment with 6 different objects (see Fig. 7b).
We compared SRICS performance to the SMORL and SAC baselines that are shown to work in
more simple Multi-object Rearrange with 4 objects. For these experiments, we do no additional
hyperparameter optimization using optimal parameters from Multi-object Rearrange with 4 objects.

We show the results in Fig. 8a. The SRICS agent makes progress in this environment while the
SMORL agent performs close to a random agent and SAC consistently solves only the easiest ”arm”
subgoal. This shows that the SRICS agent can learn and efficiently combine many subtasks when
the subtasks are different (e.g. manipulation of objects with different shapes).

D.2 State Representation Extended with Object’s Velocity

In addition to more challenging environments, it is also important to show that the SRICS method
is not restricted to coordinate-based object-centric representations. For this, we studied the per-
formance of the SRICS agent when the state representation also includes the object’s velocity.
In the modified environment the representation of each object is encoded by the position vector
sj,where ∈ R2, the velocity vector sj,vel ∈ R2 and the identifier sj,what ∈ RK . For all the methods,
we use positions sj,where to calculate the distance to the goal in the reward signal. The results are
presented in Fig. 8b. The SRICS agent outperforms both baselines and reaches the performance that
is comparable to its performance with coordinates-based state representation.

E Goal-Conditioned Attention Policy

We train one policy that incorporates all learned skills. For this purpose, we use a goal-conditioned
attention policy [10]. This policy needs to vary its behavior based on the goal at hand (e.g. one
goal can be reaching a particular position with the robotic arm, whereas another goal can be moving
an object to a particular position). To allow this flexibility, we use the attention module with a
goal-dependent query Q(sgoal,i) = sgoal,iW q . Each object is allowed to match with the query via
an object-dependent key K(st) = stW

k and contribute to the attention’s output through the value

13

0 1 2 3 4 5

Training examples ×105

0.12

0.14

0.16

0.18

A
vg

.d
is

t.

Rearrange with 6 different objects

(a)

0 1 2 3 4 5

Training examples ×105

0.12

0.14

0.16

0.18

0.20
Coordinates and Velocity State Rearrange

(b)

SRICS SMORL SAC+HER HAC

Figure 8: Average distance to the goal positions, comparing our method to the SAC and SMORL
baselines on a) Rearrange environment with 6 different objects and b) Rearrange environment with
4 objects with coordinates and velocity state representation.

V (st) = stW
v , which is weighted by the similarity between Q(sgoal,i) and K(st). The attention

head Ak is computed as

Ak = softmax
(
sgoal,iW q(StW

k)T√
de

)
StW

v,

where St is a packed matrix of all sit’s; the parameters W q , W k, W v constitute learned linear
transformations and de is the common dimensionality of the key, value and query. The attention
output A is a concatenation of all attention heads A = [A1; . . . ;AK].

Finally, the attention output A is combined with the subgoal sgoal,i and processed by a fully con-
nected neural network f :

πθ
(
{sit}i∈Ot , sgoal,i) = f(A, sgoal,i).

The parameters used for training of the goal-conditioned attention policy are presented in App. J.1.

F Subgoals Selectivity as an Evaluation Metric

The selectivity (as defined in Eq. 7) is a measure of the agent’s selective influence on the components
of the environment. In Sec. 3.2, we show that it can be used as an additional reward signal to
motivate the agent to selectively control different components of the environment. Additionally, the
selectivity can be used as an evaluation metric. This metric features how selective is the influence
of an agent on the components of the environment. Here, we compute the selectivity measure for
SRICS and SMORL agents that learn to control components of the representation separately from
each other. As seen in Fig. 9, the selectivity measure increases for both agents during the goal-
conditioned training. Concurrent with the objective the SRICS agent is trained on, the selectivity
measure for the SRICS agent is increasing much faster and with smaller variance compared to the
SMORL agent. Therefore, the selectivity is an important objective for autonomous control that can
make training more stable and efficient.

G Estimation of the Global Interaction Graph

To learn sparse interaction weights wijt , we use the sparsity prior pprior (see Eq. 5). Specifically, the
sparsity prior pprior is the Bernoulli distribution

f(k; p) =

{
p if k = 1,

1− p if k = 0.

For all experiments, we use the same prior probability for the relation presence p = 0.05. The inter-
action weights wijt deviate from this prior only when the relation is required for the improvement of

14

0 1 2 3 4 5

Training examples ×105

0.2

0.4

0.6

0.8

Se
le

ct
iv

ity

Rearrange with 3 objects

0 1 2 3 4 5

Training examples ×105

0.2

0.4

0.6

0.8

Rearrange with 4 objects

SRICS
SMORL

Figure 9: The selectivity part of the reward signal for both SRICS and SMORL agents averaged over
all entities. While the SMORL agent is not optimized for being selective, the selectivity increases
over SMORL training because the agent is gaining control over objects. However, for the SRICS
agent, the increase in selectivity is much faster as the agent is incentified to be selective.

the dynamical model predictions. As can be seen in Fig. 10, such approach successfully reconstructs
most of the relations for both Multi-Object Rearrange and Multi-Object Relational Rearrange envi-
ronments.

Arm 1 2 3

Recurrent GNN

Arm

1

2

3

Arm 1 2 3

GT

Arm

1

2

3
0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

Rearrange with 3 objects

Arm 1 2 3 4

Recurrent GNN

Arm

1

2

3

4

Arm 1 2 3 4

GT

Arm

1

2

3

4
0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

Rearrange with 4 objects

Arm 1 2 3 4

Recurrent GNN

Arm

1

2

3

4

Arm 1 2 3 4

GT

Arm

1

2

3

4
0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

Relational Rearrange with 4 objects

Figure 10: Average interaction weights obtained from the GNN dynamical model.

15

2nd

obj

Arm

3rd

obj

Arm

2nd

 obj

4th

obj

Arm

Arm

Arm

4th

obj

1st
obj

Action

2nd
obj

3rd

obj

Interaction graph Subgoals ordering

Figure 11: Ordering of the independently controllable subgoals according to the depth of the cor-
responding nodes in the interaction graph. When the interaction graph is a DAG, such ordering
corresponds to the reversed topological ordering.

16

H Evaluation on the Average Objects Distance

We additionally evaluate our method on the average object distance metric, similarly to the SMORL
paper [10]. This metric is calculated as the average of all distances from objects on a table (without
arm) to their goal position. Thus, it is biased towards controlling the external objects (which are
mostly independent of each other). As can be seen in Fig. 12, SRICS outperforms SMORL on this
metric, whereas SAC performs similar to a passive policy. This result shows the benefit of using
the goal-directed selectivity reward signal for the control of external objects. In contrast to the
average object distance metric, the average distance metric presented in this paper also reveals the
importance of the goal decomposition into a sequence of compatible subgoals.

0 1 2 3 4 5

Training examples ×105

0.10

0.12

0.14

0.16

0.18

A
vg

.o
bj

ec
td

is
t.

Rearrange with 3 objects

0 1 2 3 4 5

Training examples ×105

0.12

0.14

0.16

0.18

0.20
Rearrange with 4 objects

0 1 2 3 4 5

Training examples ×105

0.12

0.14

0.16

0.18

0.20
Relational Rearrange with 4 objects

SRICS SMORL SAC+HER HAC

Figure 12: Average object distance to the goal positions, comparing SRICS to SMORL and
SAC+HER.

I Ordering of the Subgoals

As reaching one subgoal can affect the results of reaching other subgoals, it is necessary to order the
subgoals such that the resulting sequence of skills is compatible. Intuitively, for each compositional
goal, we want to first manipulate such objects that require movement of other objects for their
manipulation. For example, in case of a robotic arm and objects on the table, we first want to control
objects using the robotic arm and then control the arm itself. As the robotic arm has no dependencies
in the interaction graph, the corresponding selectivity reward signal should incentify the agent to
control the arm while not affecting all other objects, thus making the arm subgoal compatible with
objects’ subgoals (if solved perfectly).

Generally, we order all subgoals by their depth in the interaction graph, executing subgoals with
larger depth first (as illustrated in Fig. 11). The depth of a node is defined as the length of the
longest path without loops from the action variableA to the node. The order of the subgoals with the
same depth is random. When the learned interaction graph is a directed acyclic graph (DAG), such
ordering corresponds to the reversed topological ordering. The nodes in a DAG are topologically
ordered if for any edge v → u in graphG, node v comes after node u. Due to such ordering, only the
subgoals that correspond to the nodes j 6∈ Anc(i) are executed before the subgoal i. These subgoals
should not be affected when the selectivity part (Eq. 7) of the reward signal is maximized. Thus,
such ordering of the subgoals guarantees the compatibility of the subgoals sequence when each of
the subgoals is solved with a maximal reward signal.

Decompose to subgoals
Order subgoals
Solve subgoals sequentially

Solved
compositional goal

 Agent with compositional skills,

Compositional
 goal

Figure 13: SRICS pipeline during evaluation.

17

J Implementation Details

J.1 SRICS

We refer to Table 1 and Table 2 for the hyperparameters of SRICS for all environments. We use
the same number of subgoal solving attempts as in SMORL. During the evaluation, the number of
attempts is equal to 7 for environments with 3 objects and 9 for environments with 4 objects. As the
number of attempts k is larger than the number of entities n, we order only the last n subgoals.

J.2 Prior Work

For both SMORL and SAC, we use previously optimized settings for Multi-Object Rearrange with 3
and 4 objects from Zadaianchuk et al. [10]. In addition, we make a hyperparameter search over more
than 100 runs for finding the best HAC hyperparameters. Specifically, we evaluate the performance
of HAC while varying the number of steps for each subgoal, number of levels, and action noise. For
the Multi-Object Relational Rearrange environment with 4 objects, we use the same parameters as
in the Multi-Object Rearrange environment with 4 objects for all algorithms.

Hyperparameter Value
Selectivity parameter α 0.25

Optimizer Adam with default settings
RL Batch Size 2048
Reward Scaling 1

Automatic SAC entropy tuning yes
SAC Soft Update Rate 0.05

Training Batches per Time Step 1
Hidden Activation ReLU

Network Initialization Xavier uniform
Separate Attention for Policy & Q-Function yes

Replay Buffer Size 250000
Relabeling Fractions Rollout/Future/Sampled Goals 0.1 / 0.4 / 0.5

Number of Initial Random Samples 10000
Number of Heads 5
Discount Factor 0.95
Learning Rate 0.001

Policy Hidden Sizes [128, 128]
Q-Function Hidden Sizes [128, 128, 128]

Training Path Length 20

Table 1: General hyperparameters used by SRICS for all environments.

Hyperparameter Value
Sparsity prior p 0.05

Threshold θ 0.06
Number of episodes 1000

Episode length 50
Sequence size during RNN modeling T 20

Number of updates 100000
Learning Rate 0.0005

Batch Size 100

Table 2: Hyperparameters for the interaction graph estimation for all environments.

18

	SRICS pseudocode
	Generalization to Unseen Combination of Objects
	Multi-object Rearrange Environments
	Additional Experimental Results
	Larger Number of Different Objects
	State Representation Extended with Object's Velocity

	Goal-Conditioned Attention Policy
	Subgoals Selectivity as an Evaluation Metric
	Estimation of the Global Interaction Graph
	Evaluation on the Average Objects Distance
	Ordering of the Subgoals
	Implementation Details
	SRICS
	Prior Work

