
Table 4: Ablation experiments quantifying the effec-
tiveness of each component in our SSOD approach
using 1% of COCO labels. The first row corresponds
to the Soft Teacher baseline and the last row is our
SoftER Teacher configuration.

Proposal Similarity Measure Proposal IoU Regression AP50:95 AR50:95

None 7 22.4 30.8
KL-Divergence 7 22.8 31.5
Cross-Entropy (Eq. (4)) 7 22.7 31.6
None 3 22.3 30.8
KL-Divergence 3 22.9 31.8
Cross-Entropy (Eq. (4)) 3 23.0 32.0

Figure 6: The impact of unlabeled data on semi-
supervised few-shot fine-tuning.

Table 5: Ablation experiments evaluated on COCO val2017 showing the standard procedure of fine-tuning both
box classification and regression heads degrades base performance by as much as 21%. Our modified protocol
of fine-tuning only the box classifier, while keeping the box regressor fixed, helps retain base detection accuracy
with a performance drop of less than 11% for Faster R-CNN and 9% for SoftER Teacher.

Method Base AP50:95
Base AP50:95 (60 Classes) Novel AP50:95 (20 Classes)

1-Shot 5-Shot 10-Shot 30-Shot 1-Shot 5-Shot 10-Shot 30-Shot

Faster R-CNN (fine-tune cls+reg) 39.3 31.2 (# 21%) 34.7 (# 12%) 34.8 (# 11%) 36.7 (# 7%) 0.6 3.9 6.0 7.9
Faster R-CNN (fine-tune cls only) 39.3 34.9 (# 11%) 35.8 (# 9%) 35.8 (# 9%) 37.1 (# 6%) 0.5 3.9 6.1 7.8
SoftER Teacher (fine-tune cls+reg) 42.0 33.6 (# 20%) 37.8 (# 10%) 38.1 (# 9%) 39.9 (# 5%) 1.5 6.7 9.4 10.8
SoftER Teacher (fine-tune cls only) 42.0 38.3 (# 9%) 39.1 (# 7%) 39.1 (# 7%) 40.2 (# 4%) 1.5 6.7 9.4 10.8

A Ablation Studies464

A.1 SoftER Teacher System Design465

Table 4 shows an ablation study on 1% of COCO labels to assess the key elements in our SoftER466

Teacher approach for SSOD. Compared to the Soft Teacher [55] baseline (first row), the addition of the467

cross-entropy or KL-divergence measure to enforce proposal consistency leads to a boost in both AP468

and AR, although the performance difference between the two measures is immaterial. Interestingly,469

the addition of the IoU regression loss by itself does not produce a performance improvement over470

the Soft Teacher baseline. However, when we couple IoU regression with the cross-entropy similarity471

measure, we obtain the best performing configuration (last row). SoftER Teacher improves on both472

precision and recall over the strong Soft Teacher baseline via our proposed Entropy Regression473

module for proposal learning with complex affine transformations.474

A.2 Semi-Supervised Few-Shot Fine-Tuning with Unlabeled Data475

As discussed in Section 3.3, we explore two ways of leveraging unlabeled data to fine-tune the476

few-shot detector on novel classes: (1) we initialize the few-shot detector with parameters copied477

from the base teacher detector pre-trained with unlabeled data per Eq. (6); and (2) we further train the478

RoI box classifier and regressor on novel classes using the available few-shot and unlabeled examples479

while freezing the base backbone, FPN, and RPN components. Figure 6 illustrates semi-supervised480

base initialization boosts novel AP by as much as 43%, compared to the supervised baseline. In481

addition to semi-supervised base initialization, training the RoI head on few-shot novel classes with482

unlabeled images further amplifies the novel AP margin of SoftER Teacher.483

A.3 To Freeze or Not to Freeze Box Regressor484

The standard two-stage transfer learning procedure [50] fine-tunes the few-shot detector by updating485

both the RoI box classifier and regressor while keeping everything else frozen. Intuitively, we expect486

the RPN to produce accurate object regions during base pre-training, especially in the semi-supervised487

setting where it is further boosted by supplementary unlabeled images. We postulate that only the box488

classifier needs to be updated during fine-tuning to adapt base representations to novel concepts, and489

that fine-tuning the regression head is not necessary and may even hurt base performance. Table 5490

verifies our intuition that fine-tuning both box classification and regression heads degrades base491

performance by as much as 21% on COCO val2017. By comparison, our modified protocol of492

fine-tuning only the box classifier helps retain base performance with a drop of less than 11%.493

Novel performance is unaffected between the two configurations. Our results are corroborated by494
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Table 6: Generalized FSOD results evaluated on VOC07 test over three random partitions. We compare our
SoftER Teacher against its Soft Teacher counterpart and strong supervised baselines. We report the mean and
95% confidence interval over 10 random samples for our models. SoftER Teacher with ResNet-50 exceeds the
supervised models with ResNet-101 by a large margin across most metrics under consideration.

VOC07 test – Split 1 Backbone Base Base Base AP50 (15 Classes) Novel AP50 (5 Classes) Overall AP50 (20 Classes)

Method AP50 AR50 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot

MPSR [53] R-101 80.8 – 61.5 69.7 71.6 42.8 55.3 61.2 56.8 66.1 69.0
Retentive R-CNN [13] R-101 80.8 – 80.9 80.8 80.8 42.4 53.7 56.1 71.3 74.0 74.6
TFA [50] R-101 80.8 – 77.6± 0.2 77.4± 0.3 77.5± 0.2 25.3± 2.2 47.9± 1.2 52.8± 1.0 64.5± 0.6 70.1± 0.4 71.3± 0.3

Faster R-CNN (Our Impl.) R-50 81.7 88.0 82.0± 0.2 82.4± 0.1 82.3± 0.1 27.9± 3.2 52.1± 2.1 58.2± 1.6 68.5± 0.8 74.9± 0.5 76.2± 0.4
Soft Teacher (Our Impl.) R-50 85.3 91.2 84.5± 0.3 85.2± 0.1 85.2± 0.1 29.5± 4.2 56.2± 2.6 62.3± 1.8 70.8± 1.1 78.0± 0.7 79.5± 0.5
SoftER Teacher (Ours) R-50 85.9 92.5 84.5 ± 0.4 85.5 ± 0.1 85.5 ± 0.1 31.6± 3.9 57.7 ± 2.6 63.4 ± 1.7 71.3 ± 1.2 78.5 ± 0.7 80.0 ± 0.4
VOC07 test – Split 2 Backbone Base Base Base AP50 (15 Classes) Novel AP50 (5 Classes) Overall AP50 (20 Classes)

Method AP50 AR50 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot

MPSR [53] R-101 81.9 – 60.8 71.2 72.7 29.8 43.2 47.0 53.1 64.2 66.3
Retentive R-CNN [13] R-101 81.9 – 81.8 81.9 81.9 21.7 37.0 40.3 66.8 70.7 71.5
TFA [50] R-101 81.9 – 73.8± 0.8 76.2± 0.4 76.9± 0.3 18.3± 2.4 34.1± 1.4 39.5± 1.1 59.9± 0.8 65.7± 0.5 67.6± 0.4

Faster R-CNN (Our Impl.) R-50 82.9 88.7 83.1± 0.1 83.5± 0.1 83.3± 0.1 18.3± 4.3 34.9± 1.5 40.6± 1.7 66.9± 1.1 71.4± 0.4 72.6± 0.4
Soft Teacher (Our Impl.) R-50 85.9 91.7 85.3 ± 0.1 85.8 ± 0.1 85.7 ± 0.1 21.3± 4.4 39.4± 2.0 43.9± 1.7 69.3 ± 1.1 74.2 ± 0.6 75.3± 0.4
SoftER Teacher (Ours) R-50 86.1 92.9 84.9± 0.2 85.6± 0.2 85.7± 0.2 21.9± 4.1 39.6± 1.7 45.0± 1.9 69.1± 1.1 74.1± 0.5 75.5 ± 0.5
VOC07 test – Split 3 Backbone Base Base Base AP50 (15 Classes) Novel AP50 (5 Classes) Overall AP50 (20 Classes)

Method AP50 AR50 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot

MPSR [53] R-101 82.0 – 61.6 72.9 73.2 35.9 48.9 51.3 55.2 66.9 67.7
Retentive R-CNN [13] R-101 82.0 – 81.9 82.0 82.1 30.2 49.7 50.1 69.0 73.9 74.1
TFA [50] R-101 82.0 – 78.7± 0.2 78.5± 0.3 78.6± 0.2 17.9± 2.0 40.8± 1.4 45.6± 1.1 63.5± 0.6 69.1± 0.4 70.3± 0.4

Faster R-CNN (Our Impl.) R-50 82.6 88.0 83.1± 0.2 83.6± 0.1 83.3± 0.1 19.6± 1.9 44.1± 1.8 51.2± 1.3 67.3± 0.5 73.7± 0.4 75.3± 0.3
Soft Teacher (Our Impl.) R-50 85.6 91.3 85.2 ± 0.2 85.5 ± 0.2 85.5 ± 0.1 21.6± 1.6 46.4± 2.2 53.1± 1.3 69.2 ± 0.5 75.7 ± 0.6 77.4 ± 0.3
SoftER Teacher (Ours) R-50 85.7 92.5 84.5± 0.2 85.2± 0.2 85.3± 0.1 22.4± 1.6 46.6± 2.1 53.3 ± 1.6 69.0± 0.5 75.6± 0.6 77.3± 0.5

existing work confirming that the main source of error with FSOD is indeed associated with the495

box classifier [14, 46]. Recall our goal for FSOD is to maximize novel detection accuracy while496

minimizing base performance degradation; keeping the box localization parameters fixed during497

fine-tuning is a simple and straight-forward way to help maintain base class accuracy.498

B Additional Quantitative Results499

B.1 Generalized Few-Shot Detection on PASCAL VOC500

We present the generalized FSOD results on VOC in Table 6, which comprises three random partition501

splits. We report the ideal supervised base AP from previous work [13, 50] along with our substantially502

improved semi-supervised base AP to measure the extent of base forgetting. These results further503

support our observation on the trade-off between novel performance and base forgetting, for which504

our approach aims to simultaneously optimize. We summarize the following key takeaways.505

Base Performance. Our re-implementation of the supervised Faster R-CNN baseline does not506

degrade base performance compared to the TFA benchmark across all three partitions. Base degrada-507

tion is negligible with SoftER Teacher at less than 1.6%. We attribute this apparent improvement508

in base performance to our modified procedure of fine-tuning only the RoI box classifier and to our509

proposed Entropy Regression module enabling SoftER Teacher to achieve superior learning with510

unlabeled data.511

SoftER Teacher vs. Supervised Baselines. SoftER Teacher with ResNet-50 surpasses the512

supervised MPSR, TFA, and Retentive R-CNN models with ResNet-101 by a large margin on the513

combined overall base + novel AP metric across most experiments under consideration, while being514

more parameter-efficient. Although MPSR achieves impressive few-shot performance on novel515

categories, it suffers catastrophic base forgetting by as much as 26%. Retentive R-CNN does not516

exhibit base class degradation, but generally falls behind on novel class performance.517

SoftER Teacher vs. Soft Teacher. Both Soft Teacher and SoftER Teacher can harness unlabeled518

data to boost FSOD. However, we observe that a stronger semi-supervised detector leads to a more519

effective few-shot detector, with SoftER Teacher slightly edging out Soft Teacher on novel accuracy.520

B.2 The Impact of Proposal Quality on Semi-Supervised Few-Shot Detection521

We present expansive results on proposal quality and its relationship with semi-supervised few-shot522

detection in Table 7. Following existing literature [20, 49], we measure proposal quality using the523

metric AR@p, for p 2 {100, 300, 1000} proposals, averaged over 10 overlap thresholds between 0.5524
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Table 7: Proposal quality is highly correlated with semi-supervised few-shot detection. SoftER Teacher produces
the best proposal quality AR@p, for p 2 {100, 300, 1000}, among the comparisons, which in turn yields the
strongest novel k-shot performances with varying fractions of base labels. All models are equipped with the
ResNet-101 backbone. We report the mean and standard deviation over 5 random samples.

Method % Labeled AR@100 AR@300 AR@1000 Base AP50:95 (60 Classes) Novel AP50:95 (20 Classes) Overall AP50:95 (80 Classes)

5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot

Faster R-CNN
1

17.3± 0.1 22.0± 0.2 27.0± 0.4 9.8± 0.3 10.0± 0.4 10.8± 0.3 1.9± 0.3 2.7± 0.1 3.5± 0.1 7.8± 0.2 8.2± 0.3 9.0± 0.2
Soft Teacher 27.8± 0.8 32.4± 0.8 38.1± 0.9 19.4± 0.7 19.9± 0.8 21.2± 0.7 5.9± 0.8 7.9± 0.7 10.1± 0.5 16.0± 0.6 16.9± 0.7 18.4± 0.6
SoftER Teacher 28.9± 0.7 33.7± 0.6 39.4± 0.6 19.2± 0.6 19.8± 0.5 21.1± 0.5 6.7± 0.3 8.8± 0.2 10.8± 0.5 16.1± 0.5 17.1± 0.4 18.5± 0.5

Faster R-CNN
5

23.3± 0.3 28.7± 0.4 34.9± 0.5 18.5± 0.5 18.9± 0.3 20.0± 0.5 3.5± 0.2 4.6± 0.2 5.9± 0.3 14.8± 0.4 15.3± 0.2 16.5± 0.4
Soft Teacher 29.8± 0.2 35.2± 0.2 41.4± 0.3 27.5± 0.4 27.8± 0.5 29.2± 0.5 6.7± 0.7 8.9± 0.4 11.1± 0.3 22.3± 0.4 23.1± 0.3 24.7± 0.4
SoftER Teacher 30.5± 0.2 35.9± 0.2 42.0± 0.2 27.5± 0.4 27.9± 0.4 29.3± 0.2 7.9± 0.4 10.1± 0.5 12.4± 0.5 22.6± 0.3 23.4± 0.3 25.1± 0.2

Faster R-CNN
10

25.0± 0.2 30.7± 0.3 37.5± 0.3 22.6± 0.4 22.8± 0.1 24.2± 0.2 3.8± 0.5 5.3± 0.2 6.8± 0.2 17.9± 0.3 18.4± 0.1 19.9± 0.2
Soft Teacher 30.2± 0.2 35.9± 0.2 42.4± 0.2 30.5± 0.5 30.7± 0.4 32.1± 0.3 6.8± 0.3 9.0± 0.6 11.4± 0.3 24.6± 0.4 25.3± 0.4 26.9± 0.3
SoftER Teacher 31.1± 0.2 36.7± 0.2 43.1± 0.3 30.3± 0.5 30.6± 0.5 32.0± 0.4 7.9± 1.3 10.4± 1.1 12.9± 1.0 24.6± 0.1 25.6± 0.3 27.2± 0.3

Table 8: SSOD results on VOC07 test. VOC0712

denotes the combined VOC07+12 trainval splits.
COCO-20 is the subset of COCO data having the same
20 classes as VOC. SoftER Teacher outperforms Hum-
ble Teacher and Soft Teacher by a convincing margin.

Method # Labels Unlabeled AP50 AP50:95 AR50 AR50:95

Supervised [47] VOC07 (5k) None 76.30 42.60 – –
Supervised (Our Impl.) VOC07 (5k) 79.34 49.20 85.38 57.50
Supervised [47] VOC0712 (16k) None 82.17 54.29 – –
Supervised (Our Impl.) VOC0712 (16k) 84.53 57.77 89.73 65.73
Humble Teacher [47]

VOC07 (5k) VOC12
80.94 53.04 – –

Soft Teacher (Our Impl.) 82.37 51.10 88.44 59.49
SoftER Teacher (Ours) 83.10 51.26 89.74 60.19
Humble Teacher [47]

VOC07 (5k)
VOC12 81.29 54.41 – –

Soft Teacher (Our Impl.) + 82.50 54.47 87.14 62.45
SoftER Teacher (Ours) COCO-20 84.09 55.34 88.90 63.58

Table 9: SSOD results on COCO val2017. The †
setting refers to self-augmented supervised training
without unlabeled data, and ‡ refers to the use of extra
unlabeled2017 images. We report the mean and
standard deviation computed over 5 random samples.

COCO val2017 Average Precision (AP50:95)

Method 1% 5% 10% †100% ‡100%
Supervised (Our Impl.) 10.57± 0.32 21.33± 0.40 26.80± 0.26 41.96 41.96
Humble Teacher [47] 16.96± 0.38 27.70± 0.15 31.61± 0.28 – 42.37
Soft Teacher (Our Impl.) 21.38± 1.02 30.65± 0.19 33.95± 0.13 43.51 44.08
SoftER Teacher (Ours) 21.93 ± 0.90 31.15 ± 0.29 34.08 ± 0.05 43.54 44.22

Method Average Recall (AR50:95)

1% 5% 10% †100% ‡100%
Supervised (Our Impl.) 15.87± 0.45 29.07± 0.47 36.80± 0.46 55.64 55.64
Soft Teacher (Our Impl.) 29.85± 0.89 38.68± 0.28 43.48± 0.25 55.66 56.18
SoftER Teacher (Ours) 30.90 ± 0.88 39.60 ± 0.41 43.90 ± 0.55 55.68 56.22

and 0.95. Proposal quality AR@p is not to be confused with the detection metric AR50:95, which is525

used to evaluate object coverage computed on a per-category basis and averaged over categories.526

B.3 SoftER Teacher Improves Precision and Recall for Semi-Supervised Detection527

We present SSOD results for VOC and COCO in Tables 8 and 9, respectively. On both datasets, we re-528

implement and re-train the supervised and Soft Teacher models for a direct comparison with SoftER529

Teacher. As part of our re-implementation, we make a conscientious effort to obtain high-quality530

supervised and Soft Teacher baselines by maximizing their performance output. This is to ensure531

that any performance boost demonstrated by SoftER Teacher is directly attributed to our entropy532

regression module for proposal learning with affine transforms.533

In Table 8, we compare our best-case supervised baselines to those trained by Humble Teacher [47]534

and show that ours achieve significantly better detection accuracy. Even in the presence of strong535

supervised and Soft Teacher baselines, our SoftER Teacher model continues to improve upon its536

counterparts across almost all AP and AR metrics. Notably, our approach demonstrates superior537

learning with unlabeled data by narrowing the gap to less than 0.5 AP50 between the fully supervised538

model trained on VOC07+12 (16k labels) and SoftER Teacher trained on VOC07 (5k labels)539

augmented with unlabeled images from VOC12+COCO-20.540

In Table 9, our model consistently outperforms its Soft Teacher counterpart over varying fractions of541

labeled data, although the impact of proposal learning in SoftER Teacher diminishes as the percentage542

of labeled data increases. We also experiment with 100% labels, i.e., the entire train2017 set, in543

two settings. In the first setting without unlabeled data, referred to as self-augmented supervised544

training, we use the train2017 set as the source of “unlabeled data” to generate pseudo targets. And545

in the second setting, we supplement supervised training with unlabeled2017 images. We observe546

that even without unlabeled data, SoftER Teacher improves on the supervised baseline by +1.6 AP,547

suggesting that more representations can still be learned from train2017 alone. In the setting with548

additional unlabeled data, our model further boosts accuracy by another +0.7 AP.549

Figure 7 illustrates exemplar detections from models trained on 1% of COCO labels, wherein our550

SoftER Teacher improves on both precision and recall over the comparisons.551
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Figure 7: Qualitative detections on COCO val2017 from models trained on 1% of labels. SoftER Teacher
improves on both precision and recall, by recovering more missed objects while making fewer false positive
detections, over its corresponding supervised and Soft Teacher counterparts. Best viewed digitally.

Table 10: FSOD results evaluated on COCO val2017. We report the mean and 95% confidence interval over 5
random samples for our models. SoftER Teacher with ResNet-50 surpasses TFA with ResNet-101 on both base
and novel performances while also uniformly outperforming its Soft Teacher counterpart across all experiments.

COCO val2017 Backbone Base AP50:95 Base AR50:95
Base AP50:95 (60 Classes) Novel AP50:95 (20 Classes)

Method 1-Shot 5-Shot 10-Shot 30-Shot 1-Shot 5-Shot 10-Shot 30-Shot

TFA w/cos [50] R-101 39.3 – 31.9± 0.7 32.3± 0.6 32.4± 0.6 34.2± 0.4 1.9± 0.4 7.0± 0.7 9.1± 0.5 12.1± 0.4

Faster R-CNN (Our Impl.) R-50 39.3 53.0 34.4± 0.6 33.1± 0.2 33.2± 0.2 35.1± 0.3 1.0± 0.3 5.1± 0.4 7.2± 0.4 9.6± 0.2
Soft Teacher (Our Impl.) R-50 41.3 52.8 37.6± 0.4 38.0± 0.1 37.8± 0.3 39.2± 0.3 1.7± 0.9 6.7± 0.4 8.8± 0.5 11.2± 0.4
SoftER Teacher (Ours) R-50 42.0 54.4 38.0± 0.4 38.4± 0.2 38.4± 0.2 39.7± 0.2 2.4± 0.6 8.2± 0.3 10.3± 0.5 12.9± 0.6
SoftER Teacher (Ours) R-101 44.4 56.1 40.7 ± 0.3 40.3 ± 0.2 40.2 ± 0.3 41.4 ± 0.2 2.8 ± 0.7 8.7 ± 0.6 11.0 ± 0.4 14.0 ± 0.6

B.4 Generalized Few-Shot Detection on MS-COCO552

We present additional FSOD results on the COCO dataset to include 1-shot detection in Table 10.553

Here, we observe more supporting evidence to strengthen our empirical finding on the potential554

relationship between SSOD and FSOD to suggest that a stronger semi-supervised detector leads to a555

more label-efficient few-shot detector. SoftER Teacher uniformly outperforms Soft Teacher across all556

metrics and experiments under consideration, most notably on novel class detection.557

B.5 SoftER Teacher is Less Prone to Overfitting558

We analyze the training behavior of Soft Teacher and SoftER Teacher for semi-supervised detection in559

Figure 8. For VOC, we train both models on VOC07 trainval labels with supplementary unlabeled560

images from VOC12+COCO-20. We observe from the validation curves that Soft Teacher seems to561

train faster than SoftER Teacher at the beginning, but has the propensity to overfit more than SoftER562

Teacher toward the end of training. For COCO, we train on 1% of labels sampled from train2017563

with the remaining 99% as unlabeled data. Similarly, we see from the validation curves that SoftER564

Teacher continues to improve even when Soft Teacher has reached its performance plateau. We565

attribute these characteristics to our entropy regression module for proposal learning, which provides566

SoftER Teacher a degree of robustness against overfitting.567

C Implementation Details568

C.1 Data Augmentation569

We summarize the data augmentation strategy used to train Soft Teacher [55] and SoftER Teacher570

in Table 11. There are essentially three pipelines or branches of augmentation. The labeled branch571

uses random resizing and horizontal flipping along with color transformations. The student detector572

of the unlabeled branch undergoes the full complement of augmentations including strong affine573

geometric transformations and cutout [10, 57], akin to RandAugment [7], whereas the teacher detector574

leverages only weak resizing and horizontal flipping. At test time, we resize all instances to the575
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Figure 8: Visualization of training and validation behavior of Soft Teacher and SoftER Teacher on (a) VOC07
and (b) 1% of COCO labels. Left: The validation curve of Soft Teacher tends to overfit more than SoftER
Teacher toward the end of training on VOC. Right: SoftER Teacher continues to improve even when Soft
Teacher has reached its validation performance plateau at the 120k iterations mark.

Table 11: Summary of the data augmentation pipelines used to train Soft Teacher and SoftER Teacher. Left:
transformations applied to the student trained on labeled data. Middle: strong augmentation pipeline applied
to the student trained on unlabeled data. Right: weak augmentation pipeline applied to the teacher trained on
unlabeled data.

Augmentation Student Labeled Branch Student Unlabeled Branch (Strong) Teacher Unlabeled Branch (Weak)

Resize short edge 2 [400, 1200] short edge 2 [400, 1200] short edge 2 [400, 1200]
Flip p = 0.5, horizontal p = 0.5, horizontal p = 0.5, horizontal
Identity p = 1/9 p = 1/9

AutoContrast p = 1/9 p = 1/9

Equalize p = 1/9 p = 1/9

Solarize p = 1/9 p = 1/9

Color p = 1/9 p = 1/9

Contrast p = 1/9 p = 1/9

Brightness p = 1/9 p = 1/9

Sharpness p = 1/9 p = 1/9

Posterize p = 1/9 p = 1/9

Translation p = 1/3, (x, y) 2 (�0.1, 0.1)
Shearing p = 1/3, (x, y) 2 (�30�, 30�)
Rotation p = 1/3, angle 2 (�30�, 30�)
Cutout n 2 [1, 5], size 2 [0.0, 0.2]

shorter side of 800 resolution, but otherwise do not perform any test-time augmentation, following576

standard supervised [40] and semi-supervised [32, 45, 47, 55] protocols.577

C.2 Supervised and Semi-Supervised Training578

High-Quality Baselines. Following existing literature [32, 45, 47, 55], we evaluate our approach for579

semi-supervised detection on VOC and COCO 2017 datasets. On both datasets, we re-implement and580

re-train the supervised Faster R-CNN and Soft Teacher1 models for a direct comparison with SoftER581

Teacher. As part of our re-implementation, we make a conscientious effort to obtain the best-case582

supervised and Soft Teacher baselines by maximizing their performance output. We train the strong583

supervised baseline by using a longer training schedule (see Tables 12 and 13) and applying diverse584

color augmentations in addition to random resizing and horizontal flipping (see Table 11). And we585

re-train Soft Teacher exactly as is according to the authors’ source code. This is to ensure that any586

performance boost demonstrated by SoftER Teacher is directly attributed to our entropy regression587

module for learning representations from region proposals, and not to changes in model configuration588

and training protocol.589

VOC Evaluation. We experiment with two supervised settings: (1) using VOC07 trainval split590

as labeled data, and (2) utilizing the joint VOC07+12 labeled set as an upper bound for supervised591

detection performance. We also have two semi-supervised settings: (1) augmenting supervised592

1We leverage the original authors’ source code made publicly available at https://github.com/

microsoft/SoftTeacher
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Table 12: Supervised and semi-supervised training
protocols on PASCAL VOC. COCO-20 is the subset of
COCO data containing objects with the same 20 cate-
gory names as VOC objects. Sample Ratio denotes
the blend of (labeled, unlabeled) examples in a mini-
batch. All settings are configured for 8⇥ multi-GPU
training.

Method Labeled Unlabeled Batch Size Sample Ratio lr lr Step Iterations

Supervised VOC07 None 16 (16, 0) 0.02 (12k, 16k) 18k
Supervised VOC0712 16 (16, 0) 0.02 (36k, 48k) 54k

Soft Teacher VOC07 VOC12 64 (32, 32) 0.01 (12k, 16k) 18k
SoftER Teacher 64 (32, 32) 0.01 (12k, 16k) 18k

Soft Teacher VOC07 VOC12+ 64 (32, 32) 0.01 (36k, 48k) 54k
SoftER Teacher COCO-20 64 (32, 32) 0.01 (36k, 48k) 54k

Soft Teacher VOC0712 COCO-20 64 (32, 32) 0.01 (40k, 52k) 60k
SoftER Teacher 64 (32, 32) 0.01 (40k, 52k) 60k

Table 13: Supervised and semi-supervised training
protocols on COCO 2017. The † setting refers to
self-augmented supervised training without unlabeled
data, and ‡ corresponds to the use of supplementary
unlabeled2017 images. Sample Ratio denotes the
blend of (labeled, unlabeled) examples in a mini-batch.
All settings are configured for 8⇥ multi-GPU training.

% Labeled Method Batch Size Sample Ratio lr lr Step Iterations

1
Supervised 8 (8, 0) 0.01 (120k, 160k) 180k
Soft Teacher 40 (8, 32) 0.01 (120k, 160k) 180k
SoftER Teacher 40 (8, 32) 0.01 (120k, 160k) 180k

5
Supervised 8 (8, 0) 0.01 (120k, 160k) 180k
Soft Teacher 40 (8, 32) 0.01 (120k, 160k) 180k
SoftER Teacher 40 (8, 32) 0.01 (120k, 160k) 180k

10
Supervised 8 (8, 0) 0.01 (120k, 160k) 180k
Soft Teacher 40 (8, 32) 0.01 (120k, 160k) 180k
SoftER Teacher 40 (8, 32) 0.01 (120k, 160k) 180k

†100
Supervised 16 (16, 0) 0.02 (480k, 640k) 720k
Soft Teacher 64 (32, 32) 0.01 (480k, 640k) 720k
SoftER Teacher 64 (32, 32) 0.01 (480k, 640k) 720k

‡100
Supervised 16 (16, 0) 0.02 (480k, 640k) 720k
Soft Teacher 64 (32, 32) 0.01 (480k, 640k) 720k
SoftER Teacher 64 (32, 32) 0.01 (480k, 640k) 720k

training on VOC07 with VOC12 as unlabeled data, and (2) leveraging the combined VOC12+COCO-593

20 as unlabeled data. COCO-20 is the subset of COCO train2017 having the same 20 category names594

as VOC objects. Model performance is evaluated on the VOC07 test set. Detailed comparative595

results are given in Table 8.596

COCO Evaluation. There are three experimental settings: (1) Partially labeled, where we train on597

{1, 5, 10} percent of labels randomly sampled from the train2017 split while treating the remaining598

images as unlabeled data. (2) Fully labeled, where we leverage the extra 123k images from the599

unlabeled2017 set to supplement supervised training on the entire train2017. And (3) Self-600

augmented supervised training, where we apply the train2017 set, discarding all label information,601

as the source of “unlabeled” data to generate unsupervised pseudo targets. To our knowledge, we602

are the first to conduct this experiment for semi-supervised detection. For each setting, we also train603

on the labeled portion alone, without using unlabeled data, to establish the lower-bound supervised604

baseline. Model performance is evaluated on the val2017 set. See Table 9 for comparative results.605

Top-N Proposals. To learn representations on region proposals, we extract the top 512 proposals,606

after non-maximum suppression, from each unlabeled image as generated by the student’s RPN. Our607

motivation for selecting the top 512 proposals is to balance the trade-off among accuracy performance,608

memory requirements, and training duration. Moreover, our choice of N = 512 is consistent with609

N = 640 proposals empirically found by Humble Teacher [47] to be an optimal number with regards610

to detection accuracy.611

Training Parameters. We summarize our training protocols on VOC and COCO in Tables 12612

and 13 for the supervised, Soft Teacher, and SoftER Teacher models. In general, Soft Teacher and613

our SoftER Teacher share the same configuration to ensure we can directly measure the impact of614

proposal learning and its contribution to detection accuracy. All hyper-parameters related to Soft615

Teacher remain the same, including the EMA momentum, which defaults to 0.999 following common616

practice in the semi-supervised classification literature [44, 48]. We train our models using vanilla617

SGD optimization with momentum and weight decay set to 0.9 and 0.0001, respectively. We train618

on 8⇥ A6000 GPUs each with 48GB of memory. One experiment takes between 12 hours and 10619

days to complete, depending on the scope. At test time, we extract the teacher model from the final620

check-point for evaluation.621

C.3 Semi-Supervised Few-Shot Training622

In this section, we expound on our protocol for semi-supervised few-shot training on VOC and COCO623

datasets. We conduct our few-shot experiments on the same VOC and COCO samples provided by624

the TFA benchmark [50]. The VOC dataset is randomly partitioned into 15 base and 5 novel classes,625

where there are k 2 {1, 5, 10} labeled boxes per category sampled from the combined VOC07+12626

trainval splits. This process is repeated three times to create three partitions. And the COCO627

dataset is divided into 60 base and 20 novel classes having the same VOC category names with628

k 2 {1, 5, 10, 30} shots. We leverage COCO-20 as the source of external unlabeled data to supplement629

few-shot training on VOC, and unlabeled2017 images to augment few-shot experiments on COCO.630
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Semi-Supervised Base Pre-Training. In the
first stage, we train a base detector on base
classes, along with the available unlabeled data,
according to the formulation described in Sec-
tion 3.2. For the supervised base detector, we
equip Faster R-CNN with the ResNet-101 [18]
backbone. For the semi-supervised base de-
tectors, we experiment with Soft Teacher and
our proposed SoftER Teacher using the same
ResNet-101 backbone. In some experiments, we
also employ ResNet-50 to explore parameter-
efficient learning with SoftER Teacher. Our
motivation for leveraging unlabeled data in the
base pre-training step is two-fold: first, we
demonstrate the versatility of our approach by
not strictly depending on an abundance of base
classes. Second, we observe impressive results
in the SSOD literature that show unlabeled data
can consistently and significantly boost detection
performance. Intuitively, any performance gains
during semi-supervised base pre-training with
unlabeled data should have the potential to boost
few-shot detection in the fine-tuning step.

Table 14: Protocol for few-shot fine-tuning on VOC
and COCO datasets. All settings are configured for
8⇥ multi-GPU training.

# Shot Parameter VOC07+12 COCO 2017

1

Batch Size 16 16
lr 0.001 0.001
lr Step 9k 14k
Iterations 10k 16k
Fine-Tune Layer cls+reg cls

5

Batch Size 16 16
lr 0.001 0.001
lr Step 18k 72k
Iterations 20k 80k
Fine-Tune Layer cls+reg cls

10

Batch Size 16 16
lr 0.001 0.001
lr Step 36k 144k
Iterations 40k 160k
Fine-Tune Layer cls+reg cls

30

Batch Size – 16
lr – 0.001
lr Step – 216k
Iterations – 240k
Fine-Tune Layer – cls

631

Semi-Supervised Few-Shot Fine-Tuning. In the second stage, we combine the parameters of the632

(semi-supervised) base detector with those of the novel detector into the overall few-shot detector633

and fine-tune it on a small balanced training set of k shots per class containing both base and novel634

examples. Before fine-tuning, we obtain the parameters of the novel detector in two ways. For635

VOC, we initialize the parameters of the novel classifier and regressor with normally distributed636

random values, analogous to TFA. For the COCO dataset, we reuse the base model pre-trained in the637

first stage, but further train the detector head from scrach on novel classes. We optimize the novel638

detector on both few-shot and unlabeled examples according to the semi-supervised protocols. At the639

fine-tuning step, we update only the RoI box classifier of the few-shot detector while freezing all other640

components, including the box regressor. We justify our decision to freeze the RoI box regressor with641

an ablation study in Appendix A. Table 14 summarizes our few-shot fine-tuning protocol.642

D Limitations and Future Work643

Although SoftER Teacher demonstrates superior generalized FSOD performance with unlabeled644

data, there is still much room for improvement. We observe complementary properties of DCFS [14]645

and Retentive R-CNN [13] which can be combined with SoftER Teacher to further advance FSOD646

without base degradation. Moreover, it would be inspiring to see how far FSOD can go by integrating647

unlabeled data with the latest advances in Vision Transformers [4, 11]. Lastly, it would be interesting648

direction for future work to investigate if our empirical finding connecting SSOD with FSOD can be649

extended to other SSOD formulations including one-stage detectors, such as the recently introduced650

Consistent Teacher [51] and Unbiased Teacher v2 [33] detectors.651

E Additional Qualitative Results652

We present additional visualizations of student and teacher proposals in Figure 9. The student653

undergoes a wide spectrum of scale, color, and geometric transformations, whereas the teacher654

receives weakly augmented images as the basis for generating reliable unsupervised pseudo targets to655

regularize the student’s learning trajectory. This multi-stream data augmentation strategy enables the656

student to tap into abundant region proposals to capture diverse feature representations that would657

otherwise be lost with aggressive confidence thresholding associated with pseudo-labeling.658

Figure 10 illustrates additional qualitative detections from models trained on {1, 5, 10} percent of659

labels sampled from COCO train2017. As corroborated by quantitative results, SoftER Teacher660

improves on both precision and recall over the supervised and Soft Teacher counterparts by recovering661
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Student Proposals Teacher Proposals Student Proposals Teacher Proposals

Figure 9: Visualizations of student and teacher proposals with confidence scores greater than 0.99. The student
images are subjected to a wide range of complex scale, color, and geometric distortions, whereas the teacher
images undergo simple random resizing and horizontal flipping. A pair of student-teacher proposals is aligned
between student and teacher images for the purpose of enforcing classification similarity and localization
consistency. Best viewed digitally.

more missed objects while making fewer false positive detections. The enhancements over the strong662

Soft Teacher baseline are especially pronounced in low-label settings and in crowded scenes with663

small and ambiguous objects, which is the intended benefit specifically designed into SoftER Teacher664

by way of our entropy regularization module for proposal learning.665
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Figure 10: Exemplar detections from models trained on {1, 5, 10} percent of labels sampled from COCO
train2017 and visualized on val2017. SoftER Teacher captures more object coverage while making fewer
false positive detections than its supervised and Soft Teacher counterparts. The enhancements over Soft Teacher
are especially pronounced in crowded scenes with small and ambiguous objects. Best viewed digitally.
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