
A Appendix

A.1 Term Clarification

Since we compare with a variety of methods in the paper, here we clarify some of the terms we use.

what we say what we are referring to

Best-Automated (Fig. 1a) WRN, WRN-ASHA, DARTS, DenseNAS, Auto-DL, AMBER
Hand-Designed (Fig. 1a) Expert architectures in Table 4

AutoML WRN-ASHA, DARTS, DenseNAS, Auto-DL, AMBER
NAS DARTS, DenseNAS, Auto-DL, AMBER
WRN WRN without hyperparameter tuning

A.2 Asymptotic Analysis

In this section we outline the runtime analysis used to populate the asymptotic complexities in
Table 1. All three methods in the table—mixed-results, mixed-weights, and DASH—are computing
the following weighted sum of convolutions:

AggConvK,D(x) :=
X

k2K

X

d2D

↵k,d · Conv(wk,d)(x). (6)

We consider 1D inputs x with length n and cin input channels; the convolutions have cout output
channels. We view Conv(wk,d)(x) as having the naive complexity cincoutkn since the deep
learning frameworks use the direct (non-Fourier) algorithm. mixed-results computes the sum directly,
which involves (1) applying one convolution of each size k and dilation to x at a cost of cincoutkn
MULTs and ADDs each for a total cost of cincoutK̄n, (2) scalar-multiplying the outputs at a cost
of cout|K||D|n MULTs, and (3) summing the results together at a cost of cout|K||D|n ADDs.
mixed-weights instead (1) multiplies all kernels by their corresponding weight at a cost of cincoutK̄
MULTs, (2) zero-pads the results to the largest effective kernel size D̄ and adds them together at a
cost of cincout|K||D|D̄ ADDs, and (3) applies the resulting D̄-size convolution to the input at a cost
of cincoutD̄n MULTs and ADDs. Finally, DASH also (1) does the first two steps of mixed-weights
at a cost of cincoutK̄ MULTs and cincout|K||D|D̄ ADDs but then (2) pads the resulting D̄-size
convolution to size n and applies an FFT at a cost of O(cincoutn log n) MULTs and ADDs, (3)
applies an FFT to x at a cost of O(cinn log n), (4) element-wise multiplies the transformed filters by
the inputs at a cost of cincoutn MULTs, (5) adds up cin results for each of cout output channels at a
cost of cincout MULTs, and (6) applies an iFFT to the result at a cost of O(coutn log n).

A.3 Experiment Details for Fig. 2 and Fig. 3

For the speed tests, we work with the Sequential MNIST dataset, i.e., the 2D 28 ⇥ 28 images are
stretched into 1D with length 784. We zero pad or truncate the input to generate data with different
input size n. The backbone is 1D WRN with the same structure as introduced in Section 3. The batch
size is 128. We run the workflow on a single NVIDIA V100 GPU. The timing results reported are the
log10(combined forward and backward pass time for one search epoch).

In Fig. 2, we study how the size of our multi-scale convolution search space affects the runtimes
of mixed-results, mixed-weights, and DASH for n = 1000 (zero-padded MNIST). We define K =
{3 + 2(p � 1)|1  p  c}, D = {2q

� 1|1  q  c} and varies c from 1 to 7. Consequently, the
number of operations included in the search space grows from 1 to 49.

In Fig. 3, we study how the input size affects the runtimes of the three methods. We fix K =
{3, 5, 7, 9, 11}, D = {1, 3, 7, 15, 31} and vary n from 25 to 212.

15

A.4 Information About Tasks in NAS-Bench-360

Table 4: Information about evaluation tasks in NAS-Bench-360 [4].

Task name # Data Data dim. Type License Learning objective Expert arch.

CIFAR-100 60K 2D Point CC BY 4.0 Classify natural images into 100 classes DenseNet-BC
[45]

Spherical 60K 2D Point CC BY-SA Classify spherically projected images S2CN
into 100 classes [46]

NinaPro 3956 2D Point CC BY-ND Classify sEMG signals into 18 classes Attention Model
corresponding to hand gestures [47]

FSD50K 51K 2D Point CC BY 4.0 Classify sound events in log-mel VGG
(multi-label) spectrograms with 200 labels [48]

Darcy Flow 1100 2D Dense MIT Predict the final state of a fluid from its FNO
initial conditions [37]

PSICOV 3606 2D Dense GPL Predict pairwise distances between resi- DEEPCON
duals from 2D protein sequence features [49]

Cosmic 5250 2D Dense Open License Predict propablistic maps to identify cos- deepCR-mask
mic rays in telescope images [50]

ECG 330K 1D Point ODC-BY 1.0 Detect atrial cardiac disease from ResNet-1D
a ECG recording (4 classes) [51]

Satellite 1M 1D Point GPL 3.0 Classify satellite image pixels’ time ROCKET
series into 24 land cover types [52]

DeepSEA 250K 1D Point CC BY 4.0 Predict chromatin states and binding DeepSEA
(multi-label) states of RNA sequences (36 classes) [53]

A.5 Evaluation of DASH on NAS-Bench-360

A.5.1 Backbone Network Structure

2D Tasks We use the Wide ResNet 16-4 [34] as the backbone for all 2D tasks. The original model is
made up of 16 3⇥3 conv followed by 6 WRN blocks with the following structure (i 2 {1, 2, 3, 4, 5, 6}
indicates the block index):

BatchNorm, ReLU
Conv 1 16⇥ 4⇥ ((i+ 1)//2) (k = 3, d = 1) filters, ReLU
Dropout dropout rate p

BatchNorm, ReLU
Conv 2 16⇥ 4⇥ ((i+ 1)//2) (k = 3, d = 1) filters , stride = (i+ 1)//2, ReLU

Add residual (apply point-wise conv first if cin 6= cout)

The output block consists of a BatchNorm layer, a ReLU activation, a linear layer, and a final activation
layer which we modify according to the task learning objective, e.g., log softmax for classification and
sigmoid for dense prediction. We set p = 0 in search and tune p as a hyperparameter for retraining. We
use the WRN code provided here: https://github.com/meliketoy/wide-resnet.pytorch.

16

https://github.com/meliketoy/wide-resnet.pytorch

1D Tasks We use the 1D WRN [35] as the backbone for all 1D tasks. The model is made up of 3
residual blocks with the following structure:

Conv 1 cout (k = 8, d = 1) filters
Dropout dropout rate p

BatchNorm, ReLU
Conv 2 cout (k = 5, d = 1) filters
Dropout dropout rate p

BatchNorm, ReLU
Conv 3 cout (k = 3, d = 1) filters
Dropout dropout rate p

BatchNorm, ReLU

In the original architecture, cout = 64. We set cout to min(4num_classes//10+1, 64) to account for
simpler tasks with fewer class labels. The output block consists of a linear layer and a activation layer
which we modify according to the task learning objective, e.g., log softmax for classification and
sigmoid for dense prediction. We set p = 0 in search and tune p as a hyperparameter for retraining. We
use the 1D WRN code provided here: https://github.com/okrasolar/pytorch-timeseries.

A.5.2 DASH Pipeline Hyperparameters

Search

• Epoch: 100

• Optimizer: SGD(momentum=0.9, nesterov=True, weight_decay=5e-4) for both model
weights and architecture parameters

• Model weight learning rate: 0.1 for point prediction tasks, 0.01 for dense tasks
• Architecture parameter learning rate: 0.05 for point prediction tasks, 0.005 for dense tasks
• Learning rate scheduling: decay by 0.2 at epoch 60

• Gradient clipping threshold: 1

• Softmax temperature: 1

• Subsampling ratio: 0.2

To constrain the size of the searched model, we can add a regularization term to the gradients of the
architecture parameters of large kernels. We set the penalty to 1e-5 times the receptive field size.

Hyperparameter tuning

• Epoch: 80

• Configuration space:
– Learning rate: {1e-1, 1e-2, 1e-3}
– Weight decay: {5e-4, 5e-6}
– Momentum: {0.9, 0.99}
– Dropout rate: {0, 0.05}

Retraining

• Epoch: 200

• Learning rate scheduling: for 2D tasks, decay by 0.2 at epoch 60, 120, 160; for 1D tasks, decay
by 0.2 at epoch 30, 60, 90, 120, 160

Task-Specific Hyperparameters

17

https://github.com/okrasolar/pytorch-timeseries

2D tasks CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K

Batch size 64 64 10 8 4 128 128
Input size (32, 32) (60, 60) (85, 85) (128, 128) (128, 128) (16, 52) (96, 101)

Kernel sizes (K) {3, 5, 7, 9} {3, 5, 7, 9} {3, 5, 7, 9} {3, 5, 7, 9} {3, 5, 7, 9} {3, 5, 7, 9} {3, 5, 7, 9}
Dilations (D) {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15}

Loss (l) Cross Entropy Cross Entropy L2 MSE BCE w. Logits Focal BCE w. Logits

1D tasks Satellite ECG DeepSEA

Batch size 256 1024 256
Input size 46 1000 1000

Kernel sizes (K) {3, 7, 11, 15, 19} {3, 7, 11, 15, 19} {3, 7, 11, 15, 19}
Dilations (D) {1, 3, 7, 15} {1, 3, 7, 15} {1, 3, 7, 15}

Loss (l) Cross Entropy Cross Entropy BCE w. Logits

A.6 Accuracy Results on NAS-Bench-360 with Error Bars

Table 5: Error rates (lower is better) of DASH and the baselines on tasks in NAS-Bench-360. Methods
are grouped into three classes: non-automated, automated, and the DASH family. Results of DASH
are averaged over three trials using the models obtained after the last retraining epoch.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic
0-1 error(%) 0-1 error(%) relative `2 MAE8 1-AUROC

WRN 23.35±0.05 85.77±0.71 0.073±0.001 3.84±0.053 0.24±0.015
Expert 19.39±0.20 67.41±0.76 0.008±0.001 3.35±0.14 0.13±0.01
Perceiver IO 70.04±0.44 82.57±0.19 0.24±0.01 8.06±0.06 0.48±0.01

WRN-ASHA 23.39±0.01 75.46±0.40 0.066±0.00 3.84±0.05 0.25±0.021
DARTS-GAEA 24.02±1.92 48.23±2.87 0.026±0.001 2.94±0.13 0.22±0.035
DenseNAS 25.98±0.38 72.99±0.95 0.10±0.01 3.84±0.15 0.38±0.038
Auto-DL - - 0.049±0.005 6.73±0.73 0.49±0.004

BABY DASH 25.56±1.37 63.45±0.88 0.016±0.002 3.94±0.54 0.16±0.007
DASH 24.37±0.81 71.28±0.68 0.0079±0.002 3.30±0.16 0.19±0.02

NinaPro FSD50K ECG Satellite DeepSEA
0-1 error (%) 1- mAP 1-F1 0-1 error (%) 1-AUROC

WRN 6.78±0.26 0.92±0.001 0.43±0.01 15.49±0.03 0.40±0.001
TCN - - 0.57±0.005 16.21±0.05 0.44±0.001
Expert 8.73±0.9 0.62±0.004 0.28±0.00 19.8±0.00 0.30±0.24
Perceiver IO 22.22±1.80 0.72±0.002 0.66±0.01 15.93±0.08 0.38±0.004

WRN-ASHA 7.34±0.76 0.91±0.03 0.43±0.01 15.84±0.52 0.41±0.002
DARTS-GAEA 17.67±1.39 0.94±0.02 0.34±0.01 12.51±0.24 0.36±0.02
DenseNAS 10.17±1.31 0.64±0.002 0.40±0.01 13.81±0.69 0.40±0.001
AMBER - - 0.67±0.015 12.97±0.07 0.68±0.01

BABY DASH 8.28±0.62 0.62±0.01 0.37±0.001 13.29±0.108 0.37±0.017
DASH 6.60±0.33 0.60±0.008 0.32±0.007 12.28±0.5 0.28±0.013

18

A.7 Runtime of DASH on NAS-Bench-360

Table 6: Runtime breakdown for DASH on NAS-Bench-360 tasks evaluated on a NVIDIA V100
GPU.

Task Search Hyperparameter Tuning Retraining Total

CIFAR-100 1.6 0.15 0.77 2.5

Spherical 1.6 0.25 3.16 5.0

Darcy Flow 0.16 1.6 3.5 5.3

PSICOV 0.88 0.64 14 15

Cosmic 1.6 0.055 5.1 6.8

NinaPro 0.028 0.16 0.11 0.30

FSD50K 0.88 0.88 27 29

ECG 0.18 0.28 0.83 1.3

Satellite 1.8 0.4 4.3 6.5

DeepSEA 0.36 1.6 8.3 10

A.8 Searched Architecture Visualization

In this section, we give two example networks searched by DASH to show that large kernel matters
for diverse tasks.

A.8.1 2D Example: Darcy Flow

For this problem, DASH generates a WRN 16-4 [34] for retraining. The network architecture consists
of several residual blocks. For instance, we can use Block64,(7,1),(9,3) to denote the residual block
with the following structure:

BN+ReLU

64

DilatedConv7⇥7,1

Dropout BN+ReLU

64

DilatedConv9⇥9,3

where 64 is the output channel and BN denotes the BatchNorm layer. Note that size of a convolutional
layer in the figure is proportional to the kernel size but not the number of channels. Then, an example
network produced by DASH for Darcy Flow looks like the following:

19

16

DilatedConv5⇥5,3

Block64,(3,1),(3,1)

Block64,(3,15),(7,15)

Block128,(9,7),(9,7)

Block128,(3,7),(5,7)

Block256,(5,15),(9,7)

Block256,(3,7),(7,7)

BN+ReLU

Linear

Channel-

Matching

Since Darcy Flow is a dense prediction task, the last layer is a channel-matching (permuta-
tion+linear+permutation) layer instead of a pooling+linear layer for classification.

A.8.2 1D Example: DeepSEA

For this problem, DASH generates a 1D WRN [35] for retraining. The network architecture consists
of several residual blocks. For instance, we can use Block64,(3,1),(5,3),(7,5) to denote the residual
block with the following structure:

64

DilatedConv3,1 Dropout BN+ReLU

64

DilatedConv5,3

Dropout BN+ReLU

64

DilatedConv7,5

Dropout BN+ReLU

64

DilatedConv9⇥9,3

where 64 is the output channel and BN denotes the BatchNorm layer. Then, an example network
produced by DASH for DeepSEA looks like the following:

Block64,(11,1),(19,7),(19,1)

Block128,(19,1),(19,7),(15,15)

Block128,(19,15),(19,15),(19,15)

AvgPool1D

Flatten+Linear

We can see that large kernels are indeed selected during search.

20

A.9 Additional Results

A.9.1 DASH-TCN for NAS-Bench-360

DASH works for all networks with a convolutional layer, so WRNs are not the only applicable
backbone. Below, we provide the test errors of DASH with the 1D Temporal Convolutional Network
backbone on some 1D tasks:

Table 7: Test errors for 1D NAS-Bench-360 tasks using the TCN backbone.

ECG Satellite DeepSEA

Vanilla TCN 0.57±0.005 16.21±0.05 0.44±0.001
DASH-TCN 0.29±0.004 12.39±0.043 0.24±0.012

We did not include the results in the paper to simplify presentation. Also, using WRNs in our
workflow allows us to provide a fully automated pipeline that generates decent-performing models
as quickly (due to its small size) and easily (due to the code for training WRNs being easily found
online) as possible for previously unexplored tasks.

A.9.2 DASH-ConvNeXt for ImageNet

Though our motivation is not to compete in the crowded vision domain but to provide a general
solution to less-studied domains, we show that DASH is backward compatible with vision tasks
by testing it on ImageNet-1K with two backbones of distinct scales. Our results show that DASH
generalizes to tasks with large input shape (3 ⇥ 224 ⇥ 224), dataset size (1.2M), and number of
classes (1000). It improves the accuracy of the original models and searches efficiently regardless of
the backbone used.

We used Wide ResNet 16-4 (to be consistent with our workflow) and ConvNeXt-T [15] (a large-
scale CNN that has onpar performance with SoTA Transformers) as the backbones and performed
experiments on 4 NVIDIA V100 GPUs. To demonstrate DASH’s efficiency, we first present the
per-epoch search time (forward and backward time in secs) for three baselines over the search space
K = {3, 5, 7, 9, 11}, D = {1, 3, 7}. A subset of 4096 images is used.

Table 8: Time for one search epoch (forward & backward) in seconds using different backbones.

WRN ConvNeXt

param 3M 28M

DASH 151.3 80.5
Mixed-weights 705.4 300.1
Mixed-results 330.6 149.6

We can see that DASH’s efficiency holds for both backbones. Though ConvNeXt has more parameters,
it is searched faster than WRN as it has fewer conv layers and applies downsampling to the input.

Then, we report DASH’s runtime vs. the train-time of the vanilla backbone (in hours). We let DASH
search for 10 epochs with subsampling ratio 0.2. (Re)training takes 50 and 100 epochs for WRN and
ConvNeXt, respectively.

Table 9: Runtime breakdown for DASH and the backbones on ImageNet-1K.

WRN ConvNeXt

DASH search 24 13
DASH retrain 52 48

Backbone train 16 41

Lastly, we report the top-1 accuracy of the searched vs. original models to show DASH generalizes to
large vision input. We trained ConvNeXt for 300 epochs.

21

Table 10: Prediction errors (%) for DASH and backbones on ImageNet-1K. Backbone results are
taken from [15].

WRN ConvNeXt

Vanilla Backbone 37.56±0.14 17.9±0.0
DASH Searched Model 34.12±0.21 16.42±0.15

In general, DASH improves backbone performance by adopting task-specific kernels.

22

