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A HUMAN EVALUATION RESULTS
In this section, we follow [6] to perform human evaluation exper-
iments to test whether an adversary can distinguish the identity
of a protected pedestrian image by the human eye. We ask partici-
pants whether the image pair represents the same person, where
the image pair is randomly sampled from the original or protected
Market-1501 test set. For each method, we sample 100 image pairs
which are evenly distributed over 10 participants. Optimal privacy
is achieved when the privacy value reaches 50%, which corresponds
to random guessing. As shown in Table S1, our PixelFade achieves
the lowest privacy value, which is quite close to the result of ran-
dom guessing, demonstrating that our method robustly protects the
visual privacy of pedestrian images. At the same time, our method
obtains the highest Rank-1, indicating that the protected images
still provide high utility.

B FURTHER COMPARISONWITH AVIH
In our main paper, we reproduce and set the maximum number
of steps of AVIH [4] to 100, which is the same as the default set-
ting of our PixelFade for a fair comparison. The default number of
steps for the AVIH method is 800. To demonstrate a comprehensive
comparison, we also set different iteration steps up to 800 for both
methods and show the trend of the Re-ID performance. Here we
set the feature constraint 𝜖 of PixelFade to 0.01. As shown in Fig-
ure S1, Our PixelFade converges faster than AVIH since PixelFade
utilizes coarse-grained information during the optimization process
to suggest a better optimization direction for the Re-ID model.

Moreover, when the iteration number is set to 800, our method
exceeds AVIH in both mAP and mINP, being very close to “origin”
which indicates the performance of the unprotected model. The
reason AVIH achieves a lower mINP and mAP is that AVIH only
reduces the distance between the protected image and a specific
pedestrian image. This approach results in “overfitting” to that
particular image, consequently hindering its ability to match pedes-
trian samples from different viewpoints. In contrast, our PixelFade
effectively captures identity-relative intrinsic features of pedestrian
images and ensures their retention in the protected image, thereby
achieving relatively high mINP and mAP.

C CALCULATION OF AD VALUE
To measure the pixel chaos degree of an protected image, we fol-
low [3] to perform an Anderson-Darling test, calculating how simi-
lar the image is to a normally distributed noise image. Specifically,
for each protected image, we sample a random noise image from the
standard normal distribution with the same shape as the protected
image. After normalizing both protected image and noise image
to a data range between 0 and 1, we use the “anderson” function
from “scipy.stat” library to calculate the corresponding statistic (AD
value), which indicates how closely the protected image’s pixel val-
ues conform to a normal distribution. As the AD value approaches

Table S1: Human evaluation results of different privacy-
preserving person re-identification (PPPR) methods. Privacy
Value(%) indicates verification accuracy by human eyes. A
lower privacy value means better protection of visual pri-
vacy.

Image Pair Original-Protected Protected-Protected
Method Privacy Value↓ Re-ID Rank-1↑ Privacy Value↓ Re-ID Rank-1↑
Blur 79 40.1 82 67.3

Mosaic 71 75.3 75 64.3
PrivacyReID [6] 83 88.2 82 89.2

AVIH [4] 56 92.6 51 91.2
Ours 55 95.0 51 94.2

(a)

m
IN

P

m
A

P

(b)

Iteration Step Iteration Step

Figure S1: Further comparison between iterative method
AVIH [4] and our PixelFade. (a) Comparison ofmAP. (b) Com-
parison of mINP.

0, it represents increasingly chaotic pixels in the protected image.
In our paper, we computed the AD value for each image in the pro-
tected test set for every PPPR method. Subsequently, we calculated
the average AD value for all images to determine the final AD value
for each PPPR method.

D MORE VISUALIZATION RESULTS
We provide more visualization results in Figure S2. Previous meth-
ods (columns a-d) still expose some visual information (e.g., clothing
color, contour). In comparison, our PixelFade (column e) effectively
hides the visual information of pedestrians, making it difficult for
malicious attackers to distinguish the identity.

E DISCUSSION OF THE REVERSIBILITY
Although the related work PrivacyReID [6] claims that pedestrian
protected images should be reversible, meaning that they can be
recovered to original images by authorized models to retain the
utility of original images. However, such reversibility gives the
adversary an opportunity to launch recovery attacks [1, 2, 5, 7] to
invade privacy. Furthermore, preserving the reversibility of pro-
tected images is not necessary. It is feasible to store corresponding
original images of protected images in another secure location to
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Figure S2: More Visualization of protected and recovered images from different PPPRmethods. (a) PrivacyReID [6]; (b) Blurring;
(c) Mosaic; (d) AVIH [4]; (e) Our PixelFade.

fully utilize their utility. Next, we give a concrete example of the
application of our PixelFade.

In the scenario of tracking a suspect, images captured by the
surveillance can be processed by PixelFade into two copies, origi-
nal and protected images, each sharing a common index number.
Original image can be stored locally at the trusted site, while pro-
tected image can be stored in the cloud, where Re-ID services are
provided by an untrusted third party. When there is a need to track
suspects across different cameras, the third party can use Re-ID

models to retrieve protected images. Then, they return the indexes
of the retrieved images to the trusted local site, which uses these
indexes to get the corresponding original images for further crime
investigation.

In summary, our PixelFade provides a technique to protect pedes-
trian images and resist recovery attacks, which does not contradict
the utility of original images. We hope that our novel approach will
advance the development of PPPR task.
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