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Abstract

We propose a hierarchical neural network architecture for unsupervised learning of equiv-
ariant part-whole decompositions of visual scenes. In contrast to the global equivariance of
group-equivariant networks, the proposed architecture exhibits equivariance to part-whole
transformations throughout the hierarchy, which we term hierarchical equivariance. The
model achieves these structured internal representations via hierarchical Bayesian inference,
which gives rise to rich bottom-up, top-down, and lateral information flows, hypothesized
to underlie the mechanisms of perceptual inference in visual cortex. We demonstrate these
useful properties of the model on a simple dataset of scenes with multiple objects under
independent rotations and translations.

Keywords: group equivariance, sparse coding, scene decomposition, unsupervised repre-
sentation learning, geometric deep learning, disentanglement, bayesian generative model

1. Introduction

Understanding how to represent the rich structure in visual scenes has been a longstanding
challenge in both deep learning and visual neuroscience. In the natural world, scenes can
be described in terms of object identities and their poses (e.g. position, orientation, etc).
Objects can be defined in terms of the relative poses of their parts, parts in terms of
arrangements of sub-parts, and so on. Each of these components can also undergo rigid
transformations or articulation of their parts. These families of group transformations can
naturally be used to describe poses and relationships between parts and the objects to which
they belong. Often considered a nuisance to object recognition, these variations instead
carry important information for understanding and meaningfully interacting with the world.
Thus, a rich compositional hierarchy that is compatible with group actions is essential
for forming visual representations (Mumford and Desolneux, 2010; Olshausen et al., 1993;
Hinton, 2022). However, since this generative structure is not directly observable, it must
be inferred from sensory data and prior knowledge in order to form internal representations.
For example, though objects and their parts have definite coordinates in a scene, this is not
explicit in raw image pixel values.
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Models such as Capsule Networks and Slot Attention leverage this perspective (Sabour
et al., 2017; Ribeiro et al., 2022; Locatello et al., 2020; Biza et al., 2023). Capsule networks
parse scenes into parts and wholes in a supervised context. Slot Attention is an unsupervised
object-centric method which extracts objects into a fixed number of latent slots using self-
attention and an iterative update. Yet, these methods have notable shortcomings. The
proposed routing mechanism of standard Capsule networks has no clear normative basis,
has prohibitive inference time, and requires supervision during training. The Slot Attention
model represents all objects at the same level of the hierarchy, and stipulates a predefined
number of object slots. This introduces challenges when presented with images varying in
the number of objects.

Contribution. In this work, we propose a neural network architecture, Hierarchical
Equivariant Sparse Coding (HESC), for unsupervised learning of visual scene representa-
tions that leverage group transformations, hierarchical composition, and Bayesian
inference. We demonstrate that the model (1) learns a hierarchical decomposition of parts
and wholes in terms of relative configurations of parts, (2) is equivariant to group actions
throughout the visual hierarchy, and (3) forms sparse, explicit representations of parts and
wholes via the explaining away machinery of Bayesian inference.

2. Proposed Framework

We seek a formal description of hierarchical transformations in visual scenes. We introduce
group theory and its utility in modeling visual scenes, group equivariance in neural networks,
and the need for hierarchical equivariance. We then describe how hierarchical part-whole
decomposition motivates latent inference with Bayesian generative models.

b)   Global actiona) Scene c)   Object actions e)   Random part
actionsd)   Part actions

Figure 1: (a) Visual scenes are composed of objects {Oi} with corresponding group transformations
{gi} applied (b) Global transformation g0 applied to I distributes down to objects and
their parts (c) Local object transformations h are applied to objects (d) A subset h0 of
local part transformations are applied, preserving object identity (e) A random subset
of local part transformations h00 are applied. Full version in the appendix as Figure 6

2.1. Defining Global, Local, and Hierarchical Group Actions
As a guiding example, let us consider the simple scene in Figure 1. The configuration of
each of the three objects in the scene can be described in terms of its pose: transformation
from a default, canonical instance to its current position x = (x, y) and orientation ✓. The
set of transformations we can apply to a given object has the structure of a group. A
group is a set of elements G, an identity element e, and a way of combining elements via a
binary operation · which satisfies the group axioms (see Appendix A). For this discussion
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we consider only the group of translations (R2,+) and rotations SO(2), the rototranslation

group, defined here as the semidirect product G = R2 o SO(2) 1. Elements of this group,
g 2 G have the form g = (x, ✓). The group’s composition operator is:

g · g0 = (x, ✓) ·
�
x0, ✓0

�
=

�
R✓

�
x0�+ x, ✓ + ✓0 mod 2⇡

�
, 8g, g0 2 G

The scene I in Figure 1 can be fully described by specifying the collection of objects
(O1,O2,O3) and how they are transformed by group elements (g1, g2, g3). When group
elements transform other mathematical objects, they are referred to as group actions (see
Appendix A). We denote the action of gi on Oi as TgiOi. Thus, the scene is written as:

I = (Tg1O1, Tg2O2, Tg3O3)

To transform all objects in the scene together, as seen in Figure 1(b), we apply a group
transformation g0 2 G to the scene, which distributes to each of the objects. The composi-
tion of two group elements g0 and gi acting on O can be denoted as Tg0TgiOi = Tg0giOi.

Tg0I = (Tg0g1O1, Tg0g2O2, Tg0g3O3)

We call this a global action because it acts equally on all objects in the scene. More generally,
we can describe independent transformations on each object in the scene by transforming
each object with its own group action, defined as h = (h1, h2, h3), as shown in Figure 1(c).

ThI = (Th1g1O1, Th2g2O2, Th3g3O3)

We call this a local action because it acts independently on each object in the scene. Note
that all global actions are a special case of local actions, in which the transformation on each
object is the same, i.e. h = (h1, h1, h1). This new structure which combines multiple group
elements into a tuple is called a product group, denoted GK = �K

i=1G, where an element
h 2 GK is a K-tuple of group elements, h = (h1, h2, ..., hK). Product groups have a natural
composition operation, i.e. given two elements h, g 2 GK : h · g = (h1g1, h2g2, ..., hKgK)
which satisfies the group axioms. Note that both the transformations h of the scene as well
as the configuration of all objects in the scene, g, are elements of the product group GK .
Just as scenes are composed of objects, the relative configuration of parts is what defines
an object, and an object can be written as its parts {Pi}

2 in an analogous way to the scene
I:

O1 = (Tg1P1, Tg2P2, ..., TgKPK)

Using the same formulation as above, we can generalize this concept to any level in the
visual hierarchy, relating images to objects, objects to parts, parts to subparts, and so on.
There is a space of actions on parts of an object which deform the object, but preserve
the relative configuration so it is still identifiable (Figure 1(d)), however this is a small
subspace of all actions on parts (Figure 1(e)), demonstrating the combinatorial explosion
of unstructured scenes. For simplicity and to avoid discussion of sub-parts and sub-sub-
parts, we use the terms ‘objects’ and ‘parts’ to represent any arbitrary layer and sub-layer
in the hierarchy. We refer to this extension of actions defined over an arbitrary number of
compositional layers as hierarchical actions.

1. Groups, however, are general mathematical objects which can describe a large family of variations in

data beyond simple spatial transformations.

2. Our model represents parts Pj and objects Oi in canonical poses with dictionary elements in di↵erent

layers: �j
1(e) and �i

2(e), respectively.
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2.2. Global and Hierarchical Group Equivariance
We have framed the problem of scene representation in terms of product groups and hi-
erarchical group transformations. How should a neural network’s activations f(I) change
when the input scene I changes? A desirable property, group equivariance, is that group
transformations on the scene are represented by group transformations on activations:

f(TgI) = T 0
gf(I) 8g 2 G

where Tg and T 0
g are di↵erent actions of the same g 2 G. In other words, the action Tg

of the input image I should be represented by an analogous transformation (or homomor-
phism) T 0

g on the model’s latent representation. A model is said to be group invariant if a
transformation on the image leaves the model’s output unchanged:

f(TgI) = f(I) 8g 2 G

The most prevalent strategy for constructing group equivariant neural networks is through
the use of group convolutions, an extension of the standard 2D translational CNNs to groups
such as rotation and scaling, termed GCNNs (Cohen and Welling, 2016). Though these
methods have seen success on a variety of tasks, so far they have been limited to the very
specific case of global group actions on the domain of the input data, e.g., translations or
rotations of an entire image Tgf(I(x)) = f(I(g�1x)). As demonstrated above, much of the
variation in natural images cannot be described with global actions directly on the image
pixel values. This motivates the need to construct models which are equivariant to local
and hierarchical actions, or hierarchically equivariant.

2.3. Hierarchical Bayesian Inference
Using the notion of local and hierarchical equivariance, we aim to construct models with
equivariance to part-whole transformations. In order to form internal representations of
multiple objects and their poses, a model must solve the what-where decomposition prob-
lem for all components of the scene. Further, as an image is merely a collection of pixel
values, the presence and pose of an object are latent variables which have to be inferred
from pixel data given prior knowledge. How does the brain solve this problem? Evidence
from visual neuroscience suggests that the brain leverages both bottom-up and top-down
dynamics to form visual representations, a perspective known as perception as inference.
Lee and Mumford, among others, suggested Hierarchical Bayesian Inference as a mech-
anism for neural scene decomposition (Lee and Mumford, 2003; Olshausen and Lewicki,
2014). Mirroring the structure of visual cortex, they proposed a model with multiple layers
interconnected in a hierarchy. Each layer receives inputs from the layer below as well as the
layer above, in addition to recurrent connections within a layer.

What is the functional role of these three pathways? Consider an image of a face where
the right side of the face is well lit, but the left side is shadowed and has low contrast with
the background. For a given layer, the role of the bottom-up pathway is to provide proposals
for candidate parts in a scene. Using only feed-forward bottom-up information, there would
be strong evidence for face parts on the right side, but not on the left. However if the next
layer has prior knowledge of faces as objects, it can be combined with information from the
bottom-up pathway to gather evidence for the existence of a whole face. This can then be
passed back to the lower layer as a top-down signal that can strengthen the previously weak
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evidence for parts on the left side of the face. Finally, there is the problem of some parts
having multiple probable explanations given evidence from both bottom-up and top-down
information. This role is taken up by lateral interactions within a layer, which provide a
mechanism for explaining away, which precludes one probable hypothesis in favor of another,
more parsimonious explanation.

There is ubiquitous evidence in perceptual psychology and visual neuroscience for the
presence and e↵ects of these three pathways in the visual cortex. However, current feed-
forward deep learning architectures lack the computational primitives for hierarchical Bayesian
inference as described above. These three interactions, implicated in forming part-whole
representations—bottom-up, top-down, and lateral interactions—emerge directly from hi-

erarchical sparse coding, a Bayesian generative model which provides a normative theory for
the formation of visual representations (Olshausen et al., 2014). We begin by describing the
classical sparse coding model, follow with its geometric extension equivariant sparse coding,
and then introduce hierarchical equivariant sparse coding.

3. Hierarchical Equivariant Sparse Coding

3.1. Sparse Coding
Sparse coding was originally proposed as a model for how neurons in primary visual cortex
represent image data coming from the retina. As a linear generative model, it assumes
that images can be represented as I =

P
i �

i ai + ✏, a sparse linear combination of learned
basis functions, or dictionary elements � = {�1,�2, ...,�D}, with noise ✏ (e.g. Gaussian)
and a sparsity-inducing prior on the latent variables a (e.g. Laplace). The energy function
of the model arises from computing the maximum a posteriori (MAP) estimate using the
likelihood and the prior, which is equivalent to computing the mode of the posterior dis-
tribution, P (a|I;�): mina

1
2 ||I � Î||2X,2 + �||a||1. Inference gives rise to recurrent dynamics

in latent variables a that implement explaining away. Popular inference methods include
ISTA (Daubechies et al., 2003), FISTA (Beck and Teboulle, 2009), and LCA (Rozell et al.,
2008).

3.2. Group Equivariant Sparse Coding
The traditional sparse coding model provides no mechanism to reason about configurations
or transformations of components in a scene, e.g. position, orientation, and scale, since the
dictionary elements �i form an unordered collection of vectors (see Figure 2(b)).

However, by equipping the generative model with manifold structure via continuous
group actions, dictionary elements and coe�cients are endowed with explicit pose infor-
mation, shown by (Shewmake et al., 2023). Specifically, one can replace the unordered
set of dictionary elements in traditional sparse coding with a set of C canonical dictionary

elements {�1(e),�2(e), ...,�C(e)}, where each �c(e) : R2
! R is a function in image space.

The full dictionary � is generated via group actions on each canonical dictionary element,
written formally as Tg�c(e)(x) = �c(e)(g�1x)3, for g 2 G and the identity transformation
denoted as e 2 G.

3. Evaluating a g-transformed function at a point x requires evaluating the original function at point g�1x
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Input Equivariant Sparse CodingTraditional Sparse Coding
Image Group-structured coefficients and dictionaryUnstructured coefficients and dictionary

(a) (b) (c)
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Figure 2: (a): An input image is transformed by group action Th. (b): Traditional SC has un-
structured coe�cients. (c): ESC activations transform equivariantly (via action T 0

h) over
the manifold G, shown on the torus for visualization.

The group G can denote translation, rotation, scaling, or a more general family of
transformations. Here, we denote a dictionary element with its coordinate g for simplicity:
�c(g) = Tg�c(e). The full generated dictionary is � = {�c(g) : 8c 2 {1, . . . , C}, 8g 2 G}.

Importantly, each latent variable corresponds to a dictionary element, and thus the
coe�cients inherit the same group structure, denoted now as ac(g). The manifold geometry
of coe�cient activity and a visualization of equivariance is shown in Figure 2(c). Images
are now generated by a linear combination of dictionary elements with coordinates g 2 G.

I(x) =
CX

c=1

X

g2G
�c(g)(x)ac(g) + ✏(x) 8x 2 R2 (1)

3.3. Hierarchical Equivariant Sparse Coding
The first layer of equivariant sparse coding performs a decomposition of a scene into a sparse
set of primitive parts (canonical dictionary elements) and their corresponding poses. This
representation provides a natural way to combine lower-level parts into objects in the next
layer to achieve hierarchical scene decomposition. Similar to the one-layer case, we define
a set of C2 canonical dictionary elements in the second layer {�12(e),�

2
2(e), ...,�

C2
2 (e)}4.

Dictionary elements are again generated by group actions, and are thus equivariant to
global, local, and hierarchical transformations (see Figure 3). The input to this layer is a
set of group coordinates from layer 1, so each dictionary element is defined over G instead
of the R2 image space: �c22 (g) : G! RC1 .

4. For multiple layers, we subscript for layer index l, and superscript for canonical dictionary index cl: �
cl
l
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Layer 2 Dictionary & CoefficientsLayer 1 Dictionary & CoefficientsMulti-Object Scene

(b)

(a)

(c)

Figure 3: (a) Illustration of the model’s dictionary elements and latent representation. Dictionary
elements correspond to parts (�11, �

2
1) and objects (�12, �

2
2) of the scene. (b) The model

infers a latent representation of parts and objects, decomposing a multi-object scene.
Each non-zero coe�cient is a point with a pose in the rototranslation group. (c) After an
action Th = (Th1 , Th2) is applied to the multi-object scene, inferred coe�cients transform
equivariantly via T 0

h = (T 0
h1
, T 0

h2
).

Images are generated by a linear combination of hierarchical dictionary elements with
explicit coordinates g 2 G.

First-level (C1 Parts): I(x) =
C1X

c1=1

X

g2G
�c11 (g)(x)ac11 (g) + ✏(x) 8x 2 R2 (2)

Second-level (C2 Objects): a1(g) =
C2X

c2=1

X

g02G
�c22 (g0)(g)ac22 (g0) + ✏(g) 8g 2 G (3)

The corresponding layer 2 coe�cient activations ac22 (g) inherit the same group structure as
corresponding dictionary elements �c22 (g). This could be extended to an arbitrary layer l,
which would have the same structure for �cll (g) and acll (g) based on input from layer l � 1.

We generate reconstructions Î(x) and â1(g) using the generative model in (2) and (3).

Inference. The inference mechanism follows directly from computing the gradient of the
hierarchical energy function E, shown in Figure 4. The implementation of the architecture
and inference is provided in Appendix C.
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Input

2nd Layer

1st Layer

E =
1

2
kI � Îk22 + �1ka1k1 +

1

2
ka1 � â1k

2
2 + �2ka2k1

ra1E = � �T
1 I|{z}

bottom-up

+�T
1 �1a1 + �1sign(a1)| {z }

lateral

��2a2 + a1| {z }
top-down

ra2E = � �T
2 a1| {z }

bottom-up

+�T
2 �2a2 + �2sign(a2)| {z }

lateral

Figure 4: Hierarchical Energy and Gradients: Bottom-up terms activate coe�cients correspond-
ing to dictionary elements matching the image well. Lateral terms implement interac-
tions between coe�cients representing similar or overlapping parts while pushing coef-
ficients towards zero. This results in a sparse part decomposition. Top-down term(s)
promote the presence of parts in lower layers compatible with wholes in the above layers

4. Results

The assumption of our model is that natural images can be e�ciently described in terms of a
hierarchical decomposition of wholes into parts, where components are configured according
to group actions. Here we show that, when trained on a dataset containing objects under
independent group transformations, the model (1) successfully recovers the ground truth
hierarchical dictionary, (2) is equivariant to hierarchical group actions, and (3) implements
explaining away to produce sparse latent object representations.

Experimental Design. To test ground truth dictionary recovery, we construct a dataset
with known hierarchical and group transformation structure. We use a single Gabor as a
first-level part. Next, we construct two digits by arranging the first-level parts with poses
in the rototranslation group. The ground-truth part and objects are shown in Figure 5. We
create multi-object scenes by sampling one object choice per quadrant in a random pose
with 5 ⇥ 5 possible spatial positions and 4 possible orientations. Using this model, there
are (|G| ⇥ 2 objects)4 = (5 ⇥ 5 ⇥ 4 ⇥ 2)4 = 1.6 billion unique scenes with four objects.
Our training set is a collection of 1000 such random multi-object scenes. We train a two
layer model with one canonical dictionary element in layer one and two in layer two (i.e.
C1 = 1, C2 = 2). The goal during training is for the model to successfully recover the
canonical Gabor function in layer 1, and to recover each of the two digits in layer 2.

Findings. First, after unsupervised training, the model (1) successfully recovers hier-
archical dictionary elements, as shown in Figure 5(c). Note that the layer 1’s canonical
dictionary element �11(e) converges to a component which sparsely decomposes the objects
in the dataset, and the trained layer 2’s canonical dictionary elements �12(e) and �

2
2(e) re-

cover the digits 1 and 3. Second, due to our unsupervised setup and hierarchical model, we
are able to perform (2) scene decomposition on multi-object scenes, generalizing from
extremely few samples. Note that through inference, the model has formed a what-where
decomposition of all objects in the scene in parallel. This can be observed in the second
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Inferred Sparsity(c) (d)

Ground Truth

Recovered

Layer 2 CoefficientsLayer 1 CoefficientsScene

(a)

(b)
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Figure 5: (a) Synthesized scene image. Inferred coe�cients correspond to presences of parts and
objects in the scenes. (b) Image transformation by Th is composed of independent actions
on objects in the scene. Inferred part and object coe�cients transform equivariantly, via
T 0
h. (c) Recovered and ground truth dictionaries for layers 1 and 2. (d) Histograms of

inferred and ground-truth dataset generation coe�cient magnitudes.

layer’s latent activations in Figure 5(a), which have excitations corresponding to each object
and its corresponding pose in the rototranslation group. Further, observe that this same
what-where decomposition occurs in the first layer as well, in which each Gabor function
present in the scene is represented along with its pose. Third, the model is (3) equiv-
ariant to hierarchical transformations. Critically, when objects in the image undergo
independent group transformations, the latent variables in both the first and second layers
also undergo independent group transformations, shown in Figure 5(b). Finally, the latent
representations are (4) sparse in both layers due to explaining away, with increasing
sparsity in the second layer as compared to the first, shown in Figure 5(d).

5. Discussion and Future Work

Our current model provides a proof of concept, trained on a synthetic dataset to clearly
demonstrate the learned dictionary and equivariance properties of the model’s represen-



Shewmake Buracas Lillemark Shin Bekkers Miolane Olshausen

tation. The first steps going forward are to study the learned object decompositions and
empirical equivariance when trained on larger datasets with deeper hierarchical structure,
such as the Hangul characters, CIFAR, and natural images (Krizhevsky et al., 2009; Livezey
et al., 2019; Sun et al., 2020). To do this, we will expand the architecture to deeper lay-
ers, more canonical dictionary elements, and more expressive group actions. With regard
to applications, we expect the model’s performance on a variety of tasks will benefit from
meaningful latent representations such as classification, scene decomposition, object de-
tection, visual question answering, and compression of images and video. We expect to
compare favorably to existing models in terms of adversarial robustness, sample complex-
ity, parameter count, and computational cost. Finally, we plan to explore the implications of
our model on visual neuroscience, for example, in emergent phenomena such as perceptual
grouping, the dynamics of bistable percepts, and contour completion.
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Appendix A. Mathematical Background

b)   Global actiona) Multi-object scene c)   Object actions e)   Random part actionsd)   Part actions

I
{O}
{P}

g’ on I h( ), h1 2 , h3 on {O} h’( ), h’1 2 on {P} h’’( ), h’’1 2 , h’’3 on {P},...
I

O

P

Scene

1 O2 O3

1 P2 ...

, h’3

Figure 6: A version of Figure 1 with an additional parse tree visualization corresponding to the
image. (a) Visual scenes are composed of objects {Oi} with corresponding group trans-
formations gi applied (b) Global transformation of g0 = (g, g, g) on I distributes down to
objects and their parts. (c) Local object transformations h = (h1, h2, h3) are applied to
objects. Transformations distribute down to parts, and relative part configurations are
conserved. (d) A subset of local part transformations h0 = (h0

1, h
0
2, h

0
3) are applied which

conserve relative part configurations enough to preserve object identity (e) A random
subset of local part transformations h00 = (h00

1 , h
00
2 , h

00
3) are applied which do not preserve

object identity. The space of possible scenes without object and hierarchical structure is
much larger than scenes with object and hierarchical structure.

Groups. A group (G, ·) is a set G with a binary operation ·, which we can generically call
the product. The notation a · b denotes the product of two elements in the set; however, it
is standard to omit the operator and write simply ab. Concretely, a group G may define
a class of transformations, such as two-dimensional translations or rotations in the plane.
The elements of the group g 2 G define particular transformations, such as rotation by 30
or rotation by 90. The binary operation · provides a means for combining two particular
transformations —for example, first rotating by 30 and then rotating by 90. For a set of
transformations G to be a group under the operation ·, the four following axioms must hold:

1. Closure: The product of any two elements of the group is also an element of the group,
i.e. for all a, b 2 G, ab 2 G.

2. Associativity : The grouping of elements under the operation does not change the
outcome, so long as the order of elements is preserved, i.e. (ab)c = a(bc).

3. Identity : There exists a “do-nothing” identity element e that such that the product
of e with any other element g returns g, i.e. ge = eg = g for all g 2 G.

4. Inverse: For every element g, there exists an inverse element g�1 such that the
product of g and g�1 returns the identity, i.e. gg�1 = g�1g = e.
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Homomorphisms. Two groups (G, ·) and (H, ⇤) are homomorphic if there exists a cor-
respondence between elements of the groups that respect the group operation. Concretely,
a homomorphism is a map ⇢ : G! H such that ⇢(u · v) = ⇢(u) ⇤ ⇢(v). An isomorphism is
a bijective homomorphism.

Product Groups. A product group as a set is the cartesian product G⇥H of two given
groups G and H. The new group product is given by (g1, h1) · (g2, h2) = (g1g2, h1h2).

Commutativity. A group (G,+) is commutative or abelian if the order of operations
does not matter, i.e. ab = ba. If this does not hold for all elements of the group, then the
group is called non-commutative. The classification of finite commutative groups says that
each such group is a product of cyclic groups.

Group Actions. A group action is a map T : G ⇥ X ! X that maps (g, x) pairs to
elements of X. We say a group G acts on a space X if the following properties of the action
T hold:

1. The identity e 2 G maps an element of x 2 X to itself, i.e. T (e, x) = x

2. Two elements g1, g2 2 G can be combined before or after the map to yield the same
result, i.e. T (g1, T (g2, x)) = T (g1g2, x)

For simplicity, we will use the shortened notation Tgx to denote T (g, x), often expressed
by saying that a point x maps to gx (= Tg(x)).

Invariance. A function � : X 7! Y is G-invariant if �(x) = �(gx) for all g 2 G and
x 2 X. This means that group actions on the input space have no e↵ect on the output.

Equivariance. A function f : X 7! Y is G-equivariant if f(gx) = g0f(x) for all g 2 G
and x 2 X, with g0 2 G0, a group homomorphic to G that acts on the output space. This
means that a group action on the input space results in a corresponding group action on
the output space.

Orbits. Given a point x 2 X, the orbit Gx of x is the set {gx : g 2 G}. In the context of
image transformations, the orbit defines the set of all transformed versions of a canonical
image—for example, if G is the group of translations, then the orbit contains all translated
versions of that image.

Appendix B. Group Convolution: Theory and Computation

Group Convolutions (Lifting) Consider an image I defined on a domain X on which
a group G acts. A neural network convolutional filter is a map  : X ! Rc defined with
the same domain X and codomain Rc as the image. A G-convolutional layer is defined by
a set of filters { 1, ..., K}. For a given filter k, the layer performs a G-convolution with
the input signal I:

⇥k(g) = ( k ⇤ I)(g) =

Z

x2X
 k(Tg�1(x))I(x)dx, 8g 2 G, (4)
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by taking the dot product in Rc of the signal with a transformed version of the filter. In
practice, the domain X of the signal is discretized, such that the G-convolutional layer
becomes:

⇥k(g) =
X

x2X
 k(Tg�1(x))I(x), 8g 2 G. (5)

The output of one filter k is therefore a map ⇥k : G! R, while the output of the whole
layer with K filters is ⇥ : G! RK defined as ⇥(g) = [⇥1(g), . . . ,⇥K(g)] for all g 2 G. The
G-convolution therefore outputs a signal ⇥ whose domain has necessarily become the group
X = G and whose number of channels is the number of convolutional filters K. We call
this convolution a lifting G-convolution. The G-convolution is equivariant to the action of
the group on the domain of the image I (Cohen and Welling, 2016).

Group Convolutions (Homogeneous) After the first layer, the signal has become a
function f : G! RK . Thus, the definition of the G-convolution slightly changes: we call it
a homogeneous group convolution. For a given filter defined with a domain being a group
�k : G! RK , we have:

⇥0
k(g) = ( k ⇤⇥)(g) =

Z

h2G
 k(g

�1h)⇥(h)dh, 8g 2 G, (6)

where instead of using the action of the group G on the domain, we use its “natural” action
on itself: the binary operation · of the group. The discretized version is written:

⇥0
k(g) =

X

h2G
 k(g

�1h)⇥(h), 8g 2 G. (7)

Appendix C. Architecture

Dictionary Elements. We parameterize canonical dictionary elements in the first and
second layers of the network using images and Sinusoidal Representation Networks (SIREN)
(Sitzmann et al., 2020), similar to (Romero et al., 2021) and (Knigge et al., 2022). In
the first layer, a set of canonical dictionary element images with learnable weights ⇥ are
billinearly sampled at input coordinates x 2 R2, returning that coordinate’s pixel value
INTERPNET1

⇥(x) 2 RC0 , where C0 = 1 for grayscale and C0 = 3 for RGB. Here,
SIREN1

⇥ : R2
! RC0 . Dictionary elements in the second layer are generated by a SIREN

over the group SIREN2
⇥ : G! RC1 .

�1(e)(x) = INTERPNET1
⇥(x) �2(e)(g) = SIREN2

⇥(g)

Both first and second layer dictionary elements share the same support as the image domain
and the group domain, H ⇥W and |G|, respectively.

Group Actions on Dictionary Elements. This parameterization simplifies the gen-
eration of transformed instances of the canonical dictionary elements, as the group action
can be applied to the INTERPNET or SIREN’s input coordinate grid to generate a smooth
family of transformed dictionary elements without need for interpolation.

�1(g)(x) = INTERPNET1
⇥(g

�1x) �2(g
0)(g) = SIREN2

⇥(g
0�1g)
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In all experiments, we use the rototranslation group G = R2 oSO(2). We compute the full
dictionary in layers one and two by transforming each of the canonical dictionary elements
with a uniform grid of group actions in G, denoted Ḡ1 and Ḡ2, respectively.

�1 = {�c11 (g)(x) : 8c1 2 {1, . . . , C1}, 8g 2 Ḡ1}

�2 = {�c22 (g)(x) : 8c2 2 {1, . . . , C2}, 8g 2 Ḡ2}

We do this forNx,1, Nx,2 horizontal translations, Ny,1, Ny,2 vertical translations, andN✓,1, N✓,2

rotations, thus |Ḡ1| = Nx,1⇥Ny,1⇥N✓,1 and |Ḡ2| = Nx,2⇥Ny,2⇥N✓,2. This is functionally
equivalent to group convolution, described in Appendix B.

Hierarchical Inference. For fast inference, we use an adapted version of FISTA (Beck
and Teboulle, 2009). Our adaptation updates all layers’ activations simultaneously over a
given number of iterations, consistent with Lee and Mumford (2003). We explain this in
more detail in Appendix D.

Dictionary Learning. As in traditional sparse coding, we alternate inference of the
latents a and a dictionary update step for both layers using back-propagation through the
dictionary function parameterization.

Appendix D. Model Training and Inference Details

For the experiments described in this paper, we used a two-layer hierarchical group equivari-
ant sparse coding model. We see the hierarchical generative model (Equations 2, 3), energy,
and gradients (Figure 4). Here we describe details of the FISTA algorithm for hierarchical
sparse coding inference, the parameterization of our canonical dictionary functions using
SIREN implicit networks, and hyperparameters we used.

D.1. Hierarchical Inference with FISTA

For the inference of our algorithm, we use an adapted version of the FISTA (Beck and
Teboulle, 2009; Boutin et al., 2019) optimizer, due to its fast rate of convergence relative
to others. Our adaptation couples the inference of both layers by including a top-down
gradient term, as well as updating each layer in a simultaneous fashion.

Our hierarchical loss objective is:

min
a

L(I,�, a) = min
a
� log(P (a|I : �))

= min
a

1

2
kI � �1a1k

2
2 + �1ka1k1 +

1

2
ka1 � �2a2k

2
2 + �2ka2k1

Its gradients are:



Visual Scene Representation with Hierarchical Equivariant Sparse Coding

ra1L(I,�, a) = �T
1 (�1a1 � I)| {z }

reconstruction gradient

+ a1 � �2a2| {z }
top-down gradient

+ �1sign(a1)| {z }
sparsity gradient

ra2L(�, a) = �T
2 (�2a2 � a1)| {z }

reconstruction gradient

+ �2sign(a2)| {z }
sparsity gradient

The resulting adapted FISTA algorithm is shown in Algorithm 1

Algorithm 1: Hierarchical inference with FISTA
Input: I in dataset, sparsity parameters �1, �2, step sizes ⌘1, ⌘2, number of steps T
a0, a1  0;
m1  1;
for t = (1, 2, ..., T � 1) do

mt+1  
1+
p

1+4m2
t

2 ; �  mt�1
mt+1

;

u at + �(at � at�1);

at+1
1  T�1⌘1(a

t
1 � ⌘1ra1L(I,�, u));

an+1
2  T�2⌘2(a

t
2 � ⌘2ra2L(�, u));

end
Result: aN

The nonnegative soft-thresholding operator is T�⌘(x) = relu(x� �⌘)

D.2. Hyperparameters

We use 1 canonical dictionary element for layer 1, C1 = 1, and 2 canonical dictionary
elements for layer 2, C2 = 2. The first layer’s dictionary is paramaterized by a 28x28
pixel grid, which is billinearly sampled to produce transformed instances of the canonical
image. The second layer’s dictionary elements are parameterized by a three-layer SIREN
with fully-connected layers of width 512. We train unsupervised with learning rate of 5e�3
for 10 epochs on 60,000 examples per dataset. For inference our layers have sparsity penalty
�1 = 1.6 and �2 = 1.7, and run joint inference for 200 iterations.
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