
A Organization of the Appendices482

In the Appendix, we give proofs of all results from the main text. In Appendix B, we study properties483

of square-root-Lipschitz functions and introduce some technical tools that we use throughout the484

appendix. In Appendix C, we prove our main uniform convergence guarantee (Theorem 1 and485

the more general version Theorem 6). In Appendix D, we obtain bounds on the minimal norm486

required to interpolate in the settings studied in section 5. In Appendix E, we provide details on the487

counterexample to Gaussian universality described in section 7.488

B Preliminaries489

B.1 Properties of Square-root Lipschitz Loss490

In this section, we prove that square-root Lipschitzness can be equivalently characterized by a491

relationship between a function and its Moreau envelope, which can be used to establish uniform492

convergence results based on the recent work of Zhou et al. 2022. We formally define Lipschitz493

functions and Moreau envelope below.494

Definition 1. A function f : R ! R is M -Lipschitz if for all x, y in R,495

|f(x)� f(y)|  M |x� y|. (33)

Definition 2. The Moreau envelope of a function f : R ! R associated with smoothing parameter496

� 2 R+ is defined as497

f�(x) := inf
y2R

f(y) + �(y � x)2. (34)

Though we define Lipschitz functions and Moreau envelope for univariate functions from R to R498

above, we can easily extend definitions 1 and 2 to loss functions f : R⇥Y ! R or f : R⇥Y⇥⇥! R.499

We say a function f : R⇥ Y ! R is M -Lipschitz if for any y 2 Y and ŷ1, ŷ2 2 R, we have500

|f(ŷ1, y)� f(ŷ2, y)|  M |ŷ1 � ŷ2|.

Similarly, we say a function f : R ⇥ Y ⇥ ⇥ ! R is M -Lipschitz if for any y 2 Y, ✓ 2 ⇥ and501

ŷ1, ŷ2 2 R, we have502

|f(ŷ1, y, ✓)� f(ŷ2, y, ✓)|  M |ŷ1 � ŷ2|.

We can also define the Moreau envelope of a function f : R⇥ Y ! R by503

f�(ŷ, y) := inf
u2R

f(u, y) + �(u� ŷ)2,

and the Moreau envelope of a function f : R⇥ Y ⇥⇥! R is defined as504

f�(ŷ, y, ✓) := inf
u2R

f(u, y, ✓) + �(u� ŷ)2.

The proof of all results in this section can be straightforwardly extended to these settings. For505

simplicity, we ignore the additional arguments in Y and ⇥ in this section.506

The Moreau envelope is usually viewed as a smooth approximation to the original function f ; its507

minimizer is known as the proximal operator. It plays an important role in convex analysis (see508

e.g. Boyd et al. 2004; Bauschke, Combettes, et al. 2011; Rockafellar 1970), but is also useful and509

well-defined when f is nonconvex. The canonical example of a
p
H-square-root-Lipschitz function510

is f(x) = Hx2, for which we can easily check511

f�(x) =
�

�+H
f(x).

In proposition 1 below, we show that the condition f� �
�

�+H
f is exactly equivalent to

p
H-square-512

root-Lipschitzness.513

Proposition 1. A function f : R ! R is non-negative and
p
H-square-root-Lipschitz if and only if514

for any x 2 R and � � 0, it holds that515

f�(x) �
�

�+H
f(x). (35)
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Proof. Suppose that equation (35) holds, then by taking � = 0 and the definition in equation (2), we516

see that f must be non-negative. For an non-negative function f , we observe for any x 2 R, it holds517

that518

8� � 0, f�(x) �
�

�+H
f(x)

() 8� > 0, f�(x) �
�

�+H
f(x) since f� � 0

() inf
�>0

�+H

�
f�(x) � f(x)

() inf
�>0

�+H

�
inf
y2R

f(y) + �(y � x)2 � f(x) by equation (2)

() inf
y2R

inf
�>0

✓
1 +

H

�

◆
f(y) + (�+H)(y � x)2 � f(x)

() inf
y2R

f(y) +H(y � x)2 + 2
p
f(y)H(y � x)2 � f(x) by �⇤ =

s
Hf(y)

(y � x)2

() 8y 2 R, (
p
f(y) +

p

H|y � x|)2 � f(x)

() 8y 2 R,
p

H|y � x| �
p
f(x)�

p
f(y) since f � 0.

Therefore, f must be
p
H-square-root-Lipschitz as well. Conversely, if f is non-negative and519

p
H-square-root-Lipschitz, then the above implies that (2) must hold and we are done.520

Interestingly, there is a similar equivalent characterization for Lipschitz functions as well.521

Proposition 2. A function f : R ! R is M -Lipschitz if and only if for any x 2 R and � > 0, it holds522

that523

f�(x) � f(x)�
M2

4�
. (36)

Proof. Observe that for any x 2 R, it holds that524

8� > 0, f�(x) � f(x)�
M2

4�

() inf
�>0

f�(x) +
M2

4�
� f(x)

() inf
�>0,y2R

f(y) + �(y � x)2 +
M2

4�
� f(x) by equation (2)

() inf
y2R

f(y) +M |y � x| � f(x) by �⇤ =
M

2|y � x|

() 8y 2 R, M |y � x| � f(x)� f(y)

and we are done.525

Finally, we show that any smooth loss is square-root-Lipschitz. Therefore, the class of square-root-526

Lipschitz losses is more general than the class of smooth losses studied in Srebro et al. 2010.527

Definition 3. A twice differentiable1 function f : R ! R is H-smooth if for all x in R528

|f 00(x)|  H.

The following result is similar to to Lemma 2.1 in Srebro et al. 2010:529

Proposition 3. Let f : R ! R be a H-smooth and non-negative function. Then for any x 2 R, it530

holds that531

|f 0(x)| 
p

2Hf(x).

Therefore,
p
f is

p
H/2-Lipschitz.532

1The definition of smoothness can be stated without twice differentiability, by instead requiring the gradient
to be Lipschitz. We make this assumption here simply for convenience.
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Proof. Since f is H-smooth and non-negative, by Taylor’s theorem, for any x, y 2 R, we have533

0  f(y)

= f(x) + f 0(x)(y � x) +
f 00(a)

2
(y � x)2

 f(x) + f 0(x)(y � x) +
H

2
(y � x)2

where a 2 [min(x, y),max(x, y)]. Setting y = x�
f
0(x)
H

yields the desired bound. To show that
p
f534

is Lipschitz, we observe that for any x 2 R535

����
d

dx

p
f(x)

���� =

�����
f 0(x)

2
p

f(x)

����� 
p

H/2

and so we apply Taylor’s theorem again to show that536

|

p
f(x)�

p
f(y)| 

p
H/2 |x� y|

which is the desired definition.537

B.2 Properties of Gaussian Distribution538

We will make use of the following results without proof.539

Gaussian Minimax Theorem. Our proof of Theorem 1 and 6 will closely follow prior works that540

apply Gaussian Minimax Theorem (GMT) to uniform convergence (Koehler et al. 2021; Zhou et al.541

2021; Zhou et al. 2022; Wang et al. 2021; Donhauser et al. 2022). The following result is Theorem 3542

of Thrampoulidis et al. 2015 (see also Theorem 1 in the same reference). As explained there, it is a543

consequence of the main result of Gordon (1985), known as Gordon’s Theorem.544

Theorem 7 (Thrampoulidis et al. 2015; Gordon 1985). Let Z : n⇥ d be a matrix with i.i.d. N (0, 1)545

entries and suppose G ⇠ N (0, In) and H ⇠ N (0, Id) are independent of Z and each other. Let546

Sw, Su be compact sets and  : Sw ⇥ Su ! R be an arbitrary continuous function. Define the547

Primary Optimization (PO) problem548

�(Z) := min
w2Sw

max
u2Su

hu, Zwi+  (w, u) (37)

and the Auxiliary Optimization (AO) problem549

�(G,H) := min
w2Sw

max
u2Su

kwk2hG, ui+ kuk2hH,wi+  (w, u). (38)

Under these assumptions, Pr(�(Z) < c)  2Pr(�(G,H)  c) for any c 2 R.550

Furthermore, if we suppose that Sw, Su are convex sets and  (w, u) is convex in w and concave in u,551

then Pr(�(Z) > c)  2Pr(�(G,H) � c).552

GMT is an extremely useful tool because it allows us to convert a problem involving a random553

matrix into a problem involving only two random vectors. In our analysis, we will make use of a554

slightly more general version of Theorem 7, introduced by Koehler et al. (2021), to include additional555

variables which only affect the deterministic term in the minmax problem.556

Theorem 8 (Variant of GMT). Let Z : n ⇥ d be a matrix with i.i.d. N (0, 1) entries and suppose557

G ⇠ N (0, In) and H ⇠ N (0, Id) are independent of Z and each other. Let SW , SU be compact558

sets in Rd
⇥ Rd

0
and Rn

⇥ Rn
0

respectively, and let  : SW ⇥ SU ! R be an arbitrary continuous559

function. Define the Primary Optimization (PO) problem560

�(Z) := min
(w,w0)2SW

max
(u,u0)2SU

hu, Zwi+  ((w,w0), (u, u0)) (39)

and the Auxiliary Optimization (AO) problem561

�(G,H) := min
(w,w0)2SW

max
(u,u0)2SU

kwk2hG, ui+ kuk2hH,wi+  ((w,w0), (u, u0)). (40)

Under these assumptions, Pr(�(Z) < c)  2Pr(�(G,H)  c) for any c 2 R.562
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Theorem 8 requires SW and SU to be compact. However, we can usually get around the compactness563

requirement by a truncation argument.564

Lemma 1 (Zhou et al. 2022, Lemma 6). Let f : Rd
! R be an arbitrary function and S

d

r
= {x 2565

Rd : kxk2  r}, then for any set K, it holds that566

lim
r!1

sup
w2K\Sd

r

f(w) = sup
w2K

f(w). (41)

If f is a random function, then for any t 2 R567

Pr

✓
sup
w2K

f(w) > t

◆
= lim

r!1
Pr

 
sup

w2K\Sd
r

f(w) > t

!
. (42)

Lemma 2 (Zhou et al. 2022, Lemma 7). Let K be a compact set and f, g be continuous real-valued568

functions on Rd. Then it holds that569

lim
r!1

sup
w2K

inf
0�r

�f(w) + g(w) = sup
w2K:f(w)�0

g(w). (43)

If f and g are random functions, then for any t 2 R570

Pr

 
sup

w2K:f(w)�0
g(w) � t

!
= lim

r!1
Pr

✓
sup
w2K

inf
0�r

�f(w) + g(w) � t

◆
. (44)

Concentration inequalities. Let �min(A) denote the minimum singular value of an arbitrary matrix571

A, and �max the maximum singular value. We use kAkop = �max(A) to denote the operator norm572

of matrix A. The following concentration results for Gaussian vector and matrix are standard.573

Lemma 3 (Special case of Theorem 3.1.1 of Vershynin 2018). Suppose that Z ⇠ N (0, In). Then574

Pr(
��kZk2 �

p
n
�� � t)  4e�t

2
/4. (45)

Lemma 4 (Koehler et al. 2021, Lemma 10). For any covariance matrix ⌃ and H ⇠ N (0, Id), with575

probability at least 1� �, it holds that576

1�
k⌃1/2Hk

2
2

Tr(⌃)
. log(4/�)p

R(⌃)
(46)

and577

k⌃Hk
2
2 . log(4/�) Tr(⌃2). (47)

Therefore, provided that R(⌃) & log(4/�)2, it holds that578
✓

k⌃Hk2

k⌃1/2Hk2

◆2

. log(4/�)
Tr(⌃2)

Tr(⌃)
. (48)

Theorem 9 (Vershynin 2010, Corollary 5.35). Let n,N 2 N. Let A 2 RN⇥n be a random matrix579

with entries i.i.d. N (0, 1). Then for any t > 0, it holds with probability at least 1� 2 exp(�t2/2)580

that581 p

N �
p
n� t  �min(A)  �max(A) 

p

N +
p
n+ t. (49)

Conditional Distribution of Gaussian. To handle arbitrary multi-index conditional distributions582

of y given by assumption (B), we will apply a conditioning argument. After conditioning on WTx583

and ⇠, the response y is no longer random. Importantly, the conditional distribution of x remains584

Gaussian (though with a different mean and covariance) and so we can still apply GMT. In the lemma585

below, Z 2 Rn⇥d is a random matrix with i.i.d. N (0, 1) entries and X = Z⌃1/2.586

Lemma 5 (Zhou et al. 2022, Lemma 4). Fix any integer k < d and any k vectors w⇤
1 , ..., w

⇤
k

in Rd587

such that ⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k

are orthonormal. Denoting588

P = Id �
kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T , (50)

the distribution of X conditional on Xw⇤
1 = ⌘1, ..., Xw⇤

k
= ⌘k is the same as that of589

kX

i=1

⌘i(⌃w
⇤
i
)T + ZP⌃1/2. (51)
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B.3 Vapnik-Chervonenkis (VC) theory590

By the conditioning step mentioned above, we will separate x into a low-dimensional component591

WTx and the independent component QTx. Concentration results for the low-dimensional compo-592

nent can be easily established using VC theory. As mentioned in Zhou et al. 2022, low-dimensional593

concentration can be established using alternative results (e.g., Vapnik 1982; Panchenko 2002;594

Panchenko 2003; Mendelson 2017).595

Recall the following definition of VC-dimension from Shalev-Shwartz and Ben-David (2014).596

Definition 4. Let H be a class of functions from X to {0, 1} and let C = {c1, ..., cm} ⇢ X . The597

restriction of H to C is598

HC = {(h(c1), ..., h(cm)) : h 2 H}.

A hypothesis class H shatters a finite set C ⇢ X if |HC | = 2|C|. The VC-dimension of H is the599

maximal size of a set that can be shattered by H. If H can shatter sets of arbitrary large size, we say600

H has infinite VC-dimension.601

Also, we have the following well-known result for the class of nonhomogenous halfspaces in Rd602

(Theorem 9.3 of Shalev-Shwartz and Ben-David (2014)), and the result on VC-dimension of the603

union of two hypothesis classes (Lemma 3.2.3 of Blumer et al. (1989)):604

Theorem 10. The class {x 7! sign(hw, xi+ b) : w 2 Rd, b 2 R} has VC-dimension d+ 1.605

Theorem 11. Let H a hypothesis classes of finite VC-dimension d � 1. Let H2 := {max(h1, h2) :606

h1, h2 2 H} and H3 := {min(h1, h2) : h1, h2 2 H}. Then, both the VC-dimension of H2 and the607

VC-dimension of H3 are O(d).608

By combining Theorem 10 and 11, we can easily verify the VC assumption in Corollary 1 for the609

phase retrieval loss f(ŷ, y) = (|ŷ| � y)2. Similar results can be proven for ReLU regression. To610

verify the VC assumption for single-index neural nets in Corollary 2, we can use the following result611

(equation 2 of Bartlett et al. (2019)):612

Theorem 12. The VC-dimension of a neural network with piecewise linear activation function, W613

parameters, and L layers has VC-dimension O(WL logW ).614

We can easily establish low-dimensional concentration due to the following result:615

Theorem 13 (Vapnik 1982, Special case of Assertion 4 in Chapter 7.8; see also Theorem 7.6).616

Suppose that the loss function l : Z ⇥⇥! R�0 satisfies617

(i) for every ✓ 2 ⇥, the function l(·, ✓) is measurable with respect to the first argument618

(ii) the class of functions {z 7! {l(z, ✓) > t} : (✓, t) 2 ⇥⇥ R} has VC-dimension at most h619

and the distribution D over Z satisfies for every ✓ 2 ⇥620

Ez⇠D[l(z, ✓)4]1/4

Ez⇠D[l(z, ✓)]
 ⌧, (52)

then for any n > h, with probability at least 1 � � over the choice of (z1, . . . , zn) ⇠ D
n, it holds621

uniformly over all ✓ 2 ⇥ that622

1

n

nX

i=1

l(zi, ✓) �

 
1� 8⌧

r
h(log(2n/h) + 1) + log(12/�)

n

!
Ez⇠D[l(z, ✓)]. (53)

C Proof of Theorem 6623

It is clear that Theorem 1 is a special case of Theorem 6. Therefore, we will prove the more general624

result here.625

Notation. Following the tradition in statistics, we denote X = (x1, ..., xn)T 2 Rn⇥d as the design626

matrix. In the proof section, we slightly abuse the notation of ⌘i to mean Xw⇤
i

and ⇠ to mean the627

n-dimensional random vector whose i-th component satisfies yi = g(⌘1,i, ..., ⌘k,i, ⇠i). We will write628

X = Z⌃1/2 where Z is a random matrix with i.i.d. standard normal entries if µ = 0.629
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Throughout this section, we can first assume µ = 0 in Assumption (A) without loss of generality630

because if we define f̃ : R⇥ Y ⇥⇥! R by631

f̃(ŷ, y, ✓) := f(ŷ + hw(✓), µi, y, ✓), (54)
then by definition, it holds that632

f(hw(✓), xi, y, ✓) = f̃(hw(✓), x� µi, y, ✓)

and so we can apply the theory on f̃ first and then translate to the problem on f . Similarly, we can633

also assume ⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k

are orthonormal without loss of generality. This is because we can634

denote W 2 Rd⇥k by W = [w⇤
1 , ..., w

⇤
k
] and let W̃ = W (WT⌃W )�1/2. By definition, it holds that635

W̃T⌃W̃ = I and so the columns of W̃ = [w̃⇤
1 , ..., w̃

⇤
k
] satisfy ⌃1/2w̃⇤

1 , ...,⌃
1/2w̃⇤

k
are orthonormal.636

If we define g̃ : Rk+1
! R by637

g̃(⌘1, ..., ⌘k, ⇠) = g([⌘1, ..., ⌘k](W
T⌃W )1/2 + µTW, ⇠), (55)

then y = g̃(xT W̃ , ⇠) and so we can apply the theory on g̃.638

We will write the generalization problem as a Primary Optimization problem in Theorem 8. For639

generality, we will let F be any deterministic function and then choose it in the end.640

Lemma 6. Fix an arbitrary set ⇥ ✓ Rp and let F : ⇥ ! R be any deterministic and continuous641

function. Consider dataset (X,Y ) drawn i.i.d. from the data distribution D according to (A) and (B)642

with µ = 0 and orthonormal ⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k
. Then conditioned on Xw⇤

1 = ⌘1, ..., Xw⇤
k
= ⌘k643

and ⇠, if we define644

� := sup
(w,u,✓)2Rd⇥Rn⇥⇥

w=P⌃1/2
w(✓)

inf
�2Rn

h�, Zwi+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠) (56)

where P is defined in (50) and  is a deterministic and continuous function given by645

 (u, ✓,� | ⌘1, ..., ⌘k, ⇠) = F (✓)�
1

n

nX

i=1

f(ui, g(⌘1,i, ..., ⌘k,i, ⇠i), ✓)

+ h�,

 
kX

i=1

⌘i(⌃w
⇤
i
)T
!
w(✓)� ui,

(57)

then it holds that for any t 2 R, we have646

Pr

✓
sup
✓2⇥

F (✓)� L̂(✓) > t
��� ⌘1, ..., ⌘k, ⇠

◆
= Pr(� > t). (58)

Proof. By introducing a variable u = Xw(✓), we have647

sup
✓2⇥

F (✓)� L̂(✓) = sup
✓2⇥

F (✓)�
1

n

nX

i=1

f(hw(✓), xii, yi, ✓)

= sup
✓2⇥,u2Rn

inf
�2Rn

h�, Xw(✓)� ui+ F (✓)�
1

n

nX

i=1

f(ui, yi, ✓).

Conditioned on Xw⇤
1 = ⌘1, ..., Xw⇤

k
= ⌘k and ⇠, the above is only random in X by our multi-index648

model assumption on y. By Lemma 5, the above is equal in law to649

sup
✓2⇥,u2Rn

inf
�2Rn

h�,

 
kX

i=1

⌘i(⌃w
⇤
i
)T + ZP⌃1/2

!
w(✓)� ui+ F (✓)�

1

n

nX

i=1

f(ui, yi, ✓)

= sup
✓2⇥,u2Rn

inf
�2Rn

h�,
⇣
ZP⌃1/2

⌘
w(✓)i+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠)

= sup
(w,u,✓)2Rd⇥Rn⇥⇥

w=P⌃1/2
w(✓)

inf
�2Rn

h�, Zwi+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠)

=�.

The function  is continuous because we require F, f and w to be continuous in the definitions.650
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Next, we are ready to apply Gaussian Minimax Theorem. Although the domains in (56) are not651

compact, we can use the truncation lemmas 1 and 2 in Appendix B.652

Lemma 7. In the same setting as Lemma 6, define the auxiliary problem as653

 := sup
(u,✓)2Rn⇥⇥

hH,P⌃1/2
w(✓)i�kkP⌃1/2

w(✓)k2G+
Pk

i=1hw(✓),⌃w
⇤
i i⌘i�uk

2

F (✓)�
1

n

nX

i=1

f(ui, yi, ✓) (59)

then for any t 2 R, it holds that654

Pr

✓
sup
✓2K

F (✓)� L̂(✓) > t

◆
 2Pr( � t). (60)

where the randomness in the second probability is taken over G,H, ⌘1, ..., ⌘k and ⇠.655

Proof. Denote Sr = {(w, u, ✓) 2 Rd
⇥Rn

⇥⇥ : w = P⌃1/2w(✓) and kwk2+kuk2+k✓k2  r}.656

The set Sr is bounded by definition and closed by the continuity of w. Hence, it is compact. Next,657

we denote the truncated problems:658

�r := sup
(w,u,✓)2Sr

inf
�2Rn

h�, Zwi+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠) (61)
659

�r,s := sup
(w,u,✓)2Sr

inf
k�k2s

h�, Zwi+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠). (62)

By definition, we have �r  �r,s and so660

Pr(�r > t)  Pr(�r,s > t).

The corresponding auxiliary problems are661

 r,s := sup
(w,u,✓)2Sr

inf
k�k2s

k�k2hH,wi+ kwk2hG,�i+  (u, ✓,� | ⌘1, ..., ⌘k, ⇠)

= sup
(w,u,✓)2Sr

inf
k�k2s

k�k2hH,wi+ h�, kwk2G+
kX

i=1

⌘ihw(✓),⌃w
⇤
i
i � ui

+ F (✓)�
1

n

nX

i=1

f(ui, g(⌘1,i, ..., ⌘k,i, ⇠i), ✓)

= sup
(w,u,✓)2Sr

inf
0�s

�

 
hH,wi �

�����kwk2G+
kX

i=1

⌘ihw(✓),⌃w
⇤
i
i � u

�����
2

!

+ F (✓)�
1

n

nX

i=1

f(ui, g(⌘1,i, ..., ⌘k,i, ⇠i), ✓)

and the limit of s ! 1:662

 r := sup
(w,u,✓)2Sr

hH,wi�kkwk2G+
Pk

i=1 ⌘ihw(✓),⌃w
⇤
i i�uk

2

F (✓)�
1

n

nX

i=1

f(ui, g(⌘1,i, ..., ⌘k,i, ⇠i), ✓)

By definition, it holds that  r   and so663

Pr( r � t)  Pr( � t).

Thus, it holds that664

Pr(� > t) = lim
r!1

Pr(�r > t) by Lemma 1

 lim
r!1

lim
s!1

Pr(�r,s > t)

 2 lim
r!1

lim
s!1

Pr( r,s � t) by Theorem 8

= 2 lim
r!1

Pr( r � t) by Lemma 2

 2Pr( � t).

The proof concludes by applying Lemma 6 and the tower law.665

19



The following two simple lemmas will be useful to analyze the auxiliary problem.666

Lemma 8. For a, b,H > 0, we have667

sup
��0

��a+
�

H + �
b = (

p

b�
p

Ha)2+.

Proof. Observe that668

sup
��0

��a+
�

H + �
b = b� inf

��0
�a+

H

H + �
b.

Define f(�) = �a+ H

H+�
b, then669

f
0
(�) = a�

Hb

(H + �)2
 0 () (H + �)2 

Hb

a

() �

r
Hb

a
�H  � 

r
Hb

a
�H

Since we require � � 0, we only need to consider whether
q

Hb

a
� H � 0 () b � Ha. If670

b < Ha, the infimum is attained at � = 0. Otherwise, the infimum is attained at �⇤ =
q

Hb

a
�H , at671

which point672

f(�⇤) = 2
p

Hba�Ha.

Plugging in, we see that the expression is equivalent to (
p
b�

p
Ha)2+ in both cases.673

Lemma 9. For a, b � 0, we have674

sup
��0

��a�
b

�
= �

p

4ab

Proof. Define f(�) = ��a�
b

�
, then675

f
0
(�) = �a+

b

�2
� 0 ()

b

a
� �2

and so in the domain � � 0, the optimum is attained at �⇤ =
p
b/a at which point f(�⇤) =676

�2
p
ab.677

We are now ready to analyze the auxiliary problem.678

Lemma 10. In the same setting as in Lemma 6, assume that for every � > 0679

(A) C� : Rd
! [0,1] is a continuous function such that with probability at least 1� �/4 over680

H ⇠ N (0, Id), uniformly over all w 2 Rd, we have that681

h⌃1/2PH,wi  C�(w) (63)

(B) ✏� is a positive real number such that with probability at least 1� �/4 over {(x̃i, ỹi)}ni=1682

drawn i.i.d. from D̃, it holds uniformly over all ✓ 2 ⇥ that683

1

n

nX

i=1

f(h�(w(✓)), x̃ii, ỹi, ✓) �
1

1 + ✏�
E(x̃,ỹ)⇠D̃

[f(h�(w(✓)), x̃i, ỹ, ✓)]. (64)

where the distribution D̃ over (x̃, ỹ) is given by684

x̃ ⇠ N (0, Ik+1), ⇠̃ ⇠ D⇠, ỹ = g(x̃1, ..., x̃k, ⇠̃)

and the mapping � : Rd
! Rk+1 is defined as685

�(w) = (hw,⌃w⇤
1i, ..., hw,⌃w

⇤
k
i, kP⌃1/2wk2)

T .
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Then the following is true:686

(i) suppose for some choice of M✓ that is continuous in ✓, it holds for every y 2 Y and ✓ 2 ⇥,687

f is M✓-Lipschitz with respect to the first argument, then with probability at least 1 � �,688

uniformly over all ✓ 2 ⇥, we have689

L(✓)  (1 + ✏�)

 
L̂(✓) +M✓

r
C�(w(✓))2

n

!
. (65)

(ii) suppose for some choice of H✓ that is continuous in ✓, it holds for every y 2 Y and ✓ 2 ⇥,690

f is non-negative and
p
f is

p
H✓-Lipschitz with respect to the first argument, then with691

probability at least 1� �, uniformly over all ✓ 2 ⇥, we have692

L(✓)  (1 + ✏�)

 q
L̂(✓) +

r
H✓C�(w(✓))2

n

!2

. (66)

Proof. First, let’s simplify the auxiliary problem (59). Changing variables to subtract the quantity693

Gi

��P⌃1/2w(✓)
��
2
+
P

k

l=1hw(✓),⌃w
⇤
l
i⌘l,i from each of the former ui, we have that694

 = sup
(u,✓)2Rn⇥⇥

kuk2hH,P⌃1/2
w(✓)i

F (✓)�
1

n

nX

i=1

f

 
ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!

and separating the optimization problem in u and ✓, we obtain695

 = sup
✓2⇥

F (✓)

�
1

n
inf

u2Rn:
kuk2hH,P⌃1/2

w(✓)i

nX

i=1

f

 
ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!
.

Next, we will lower bound the infimum term by weak duality to obtain upper bound on  :696

inf
u2Rn:

kuk2hH,P⌃1/2
w(✓)i

nX

i=1

f

 
ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!

= inf
u2Rn

sup
��0

�(kuk22 � h⌃1/2PH,w(✓)i2)

+
nX

i=1

f

 
ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!

� sup
��0

��h⌃1/2PH,w(✓)i2

+ inf
u2Rn

nX

i=1

f

 
ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!
+ �kuk22

=sup
��0

��h⌃1/2PH,w(✓)i2

+
nX
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inf
ui2R
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ui +Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!
+ �u2

i

=sup
��0

��h⌃1/2PH,w(✓)i2 +
nX

i=1

f�

 
Gi

���P⌃1/2w(✓)
���
2
+

kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i, yi, ✓

!
.

Suppose that for every y 2 Y and ✓ 2 ⇥, f is M✓-Lipschitz with respect to the first argument, then697

by Proposition 2, the above can be further lower bounded by the following quantity:698

sup
��0

��h⌃1/2PH,w(✓)i2 �
nM2

✓

4�
+

nX

i=1

f

 
kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i +

���P⌃1/2w(✓)
���
2
Gi, yi, ✓

!
.
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On the other hand, suppose that for every y 2 Y and ✓ 2 ⇥, f is non-negative and
p
f is

p
H✓-699

Lipschitz with respect to the first argument, then by Proposition 1, the above can be further lower700

bounded by:701

sup
��0

��h⌃1/2PH,w(✓)i2 +
�

H✓ + �

"
nX

i=1

f

 
kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i +

���P⌃1/2w(✓)
���
2
Gi, yi, ✓

!#
.

Notice that if we write x̃i = (⌘1,i, ..., ⌘k,i, Gi), then (x̃i, yi) are independent with distribution exactly702

equal to D̃. Moreover, we have703

f

 
kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i +

���P⌃1/2w(✓)
���
2
Gi, yi, ✓

!
= f(h�(w(✓)), x̃ii, yi, ✓)

and it is easy to see that the joint distribution of (h�(w(✓)), x̃i, y) with (x̃, y) ⇠ D̃ is exactly the704

same as (hw(✓), xi, y) with (x, y) ⇠ D. As a result, we have that705

E(x̃,y)⇠D̃
[f(h�(w(✓)), x̃i, y, ✓)] = L(✓).

By our assumption (63), (64) and a union bound, we have with probability at least 1� �/2706

|h⌃1/2PH,w(✓)i|  C�(w(✓))

1

n

nX

i=1

f

 
kX

l=1

hw(✓),⌃w⇤
l
i⌘l,i +

���P⌃1/2w(✓)
���
2
Gi, yi, ✓

!
�

1

1 + ✏�
L(✓).

Therefore, if f is M✓-Lipschitz, then by by Lemma 9, we have707

  sup
✓2⇥

F (✓)� sup
��0

��
C�(w(✓))2

n
�

M2
✓

4�
+

1

1 + ✏�
L(✓)

= sup
✓2⇥

F (✓) +

r
M2

✓

C�(w(✓))2

n
�

1

1 + ✏�
L(✓)

Consequently, by taking F (✓) = 1
1+✏�

L(✓) �M✓

q
C�(w(✓))2

n
and Lemma 7, we have shown that708

with probability at least 1� �, we have709

sup
✓2K

F (✓)� L̂(✓)  0 =)
1

1 + ✏�
L(✓)  L̂(✓) +M✓

r
C�(w(✓))2

n
.

If
p
f is

p
H✓-Lipschitz, then by Lemma 8710

  sup
✓2K

F (✓)� sup
��0

��
C�(w(✓))2

n
+

�

H✓ + �

1

1 + ✏�
L(✓)

= sup
✓2K

F (✓)�

0

@
s

L(✓)

1 + ✏�
�

r
H✓C�(w(✓))2

n

1

A
2

+

.

Consequently, by taking F (✓) =

✓q
L(✓)
1+✏�

�

q
H✓C�(w(✓))2

n

◆2

+

and Lemma 7, we have shown that711

with probability at least 1� �, we have712

sup
✓2K

F (✓)� L̂(✓)  0.

Rearranging, either we have713

s
L(✓)

1 + ✏�
�

r
H✓C�(w(✓))2

n
< 0 =) L(✓) < (1 + ✏�)

H✓C�(w(✓))2

n
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or we have714

s
L(✓)

1 + ✏�
�

r
H✓C�(w(✓))2

n
� 0 =)

0

@
s

L(✓)

1 + ✏�
�

r
H✓C�(w(✓))2

n

1

A
2

 L̂(✓)

=) L(✓)  (1 + ✏�)

 q
L̂(✓) +

r
H✓C�(w(✓))2

n

!2

.

In either case, the desired bound holds.715

Finally, we are ready to prove Theorem 6. In the version below, we also provide uniform convergence716

guarantee (with sharp constant) for Lipschitz loss.717

Theorem 14. Suppose that assumptions (A), (B), (E) and (F) hold. For any � 2 (0, 1), let C� :718

Rd
! [0,1] be a continuous function such that with probability at least 1� �/4 over x ⇠ N (0,⌃),719

uniformly over all ✓ 2 ⇥,720 ⌦
w(✓), QTx

↵
 C�(w(✓)). (67)

Then it holds that721

(i) if for each ✓ 2 ⇥ and y 2 Y , f is M✓-Lipschitz with respect to the first argument and M✓ is722

continuous in ✓, then with probability at least 1� �, it holds that uniformly over all ✓ 2 ⇥,723

we have724

(1� ✏)L(✓)  L̂(✓) +M✓

r
C�(w(✓))2

n
(68)

(ii) if for each ✓ 2 ⇥ and y 2 Y , f is non-negative and
p
f is

p
H✓-Lipschitz with respect to725

the first argument, and H✓ is continuous in ✓, then with probability at least 1� �, it holds726

that uniformly over all ✓ 2 ⇥, we have727

(1� ✏)L(✓) 

 q
L̂(✓) +

r
H✓ C�(w(✓))2

n

!2

(69)

where ✏ = O

✓
⌧
q

h log(n/h)+log(1/�)
n

◆
.728

Proof. We apply the reduction argument at the beginning of the appendix. Given D that satisfies729

assumptions (A) and (B), we define [w̃⇤
1 , ..., w̃

⇤
k
] = W̃ = W (WT⌃W )�1/2 and f̃ , g̃ as in (54) and730

(55). For {(xi, yi)}ni=1 sampled independently from D, we observe that the joint distribution of731

(xi � µ, yi) can also be described by D
0 as follows:732

(A’) x ⇠ N (0,⌃)733

(B’) y = g̃(⌘1, ..., ⌘k, ⇠) where ⌘i = hx, w̃ii.734

Indeed, we can check that735

y = g(xTW, ⇠)

= g((x� µ)T W̃ (WT⌃W )1/2 + µTW, ⇠)

= g̃((x� µ)T W̃ , ⇠).

Moreover, by construction, we have736

L̂(✓) =
1

n

nX

i=1

f̃(hw(✓), xi � µi, yi, ✓)

L(✓) = ED0 f̃(hw(✓), xii, yi, ✓)

and D
0 satisfies assumptions (A) and (B) with µ = 0 and orthonormal ⌃1/2w̃⇤

1 , ...,⌃
1/2w̃⇤

1 and falls737

into the setting in Lemma 6. We see that f being Lipschitz or square-root Lipschitz is equivalent to738
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f̃ being Lipschitz or square-root Lipschitz. It remains to check assumptions (63) and (64) and then739

apply Lemma 10. Observe that740

⌃�1/2P⌃1/2 = ⌃�1/2
⇣
Id � ⌃

1/2W̃W̃T⌃1/2
⌘
⌃1/2

= Id � W̃W̃T⌃ = I �W (WT⌃W )�1WT⌃

= Q

(70)

and so ⌃1/2P = QT⌃1/2.741

To check that (63) holds, observe that h⌃1/2PH,wi has the same distribution as hQw, xi. To check742

that (64) holds, we will apply Theorem 13. Note that the joint distribution of (h�(w(✓)), x̃i, ỹ) with743

(x̃, ỹ) ⇠ D̃ is exactly the same as (hw(✓), xi, y) with (x, y) ⇠ D
0 and so744

ED̃[f̃(h�(w(✓)), xi, y, ✓)
4]1/4

ED̃[f̃(h�(w(✓)), xi, y, ✓)]
=

ED0 [f̃(hw(✓), xi, y, ✓)4]1/4

ED0 [f̃(hw(✓), xi, y, ✓)]
=

ED[f(hw(✓), xi, y, ✓)4]1/4

ED[f(hw(✓), xi, y, ✓)]
.

Therefore, the assumption (E) is equivalent to the hypercontractivity condition in Theorem 13.745

Note that {(x, y) 7! {f̃(h�(w(✓)), xi, y, ✓) > t} : (✓, t) 2 ⇥ ⇥ R} is a subclass of {(x, y) 7!746

{f(hw, xi+ b, y, ✓) > t} : (w, b, t, ✓) 2 Rk+1
⇥ R⇥ R⇥⇥}. Therefore, by assumption (F), we747

can apply Theorem 13 and (64) holds.748

D Norm Bounds749

The following lemma is a version of Lemma 7 of Koehler et al. (2021) and follows straightforwardly750

from CGMT (Theorem 7), though it requires a slightly different truncation argument compared751

to the proof Theorem 6. For simplicity, we won’t repeat the proof here and simply use it for our752

applications.753

Lemma 11 (Koehler et al. 2021, Lemma 7). Let Z : n⇥ d be a matrix with i.i.d. N (0, 1) entries and754

suppose G ⇠ N (0, In) and H ⇠ N (0, Id) are independent of Z and each other. Fix an arbitrary755

norm k · k, any covariance matrix ⌃, and any non-random vector ⇠ 2 Rn, consider the Primary756

Optimization (PO) problem:757

� := min
w2Rd:

Z⌃1/2
w=⇠

kwk (71)

and the Auxiliary Optimization (AO) problem:758

 := min
w2Rd:

kGk⌃1/2
wk2�⇠k2h⌃1/2

H,wi

kwk. (72)

Then for any t 2 R, it holds that759

Pr(� > t)  2Pr(� � t). (73)

The next lemma analyzes the AO in Lemma 11. Our proof closely follows Lemma 8 of Koehler et al.760

2021, but we don’t make assumptions on ⇠ yet to allow more applications.761

Lemma 12. Let Z : n⇥ d be a matrix with i.i.d. N (0, 1) entries. Fix any � > 0, covariance matrix762

⌃ and non-random vector ⇠ 2 Rn, then there exists ✏ . log(1/�)

✓
1
n
+ 1p

R(⌃)
+ n

R(⌃)

◆
such that763

with probability at least 1� �, it holds that764

min
w2Rd:

Z⌃1/2
w=⇠

kwk22  (1 + ✏)
k⇠k22
Tr(⌃)

. (74)

Proof. By a union bound, there exists a constant C > 0 such that the following events occur together765

with probability at least 1� �/2:766
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1. Since hG, ⇠i ⇠ N (0, k⇠k22), by the standard Gaussian tail bound Pr(|Z| � t)  2e�t
2
/2,767

we have768

|hG, ⇠i|  k⇠k2
p
2 log(32/�)

2. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin (2018)), requiring769

n = ⌦(log(1/�)), we have770

kGk
2
2  2n

3. Using the first part of Lemma 4, we have771

k⌃1/2Hk
2
2 � Tr(⌃)

 
1� C

log(32/�)p
R(⌃)

!

4. Using the last part of Lemma 4, requiring R(⌃) & log(32/�)2772

k⌃Hk
2
2

k⌃1/2Hk
2
2

 C log(32/�)
Tr(⌃2)

Tr(⌃)

Therefore, by the AM-GM inequality, it holds that773

kGk⌃1/2wk2 � ⇠k22 = kGk
2
2k⌃

1/2wk22 + k⇠k22 � 2hG, ⇠ik⌃1/2wk2

 2nk⌃1/2wk22 + k⇠k22 + 2k⇠k2
p
2 log(32/�)k⌃1/2wk2

 3nk⌃1/2wk22 +

✓
1 +

2 log(32/�)

n

◆
k⇠k22.

To apply lemma 11, we will consider w of the form w = ↵ ⌃1/2
H

k⌃1/2Hk2
for some ↵ > 0. Then we have774

kGk⌃1/2wk2 � ⇠k22  3nC log(32/�)
Tr(⌃2)

Tr(⌃)
↵2 +

✓
1 +

2 log(32/�)

n

◆
k⇠k22

and775

h⌃1/2H,wi2 = ↵2
k⌃1/2Hk

2
2 � ↵2 Tr(⌃)

 
1� C

log(32/�)p
R(⌃)

!
.

So it suffices to choose ↵ such that776

↵2
�

⇣
1 + 2 log(32/�)

n

⌘
k⇠k22

Tr(⌃)

✓
1� C log(32/�)

p
R(⌃)

◆
� 3nC log(32/�)Tr(⌃

2)
Tr(⌃)

=
1 + 2 log(32/�)

n

1� C log(32/�)

✓
1p
R(⌃)

+ 3 n

R(⌃)

◆ k⇠k22
Tr(⌃)

and we are done.777

A challenge for analyzing the minimal norm to interpolate is that the projection matrix Q is not778

necessarily an orthogonal projection. However, the following lemma suggests that if ⌃? = QT⌃Q779

has high effective rank, then we can let R be the orthogonal projection matrix onto the image of Q780

and R⌃R is approximately the same as ⌃? in terms of the quantities that are relevant to the norm781

analysis.782

Lemma 13. Consider Q = I �
P

k

i=1 w
⇤
i
(w⇤

i
)T⌃ where ⌃1/2w⇤

1 , ...,⌃
1/2w⇤

k
are orthonormal and783

we let R be the orthogonal projection matrix onto the image of Q. Then it holds that rank(R) = d�k784

and785

R⌃w⇤
i
= 0 for any i = 1, ..., k.

Moreover, we have QR = R and RQ = Q, and so786

1

Tr(R⌃R)


✓
1�

k

n
�

n

R(QT⌃Q)

◆�1 1

Tr(QT⌃Q)

n

R(R⌃R)


✓
1�

k

n
�

n

R(QT⌃Q)

◆�2 n

R(QT⌃Q)
.
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Proof. It is obvious that rank(R) = rank(Q) and by the rank-nullity theorem, it suffices to show the787

nullity of Q is k. To this end, we observe that788

Qw = 0 () ⌃�1/2

 
I �

kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T
!
⌃1/2w = 0

()

 
I �

kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T
!
⌃1/2w = 0

() ⌃1/2w 2 span{⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k
}

() w 2 span{w⇤
1 , ..., w

⇤
k
}.

It is also straightforward to verify that Q2 = Q and QT⌃w⇤
i
= 0 for i = 1, ..., k. For any v 2 Rd,789

Rv lies in the image of Q and so there exists w such that Rv = Qw. Then we can check that790

vTR⌃w⇤
i
= hRv,⌃w⇤

i
i

= hQw,⌃w⇤
i
i = hw,QT⌃w⇤

i
i = 0

and791

(QR)v = Q(Rv)

= Q(Qw) = Q2w

= Qw = Rv.

Since the choice of v is arbitrary, it must be the case that R⌃w⇤
i
= 0 and QR = R. For any v 2 Rd,792

we can check793

(RQ)v = R(Qv) = Qv

by the definition of orthogonal projection. Therefore, it must be the case that RQ = Q. Finally, we794

use R = QR = RQT to show that795

Tr(R⌃R) = Tr(RQT⌃QR) = Tr(QT⌃QR)

= Tr(QT⌃Q)� Tr(QT⌃Q(I �R))

� Tr(QT⌃Q)�
q
Tr((QT⌃Q)2) Tr((I �R)2)

= Tr(QT⌃Q)

 
1�

s
k

R(QT⌃Q)

!

= Tr(QT⌃Q)

✓
1�

k

n
�

n

R(QT⌃Q)

◆

and796

Tr((R⌃R)2) = Tr(⌃R⌃R)

= Tr(⌃QRQT⌃QRQT )

= Tr((RQT⌃Q)R(QT⌃QR))

 Tr((RQT⌃Q)(QT⌃QR)) = Tr((QT⌃Q)2R)

 Tr((QT⌃Q)2).

Rearranging concludes the proof.797

D.1 Phase Retrieval798

Theorem 2. Under assumptions (A) and (B), let f : R⇥ Y ! R be given by f(ŷ, y) := (|ŷ|� y)2799

with Y = R�0. Let Q be the same as in Theorem 1 and ⌃? = QT⌃Q. Fix any w]
2 Rd such that800

Qw] = 0 and for some ⇢ 2 (0, 1), it holds that801

L̂f (w
])  (1 + ⇢)Lf (w

]). (9)
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Then with probability at least 1� �, for some ✏ . ⇢+ log
�
1
�

�✓
1p
n
+ 1p

R(⌃?)
+ k

n
+ n

R(⌃?)

◆
, it802

holds that803

min
w2Rd:

8i2[n],hw,xii2=y
2
i

kwk2  kw]
k2 + (1 + ✏)

s
nLf (w])

Tr(⌃?)
. (10)

Proof. Without loss of generality, we assume that µ lies in the span of {⌃w⇤
1 , ...,⌃w

⇤
k
} because804

otherwise we can simply increase k by one. Moreover, we can assume that {⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k
}805

are orthonormal because otherwise we let W̃ = W (WT⌃W )�1 and conditioning on WT (x� µ) is806

the same as conditioning on W̃T (x� µ). By Lemma 5, conditioned on807
0

@
⌘T1
...
⌘T
k

1

A = [WT (x1 � µ), ...,WT (xn � µ)]

the distribution of X is the same as808

X = 1µT +
kX

i=1

⌘i(⌃w
⇤
i
)T + Z⌃1/2Q

where Z has i.i.d. standard normal entries. Furthermore, conditioned on WT (x� µ) and the noise809

of variable in y (which is independent of x), by the multi-index assumption (B), the label y is810

non-random. Since Qw] = 0, we have w] =
P

k

i=1hw
⇤
i
,⌃w]

iw⇤
i

and so811

hw], xi = hw], µi+
kX

i=1

hw⇤
i
,⌃w]

ihw⇤
i
, x� µi.

Therefore, hw], xi also becomes non-random after conditioning. We can let I = {i 2 [n] : hw], xii �812

0} and define ⇠ 2 Rn by813

⇠i =

⇢
yi � |hw], xii| if i 2 I
|hw], xii|� yi if i /2 I

and ⇠ is non-random after conditioning. Following the construction discussed in the main text, for814

any w]
2 Rd, the predictor w = w] + w? satisfies |hw, xii| = yi where815

w? = argmin
w2Rd:
Xw=⇠

kwk2

by the definition of ⇠. Hence, we have816

min
w2Rd:8i2[n],hw,xii2=y

2
i

kwk2  kw]
k2 + kw?

k2

and it suffices to control kw?
k2.817

Let R be the orthogonal projection matrix onto the image of Q and we consider w of the form Rw to818

upper bound kw?
k2. By Lemma 13, we know QR = R and R⌃w⇤

i
= 0. By the assumption that µ819

lies in the span of {⌃w⇤
1 , ...,⌃w

⇤
k
}, we have820

 
1µT +

kX

i=1

⌘i(⌃w
⇤
i
)T + Z⌃1/2Q

!
Rw = Z⌃1/2Rw.

Since R is an orthogonal projection, it holds that kRwk2  kwk2. Finally, we observe that the821

distribution of Z⌃1/2R is the same as Z(R⌃R)1/2 and so822

kw?
k2  min

w2Rd:
Z(R⌃R)1/2w=⇠

kwk2.

We are now ready to apply Lemma 12 to the covariance R⌃R. We are allowed to replace the823

dependence on R⌃R by the dependence on ⌃? by the last two inequalities of Lemma 13. The desired824

conclusion follows by the observation that k⇠k22 = nL̂f (w]) and the assumption that L̂f (w]) 825

(1 + ⇢)Lf (w]).826
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D.2 ReLU Regression827

The proof of Theorem 3 will closely follow the proof of Theorem 2.828

Theorem 3. Under assumptions (A) and (B), let f : R ⇥ Y ! R be the loss defined in (13) with829

Y = R�0. Let Q be the same as in Theorem 1 and ⌃? = QT⌃Q. Fix any (w], b]) 2 Rd+1 such that830

Qw] = 0 and for some ⇢ 2 (0, 1), it holds that831

L̂f (w
], b])  (1 + ⇢)Lf (w

], b]). (14)

Then with probability at least 1� �, for some ✏ . ⇢+ log
�
1
�

�✓
1p
n
+ 1p

R(⌃?)
+ k

n
+ n

R(⌃?)

◆
, it832

holds that833

min
(w,b)2Rd+1:

8i2[n],�(hw,xii+b)=yi

kwk2  kw]
k2 + (1 + ✏)

s
nLf (w], b])

Tr(⌃?)
. (15)

Proof. We let I = {i 2 [n] : yi > 0} and for any (w], b]) 2 Rd+1, we define ⇠ 2 Rn by834

⇠i =

⇢
yi � hw], xii � b] if i 2 I
��(hw], xii+ b]) if i /2 I.

By the definition of ⇠, the predictor (w, b) = (w] + w?, b]) satisfies �(hw, xii+ b) = yi where835

w? = argmin
w2Rd:
Xw=⇠

kwk2.

Hence, we have836

min
(w,b)2Rd+1:

8i2[n],�(hw,xii+b)=yi

kwk2  kw]
k2 + kw?

k2

and it suffices to control kw?
k2.837

Similar to the proof of Theorem 2, we make the simplifying assumption that µ lies in the span838

of {⌃w⇤
1 , ...,⌃w

⇤
k
} and {⌃1/2w⇤

1 , ...,⌃
1/2w⇤

k
} are orthonormal. Conditioned on WT (xi � µ) and839

the noise variable in yi, both yi and hw], xii are non-random, and so ⇠ is also non-random. The840

distribution of X is the same as841

X = 1µT +
kX

i=1

⌘i(⌃w
⇤
i
)T + Z⌃1/2Q.

If we consider w of the form Rw, then we have842

kw?
k2  min

w2Rd:
Z(R⌃R)1/2w=⇠

kwk2.

We are now ready to apply Lemma 12 to the covariance R⌃R. We are allowed to replace the843

dependence on R⌃R by the dependence on ⌃? by the last two inequalities of Lemma 13. The844

desired conclusion follows by the observation that k⇠k22 = nL̂f (w], b]) due to the definition (13) and845

the assumption that L̂f (w])  (1 + ⇢)Lf (w], b]).846

D.3 Low-rank Matrix Sensing847

Theorem 4. Suppose that d1d2 > n, then there exists some ✏ .
q

log(32/�)
n

+ n

d1d2
such that with848

probability at least 1� �, it holds that849

min
8i2[n],hAi,Xi=yi

kXk⇤ 
p
rkX⇤

kF + (1 + ✏)

s
n�2

d1 _ d2
. (17)
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Proof. Without loss of generality, we will assume that d1  d2. We will vectorize the measurement850

matrices and estimator A1, ..., An, X 2 Rd1⇥d2 as a1, ..., an, x 2 Rd1d2 and define kxk⇤ = kXk⇤.851

Denote A = [a1, ..., an]T 2 Rn⇥d1d2 . We define the primary problem � by852

� := min
8i2[n],hAi,Xi=⇠

kXk⇤ = min
Ax=⇠

kxk⇤.

By Lemma 11, it suffices to consider the auxiliary problem853

 := min
kGkxk2�⇠k2�hH,xi

kxk⇤.

We will pick x of the form x = �↵H for some ↵ � 0, which needs to satisfy ↵kHk
2
2 � k↵GkHk2�854

⇠k2. By a union bound, the following events occur simultaneously with probability at least 1� �/2:855

1. by Lemma 3, it holds that856

kGk2 
p
n+ 2

p
log(32/�)

k⇠k2
�


p
n+ 2

p
log(32/�)

kHk2 

p
d1d2 + 2

p
log(32/�)

2. Condition on ⇠, we have 1
k⇠k hG, ⇠i ⇠ N (0, 1) and so by standard Gaussian tail bound857

Pr(|Z| > t)  2e�t
2
/2858

|hG, ⇠i|

k⇠k


p
2 log(16/�)

Then we can use AM-GM inequality to show for sufficiently large n859

k↵GkHk2 � ⇠k22

=↵2
kGk

2
2kHk

2
2 + k⇠k2 � 2↵kHk2hG, ⇠i

n↵2
kHk

2
2

 
1 + 2

r
log(32/�)

n

!2

+ k⇠k2 + 2
p
n↵kHk2k⇠k2

r
2 log(16/�)

n

n↵2
kHk

2
2

 
1 + 10

r
log(32/�)

n

!
+

 
1 +

r
2 log(16/�)

n

!
k⇠k22

and it suffices to let860

↵2
kHk

4
2 � n↵2

kHk
2
2

 
1 + 10

r
log(32/�)

n

!
+

 
1 +

r
2 log(16/�)

n

!
k⇠k22.

Rearranging the above inequality, we can choose861

↵ =

0

BBB@
1 + 10

q
log(32/�)

n

1� n

d1d2

✓
1 + 10

q
log(32/�)

n

◆✓
1 + 2

q
log(32/�)

d1d2

◆2

1

CCCA

1/2

p

n�2

kHk
2
2

and since H as a matrix can have at most rank d1, by Cauchy-Schwarz inequality on the singular862

values of H , we have kHk⇤ 
p
d1kHk2 and863

kxk⇤ = ↵kHk⇤  ↵
p
d1kHk2  (1 + ✏)

s
d1(n�2)

d1d2
= (1 + ✏)

s
n�2

d2

for some ✏ .
q

log(32/�)
n

+ n

d1d2
. The desired conclusion follows by the observation that kX⇤

k⇤ 864
p
rkX⇤

kF because X⇤ has rank r.865
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Theorem 5. Fix any � 2 (0, 1). There exist constants c1, c2, c3 > 0 such that if d1d2 > c1n,866

d2 > c2d1, n > c3r(d1 + d2), then with probability at least 1� � that867

kX̂ �X⇤
k
2
F

kX⇤k2
F

. r(d1 + d2)

n
+

r
r(d1 + d2)

n

�

kX⇤kF
+

 r
d1
d2

+
n

d1d2

!
�2

kX⇤k2
F

. (18)

Proof. Note that hA,X⇤
i ⇠ N (0, kX⇤

k
2
F
) and so by the standard Gaussian tail bound Pr(|Z| �868

t)  2e�t
2
/2, Theorem 9 and a union bound, it holds with probability at least 1� �/8 that869

|hA,X⇤
i| 

p
2 log(32/�)kX⇤

kF

kAkop 

p
d1 +

p
d2 +

p
2 log(32/�).

Then it holds that870 ����A�
hA,X⇤

i

kX⇤k2
F

X⇤
����
op

 kAkop +
|hA,X⇤

i|

kX⇤k2
F

kX⇤
kop



p
d1 +

p
d2 +

p
2 log(32/�) +

kX⇤
kop

kX⇤kF

p
2 log(32/�)



p
d1 +

p
d2 +

p
8 log(32/�).

Therefore, we can choose C� in Theorem 1 by871

C�(X) :=
⇣p

d1 +
p

d2 +
p

8 log(32/�)
⌘
kXk⇤

and applying Theorem 1 and Theorem 4, we have872

(1� ✏)L(X̂) 
C�(X)2

n



⇣p
d1 +

p
d2 +

p
8 log(32/�)

⌘2

n

0

@p
rkX⇤

kF + (1 + ✏)

s
n�2

d1 _ d2

1

A
2

=

0

@
r

d1
d1 _ d2

+

r
d2

d1 _ d2
+

s
8 log(32/�)

d1 _ d2

1

A
2 r

r(d1 _ d2)

n
+ (1 + ✏)

�

kX⇤kF

!2

kX⇤
k
2
F

where ✏ is the maximum of the two ✏ in Theorem 1 and Theorem 4. Finally, recall that873

L(X̂) = �2 + kX̂ �X⇤
k
2
F
.

Assuming that d1  d2, then the above implies that874

kX̂ �X⇤
k
2
F

kX⇤k2
F

 (1� ✏)�1(1 + ✏)2

0

@1 +

r
d1
d2

+

s
8 log(32/�)

d2

1

A
2 r

r(d1 + d2)

n
+

�

kX⇤kF

!2

�
�2

kX⇤k2
F

. r(d1 + d2)

n
+

r
r(d1 + d2)

n

�

kX⇤kF
+

 r
d1
d2

+
n

d1d2

!
�2

kX⇤k2
F

and we are done.875

E Counterexample to Gaussian Universality876

By assumption (G), we can write xi|d�k = h(xi|k) ·⌃
1/2
|d�k

zi where zi ⇠ N (0, Id�k). We will denote877

the matrix Z = [z1, ..., zn]T 2 Rn⇥(d�k). Following the notation in section 7, we will also write878

X = [X|k, X|d�k] where X|k 2 Rn⇥k and X|d�k 2 Rn⇥(d�k). The proofs in this section closely879

follows the proof of Theorem 6.880
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Theorem 15. Consider dataset (X,Y ) drawn i.i.d. from the data distribution D according to (G)881

and (H), and fix any f : R⇥ Y ! R�0 such that
p
f is 1-Lipschitz for any y 2 Y . Fix any � > 0882

and suppose there exists ✏� < 1 and C� : Rd�k
! [0,1] such that883

(i) with probability at least 1� �/2 over (X,Y ) and G ⇠ N (0, In), it holds uniformly over884

all w|k 2 Rk and kw|d�kk⌃|d�k
2 R�0 that885

1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)kw|d�kk⌃|d�k
Gi, yi)

h(xi|k)2
� (1� ✏�)ED


f(hw, xi, y)

h(x|k)2

�

(ii) with probability at least 1 � �/2 over z|d�k ⇠ N (0,⌃|d�k), it holds uniformly over all886

w|d�k 2 Rd�k that887

hw|d�k, z|d�ki  C�(w|d�k) (75)

then with probability at least 1� �, it holds uniformly over all w 2 Rd that888

(1� ✏�)E

f(hw, xi, y)

h(x|k)2

�


 
1

n

nX

i=1

f(hw, xii, yi)

h(xi|k)2
+

C�(w|d�k)
p
n

!2

. (76)

Proof. Note that889

hw|d�k, xi|d�ki = h(xi|k) · hw|d�k,⌃
1/2
|d�k

zii

and so for any f : R⇥ Y ⇥ Rk
! R, we can write890

� := sup
w2Rd

F (w)�
1

n

nX

i=1

f(hw, xii, yi, xi|k)

= sup
w2Rd

,u2Rn

u=Z⌃1/2
|d�k

w|d�k

F (w)�
1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k)

= sup
w2Rd,u2Rn

inf
�2Rn

h�, Z⌃1/2
|d�k

w|d�k � ui+ F (w)�
1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k).

By the same truncation argument used in Lemma 7, it suffices to consider the auxiliary problem:891

 := sup
w2Rd,u2Rn

inf
�2Rn

k�k2hH,⌃1/2
|d�k

w|d�ki+ hGk⌃1/2
|d�k

w|d�kk2 � u,�i

+ F (w)�
1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k)

= sup
w2Rd,u2Rn

inf
��0

�
⇣
hH,⌃1/2

|d�k
w|d�ki �

���Gk⌃1/2
|d�k

w|d�kk2 � u
���
2

⌘

+ F (w)�
1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k)

Therefore, it holds that892

 = sup
w2Rd

,u2Rn

hH,⌃1/2
|d�k

w|d�ki�
���Gk⌃1/2

|d�k
w|d�kk2�u

���
2

F (w)�
1

n

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k)

= sup
w2Rd

F (w)�
1

n
inf

u2Rn

hH,⌃1/2
|d�k

w|d�ki�
���Gk⌃1/2

|d�k
w|d�kk2�u

���
2

nX

i=1

f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k).
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Next, we analyze the infimum term:893

inf
u2Rn

hH,⌃1/2
|d�k

w|d�ki�
���Gk⌃1/2

|d�k
w|d�kk2�u

���
2

nX
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f(hw|k, xi|ki+ h(xi|k)ui, yi, xi|k)

= inf
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kuk2hH,⌃1/2
|d�k

w|d�ki

nX

i=1

f(hw|k, xi|ki+ h(xi|k)
⇣
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|d�k
w|d�kk2Gi

⌘
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sup
��0
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|d�k
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+
nX
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⇣
ui + k⌃1/2
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w|d�kk2Gi

⌘
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� sup
��0
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u2Rn
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+
nX
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⇣
ui + k⌃1/2

|d�k
w|d�kk2Gi
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, yi, xi|k)

= sup
��0

��hH,⌃1/2
|d�k

w|d�ki
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nX

i=1

inf
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f(hw|k, xi|ki+ ui + k⌃1/2
|d�k

w|d�kk2h(xi|k)Gi, yi, xi|k) +
�

h(xi|k)2
u2
i
.

Now suppose that f takes the form f(ŷ, y, x|k) =
1

h(x|k)2
f̃(ŷ, y) for some 1 square-root Lipschitz f̃894

and by a union bound, it holds with probability at least 1� � that895

h⌃1/2
|d�k

H,w|d�ki
2
 C�(w|d�k)

2

1

n

nX

i=1

1

h(xi|k)2
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1

h(x|k)2
f̃(hw, xi, y)

�
,

then the above becomes896
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��0

��h⌃1/2
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p
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+

where we apply Lemma 8 in the last step. Then if we take897

F (w) =
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Theorem 16. Under assumptions (G) and (H), fix any w⇤
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Similarly, the above is only random in Z after conditioning on X|kw
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By a union bound, the following occur together with probability at least 1� �/2 for some absolute912

constant C > 0:913
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Then we use the above and the AM-GM inequality to show that920
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After some rearrangements, it is easy to see that we can choose921
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and the proof is complete.922
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