Table 1: Major notation

	Table 1: Major notation
symbol	definition
K	number of the arms
T	number of the rounds
B	number of the batches
T_B	=T/(B+K-1)
T'	=T-(B+K-1)K
I(t)	arm selected at round t
X(t)	reward at round t
J(T)	recommendation arm at the end of round T
${\cal P}$	hypothesis class of P
$\mathcal Q$	distribution of estimated parameter of Q
$oldsymbol{P} \in \mathcal{P}^K$	true parameters
$P_i \in \mathcal{P}$	i-th component of P
$\mathcal{I}^* = \mathcal{I}^*(oldsymbol{P})$	set of best arms under parameter P
$i^*(oldsymbol{P})$	one arm in $\mathcal{I}^*(P)$ (taken arbitrary in a deterministic way)
$oldsymbol{Q} \in \mathcal{Q}^K$	estimated parameters of P
$Q_i \in \mathcal{Q}$	i-th component of Q
$oldsymbol{Q}_b \in \mathcal{Q}^K$	estimated parameters of b -th batch
$Q_{b,i} \in \mathcal{Q}$	<i>i</i> -th component of Q_b
$oldsymbol{Q}^b \in \mathcal{Q}^{Kb}$	$=(oldsymbol{Q}_1,oldsymbol{Q}_2,\ldots,oldsymbol{Q}_b)$
$oldsymbol{Q}_b' \in \mathcal{Q}^K$	stored parameters (in Algorithm 2)
$Q_{b,i}' \in \mathcal{Q}$	<i>i</i> -th component of Q_b'
D(Q P)	KL divergence between Q and P
Δ_K	probability simplex in K dimensions
$\boldsymbol{r}\in\Delta_K$	allocation (proportion of arm draws)
r_i	i -th component of \boldsymbol{r}
$\boldsymbol{r}_b \in \Delta_K$	allocation at b -th batch
$r_{b,i}$	i -th component of r_b
$m{r}^b$	$=(oldsymbol{r}_1,oldsymbol{r}_2,\ldots,oldsymbol{r}_b)$
\boldsymbol{n}_b	numbers of draws of Algorithm 2 at b -th batch
$n_{b,i}$ _	<i>i</i> -th component of n_b . Note that $n_{b,i} \geq r_{b,i}(T_B - K)$ holds.
$J(oldsymbol{Q}^B)$	recommendation arm given Q^B
$({m r}^{B,*},J^*)$	ϵ -optimal allocation
$H(\cdot)$	complexity measure of instances
$R(\{\pi_T\})$	worst-case rate of PoE of sequence of algorithms $\{\pi_T\}$ in (1)
$R_{\pi^0}^{\mathrm{go}}$	best possible $R(\lbrace \pi_T \rbrace)$ for oracle algorithms in (2)
$R_B^{ m go}$	best possible $R(\lbrace \pi_T \rbrace)$ for B-batch oracle algorithms in (3)
$R_{\infty}^{ m ar{go}}$	$\lim_{B\to\infty} R_B^{\mathrm{go}}$. Limit exists (Theorem 7)
$oldsymbol{ heta}$	model parameter of the neural network
$r_{ heta}$	allocation by a neural network with model parameters $ heta$
$r_{oldsymbol{ heta},i}$	i -th component of r_{θ}

A Notation table

Table 1 summarizes our notation.

B Uniform optimality in the fixed-confidence setting

For sufficiently small $\delta > 0$, the asymptotic sample complexity for the FC setting is known.

Namely, any fixed-confidence δ -PAC algorithm require at least $C^{\text{conf}}(\mathbf{P}) \log \delta^{-1} + o(\log \delta^{-1})$ samples, where

$$C^{\text{conf}}(\mathbf{P}) = \left(\sup_{\mathbf{r}(\mathbf{P}) \in \Delta_K} \inf_{\mathbf{P}': i^*(\mathbf{P}') \notin \mathcal{I}^*(\mathbf{P})} \sum_{i=1}^K r_i D(P_i || P_i')\right)^{-1}.$$
 (8)

Garivier and Kaufmann (2016) proposed C-Tracking and D-Tracking algorithms that have a sample complexity bound that matches Eq. (8). This achievability bound implies that there is no tradeoff between the performances for different instances \boldsymbol{P} , and sacrificing the performance for some \boldsymbol{P} never improves the performance for another \boldsymbol{P}' . To be more specific, for example, even if we consider a $(\delta$ -correct) algorithm that has a suboptimal sample complexity of $2C^{\text{conf}}(\boldsymbol{P})\log\delta^{-1} + o(\log\delta^{-1})$ for some instance \boldsymbol{P} , it is still impossible to achieve sample complexity better than $C^{\text{conf}}(\boldsymbol{Q})\log\delta^{-1} + o(\log\delta^{-1})$ for another instance \boldsymbol{P}' as far as the algorithm is δ -PAC.

C Suboptimal performance of fixed-confidence algorithms in view of fixed-budget setting

This section shows that an optimal algorithm for the FC-BAI can be arbitrarily bad for the FB-BAI.

For a small $\epsilon \in (0,0.1)$, consider a three-armed Bernoulli bandit instance with $\mathbf{P}^{(1)} = (0.6,0.5,0.5-\epsilon)$ and $\mathbf{P}^{(2)} = (0.4,0.5,0.5-\epsilon)$. Here, the best arm is arm 1 (resp. arm 2) in the instance $\mathbf{P}^{(1)}$ (resp. $\mathbf{P}^{(2)}$).

Let $\mathbf{r}^{\text{conf}}(\mathbf{P}) = (r_1^{\text{conf}}(\mathbf{P}), r_2^{\text{conf}}(\mathbf{P}), r_3^{\text{conf}}(\mathbf{P}))$ be the optimal FC allocation of Eq. (8). The following characterizes the optimal allocation for $\mathbf{P}^{(1)}, \mathbf{P}^{(2)}$:

Lemma 8. The optimal solution of Eq. (8) for instance $P^{(1)}$ satisfies the following:

$$r_1^{\text{conf}}(\mathbf{P}^{(1)}), r_2^{\text{conf}}(\mathbf{P}^{(1)}), r_3^{\text{conf}}(\mathbf{P}^{(1)}) \ge 0.07 = \Theta(1).$$

Lemma 9. The optimal solution of Eq. (8) for instance $P^{(2)}$ satisfies the following:

$$r_1^{\mathrm{conf}}(\boldsymbol{P}^{(2)}), r_2^{\mathrm{conf}}(\boldsymbol{P}^{(2)}), r_3^{\mathrm{conf}}(\boldsymbol{P}^{(2)}) = \Theta(\epsilon^2), \Theta(1), \Theta(1).$$

These two lemmas are derived in Section C.1.

Assume that we run an FC algorithm that draws arms according to allocation $\mathbf{r}^{\text{conf}}(\cdot)$ in an FB problem with T rounds. Under the parameters $\mathbf{P}^{(2)}$, it draws arm 1 for $O(\epsilon^2) + o(T)$ times. Letting $\delta = \mathbf{P}^{(1)}[J(T) = 2]$, Lemma 1 in Kaufmann et al. (2016) implies that

$$(TO(\epsilon^2) + o(T))D(0.4||0.6) \ge d(\mathbf{P}^{(2)}[J(T) = 2], \mathbf{P}^{(1)}[J(T) = 2])$$

 $\ge d(1/2, \mathbf{P}^{(1)}[J(T) = 2])$ (assuming the consistency of algorithm)

$$\begin{split} &= \frac{1}{2} \left(\log \left(\frac{1}{2\delta} \right) + \log \left(\frac{1}{2(1-\delta)} \right) \right) \\ &\geq \frac{1}{2} \log \left(\frac{1}{2\delta} \right), \end{split}$$

which implies

$$\mathbf{P}^{(1)}[J(T) = 2] = \delta \ge \frac{1}{2} \exp\left(-2\left(TO(\epsilon^2) + o(T)\right)D(0.4||0.6)\right). \tag{9}$$

The exponent of Eq.(9) can be arbitrarily small as $\epsilon \to +0$. In other words, the rate of this algorithm can be arbitrarily close to 0, while the complexity is $H_1(\mathbf{P}^{(1)}) = \Theta(1)$. This fact implies that the optimal algorithm for the FC-BAI has an arbitrarily bad performance in terms of the minimax rate of the FB-BAI.

C.1 Proofs of Lemmas 8 and 9

Proof of Lemma 8. For $\mathbf{r} = (1/3, 1/3, 1/3)$, we have

$$\inf_{\mathbf{P}':i^*(\mathbf{P}')\notin\mathcal{I}^*(\mathbf{P}^{(1)})} \sum_{i=1}^K r_i D(P_i^{(1)} \| P_i') > \frac{1}{3} \min \left(D(0.6 \| 0.55), D(0.5 \| 0.55) \right)$$

$$(\text{by } i^*(\mathbf{P}') \notin \mathcal{I}^*(\mathbf{P}^{(1)}) \text{ implies } P_1' < 0.55 \text{ or } P_2' > 0.55 \text{ or } P_3' > 0.55)$$

$$\geq 1/600.$$

We have

$$\inf_{\mathbf{P}':i^{*}(\mathbf{P}')\notin\mathcal{I}^{*}(\mathbf{P})} \sum_{i=1}^{K} r_{1}^{\text{conf}}(\mathbf{P}^{(1)}) D(P_{i} || P_{i}') \leq r_{1}^{\text{conf}}(\mathbf{P}^{(1)}) D(0.6 || 0.5)$$
(on instance $\mathbf{P}' = (0.5, 0.5, 0.5 - \epsilon)$)
$$\leq 0.021 r_{1},$$

which implies $r_1^{\rm conf}(\boldsymbol{P}^{(1)}) \geq (1/600) \times (1/0.021) \geq 0.07$ for the optimal allocation $r_1^{\rm conf}(\boldsymbol{P}^{(1)})$. Similar discussion yields $r_2, r_3 \geq 0.07$.

Proof of Lemma 9. For $\mathbf{r} = (1/3, 1/3, 1/3)$, we have

$$\inf_{\mathbf{P}':i^{*}(\mathbf{P}')\notin\mathcal{I}^{*}(\mathbf{P}^{(2)})} \sum_{i=1}^{K} r_{i} D(P_{i}^{(2)} \| P_{i}')$$

$$> \frac{1}{3} \min \left(D(0.5 \| 0.5 - \epsilon/2), D(0.5 - \epsilon \| 0.5 - \epsilon/2) \right),$$

$$(\text{by } \mathbf{P}' \notin \mathcal{I}^{*}(\mathbf{P}^{(2)}) \text{ implies } P_{2}' < 0.5 - \epsilon/2 \text{ or } P_{1}' > 0.5 - \epsilon/2 \text{ or } P_{3}' > 0.5 - \epsilon/2)$$

$$\geq \frac{\epsilon^{2}}{6}.$$

$$(\text{by Pinsker's inequality})$$

We have

$$\inf_{\mathbf{P}':i^*(\mathbf{P}')\notin\mathcal{I}^*(\mathbf{P}^{(2)})} \sum_{i=1}^K r_i^{\text{conf}}(\mathbf{P}^{(2)}) D(P_i^{(2)} \| P_i') \le r_2^{\text{conf}}(\mathbf{P}^{(2)}) D(0.5 \| 0.5 - \epsilon/2),$$
(on instance $\mathbf{P}' = (0.4, 0.5 - \epsilon/2, 0.5 - \epsilon/2)$)

which implies $r_i^{\text{conf}}(\mathbf{P}^{(2)}) = \Omega(1)$ for the optimal allocation. Similar discussion yields $r_3^{\text{conf}}(\mathbf{P}^{(2)}) = \Omega(1)$.

In the rest of this proof, we show $r_1^{\rm conf}(\boldsymbol{P}^{(2)}) = O(\epsilon^2)$. For the ease of exposition, we drop $(\boldsymbol{P}^{(2)})$ to denote $\boldsymbol{r}^{\rm conf} = (r_1^{\rm conf}, r_2^{\rm conf}, r_3^{\rm conf})$. Lemma 4 in Garivier and Kaufmann (2016) states that the optimal solution satisfies:

$$(r_2^{\rm conf} + r_1^{\rm conf}) I_{\frac{r_2^{\rm conf}}{r_2^{\rm conf} + r_1^{\rm conf}}}(P_2^{(2)}, P_1^{(2)}) = (r_2^{\rm conf} + r_3^{\rm conf}) I_{\frac{r_2^{\rm conf}}{r_2^{\rm conf} + r_3^{\rm conf}}}(P_2^{(2)}, P_3^{(2)}), \qquad (10)$$

where

$$I_{\alpha}(P_2^{(2)}, P_i^{(2)}) = \alpha D\left(P_2^{(2)}, \alpha P_2^{(2)} + (1 - \alpha)P_i^{(2)}\right) + (1 - \alpha)D\left(P_i^{(2)}, \alpha P_2^{(2)} + (1 - \alpha)P_i^{(2)}\right).$$

We can confirm that

$$(r_2^{\rm conf} + r_3^{\rm conf}) I_{\frac{r_2^{\rm conf}}{r_2^{\rm conf} + r_3^{\rm conf}}}(P_2^{(2)}, P_3^{(2)}) = \Theta(1) \times \Theta(\epsilon^2),$$

and

$$(r_2^{\text{conf}} + r_1^{\text{conf}}) \ge r_2^{\text{conf}} = \Theta(1),$$

which, combined with Eq.(10), implies that

$$I_{\frac{r_2^{\rm conf}}{r_2^{\rm conf}+r_1^{\rm conf}}}(P_2^{(2)},P_1^{(2)}) = \Theta(\epsilon^2),$$

which implies $r_1^{\text{conf}} = \Theta(\epsilon^2)$.

D Extension to wider models

In the main body of the paper, we assumed that $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ are Bernoulli or Gaussian distributions. Many parts of the results of the paper can be extended to exponential families or distributions over a support set $\mathcal{S} \subset \mathbb{R}$.

Let us consider an exponential family of form

$$dP(x|\theta) = \exp(\theta^{\top} T(x) - A(\theta)) dF(x),$$

where F is a base measure and $\theta \in \Theta \subset \mathbb{R}^d$ is a natural parameter. We assume that $A'(\theta) = \mathbb{E}_{X \sim F(\cdot \mid \theta)}[T(X)]$ has the inverse $(A')^{-1} : \operatorname{im}(T) \to \Theta$, where $\operatorname{im}(T)$ is the image of T.

Let \mathcal{P} be a class of reward distributions. \mathcal{P} can be the family of distributions over a known support $\mathcal{S} \subset \mathbb{R}$. We can also consider the case where \mathcal{P} is the above exponential family with a possibly restricted parameter set $\Theta' \subset \Theta$. For example, \mathcal{P} can be the set of Gaussian distributions with mean parameters in [0,1] and variances in $(0,\infty)$.

When we derive the lower bounds and construct algorithms, we introduce \mathcal{Q} as a class of distributions corresponding to the estimated reward distributions of the arms. We set $\mathcal{Q} = \mathcal{P}$ when \mathcal{P} is a family of distributions over a known support $\mathcal{S} \subset \mathbb{R}$. When we consider a natural exponential family with parameter set $\Theta' \subset \Theta$, we set \mathcal{Q} as this exponential family with parameter set Θ , so that the estimator of P_i is always within \mathcal{Q} . For example, if we consider \mathcal{P} as a class of Gaussians with means in [0,1] and variances in $(0,\infty)$, \mathcal{Q} is the class of all Gaussians with means in $(-\infty,\infty)$ and variances in $(0,\infty)$.

In Algorithm 2, we use a convex combination of distributions Q and Q'. The key property used in the analysis is the convexity of KL divergence between distributions. When we consider the family \mathcal{P} of distributions over support set \mathcal{S} , the convexity

$$D(\alpha Q + (1 - \alpha)Q' \| P) \le \alpha D(Q \| P) + (1 - \alpha)D(Q' \| P)$$

holds for any $P,Q,Q'\in\mathcal{Q}$ when we define $\alpha Q+(1-\alpha)Q'$ as the mixture of Q and Q' with weight $(\alpha,1-\alpha)$. When \mathcal{P} is the exponential family, the convexity of the KL divergence holds when $\alpha Q+(1-\alpha)Q'$ is defined as the distribution in this family such that the expectation of the sufficient statistics T(X) is equal to $\alpha \mathbb{E}_{X\sim Q}[T(X)]+(1-\alpha)\mathbb{E}_{X\sim Q'}[T(X)]$. Note that this corresponds to taking the convex combination of the empirical means when we consider Bernoulli distributions or Gaussian distributions with a known variance.

By the convexity of the KL divergence, most parts of the analysis apply to \mathcal{P} in this section and we straightforwardly obtain the following result.

Proposition 10. Theorems 1 and 2, Corollary 3, and Lemma 4 hold under the models \mathcal{P} with the definition of the convex combination in this section.

The only part where the analysis is limited to Bernoulli or Gaussian is Theorem 5 on the PoE upper bound of the DOT algorithm. The subsequent results immediately follow if Theorem 5 is extended to the models in this section. Since the key property of the DOT algorithm in Lemma 4 on the trackability of the empirical divergence is still valid for these models, we expect that Theorem 5 can also be extended though it remains as an open question.

E Computational resources

We used a modern laptop (Macbook Pro) for learning θ . It took less than one hour to learn θ . For conducting a large number of simulations (i.e., Run TNN and existing algorithms for

 10^5 times), we used a 2-CPU Xeon server of sixteen cores. It took less than twelve hours to complete simulations. We did not use a GPU for computation.

F Implementation details

To speed up computation, the same Q was used for each P with the same optimal arm $i^*(P)$ in the mini-batches.

The final model $\boldsymbol{\theta}$ of the neural network is chosen as follows. We stored sequence of models $\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$ during training (Algorithm 3). Among these models, we chose the one with the maximum objective function $\arg \max_{l} \min_{(\boldsymbol{P}, \boldsymbol{Q}) \in (\mathcal{P}^{emp}, \mathcal{Q}^{emp})} E(\boldsymbol{P}, \boldsymbol{Q}; \boldsymbol{\theta}^{(l)})$. Here, the minimum is taken over a finite dataset of size $|\mathcal{P}^{emp}| = 32$ and $|\mathcal{Q}^{emp}| = 10^5$.

The black lines in Figure 1 (a)–(c) representing $\exp(-t\inf_{\mathbf{Q}}\sum_{i}r_{\boldsymbol{\theta},i}(\mathbf{Q})D(Q_{i}||P_{i}))$ are computed by the grid search of \mathbf{Q} with each Q_{i} separated by intervals of 5.0×10^{-3} .

G Proofs

G.1 Proofs of Theorems 1

In this section, we prove Theorem 1. This theorem as well as its proof is a special case of Theorem 2, but we solely prove Theorem 1 here since it is easier to follow.

In this proof, we write candidates of the true distributions and empirical distributions by $\mathbf{P} = (P_1, P_2, \dots, P_K)$ and $\mathbf{Q} = (Q_1, Q_2, \dots, Q_K)$, respectively. In this Sections G.1 and G.2, we write $\mathbf{P}[\mathcal{A}]$ and $\mathbf{Q}[\mathcal{A}]$ to denote the probability of the event \mathcal{A} when the reward of each arm i follows P_i and Q_i , respectively. The entire history of the drawn arms and observed rewards is denoted by $\mathcal{H} = ((I(1), X(1)), (I(2), X(2)), \dots, (I(T), X(T)))$. We write $X_{i,n}$ to denote the reward of the n-th draw of arm i. We define $\mathbf{n} = (n_1, n_2, \dots, n_K)$ and $\mathbf{r} = (r_1, r_2, \dots, r_K) = \mathbf{n}/T$ as the numbers of draws of K arms and their fractions, respectively, for which we write $\mathbf{n}(\mathcal{H})$ and $\mathbf{r}(\mathcal{H})$ when we emphasize the dependence on the history \mathcal{H} .

We adopt the formulation of random rewards such that every $X_{i,m}$, the m-th reward of arm i is randomly generated before the game begins, and if an arm is drawn, then this reward is revealed to the player. Then $X_{i,m}$ is well defined even if the arm i is not drawn m times.

Fix an arbitrary $\epsilon > 0$. We define sets of "typical" rewards under \mathbf{Q} : we write $\mathcal{T}_{\epsilon}(\mathbf{Q})$ to denote the event such that the rewards (some of which might not be revealed as noted above) satisfy

$$\sum_{i=1}^{K} \left| \left(n_i D(Q_i || P_i) - \sum_{m=1}^{n_i} \log \frac{\mathrm{d}Q_i}{\mathrm{d}P_i} (X_{i,m}) \right) \right| \le \epsilon T. \tag{11}$$

By the strong law of large numbers, $\lim_{T\to\infty} \mathbf{Q}[\mathcal{T}_{\epsilon}(\mathbf{Q})] = 1$.

Let $\mathcal{R}_T \subset \Delta_K$ be the set of all possible r = n/T. Since $n_i \in \{0, 1, ..., T\}$ we have

$$|\mathcal{R}_T| \le (T+1)^K,$$

which is polynomial in T.

Consider an arbitrary algorithm π and define the "typical" allocation $r(Q; \pi, \epsilon)$ and decision $J(Q; \pi, \epsilon)$ of the algorithm for distributions Q as

$$\begin{split} & \boldsymbol{r}(\boldsymbol{Q}; \boldsymbol{\pi}, \epsilon) = \mathop{\arg\max}_{\boldsymbol{r} \in \mathcal{R}_T} \boldsymbol{Q} \left[\boldsymbol{r}(\mathcal{H}) = \boldsymbol{r} \middle| \mathcal{T}_{\epsilon}(\boldsymbol{Q}) \right], \\ & J(\boldsymbol{Q}; \boldsymbol{\pi}, \epsilon) = \mathop{\arg\max}_{i \in [K]} \boldsymbol{Q} \left[J(T) = i \middle| \boldsymbol{r}(\mathcal{H}) = \boldsymbol{r}(\boldsymbol{Q}; \boldsymbol{\pi}, \epsilon), \, \mathcal{T}_{\epsilon}(\boldsymbol{Q}) \right]. \end{split}$$

Then we have

$$Q\left[r(\mathcal{H}) = r(Q; \pi, \epsilon) \middle| \mathcal{T}_{\epsilon}(Q)\right] \ge \frac{1}{|\mathcal{R}_T|},$$
 (12)

$$Q\left[J(T) = J(Q; \pi, \epsilon) \middle| r(\mathcal{H}) = r(Q; \pi, \epsilon), \, \mathcal{T}_{\epsilon}(Q)\right] \ge \frac{1}{K}.$$
(13)

Lemma 11. Let $\epsilon > 0$ and algorithm π be arbitrary. Then, for any P, Q such that $J(Q; \pi, \epsilon) \neq \mathcal{I}^*(P)$ it holds that

$$\frac{1}{T}\log \mathbf{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})] \ge -\sum_{i=1}^K r_i(\mathbf{Q}; \pi, \epsilon) D(Q_i || P_i) - \epsilon - \delta_{\mathbf{P}, \mathbf{Q}, \epsilon}(T)$$

for a function $\delta_{P,Q,\epsilon}(T)$ satisfying $\lim_{T\to\infty} \delta_{P,Q,\epsilon}(T) = 0$.

Proof. For arbitrary Q we obtain by a standard argument of a change of measures that

$$P[J(T) \notin \mathcal{I}^{*}(\mathbf{P})]$$

$$\geq P[\mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon), J(T) = J(\mathbf{Q}; \pi, \epsilon)]$$

$$= P[\mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)] P[J(T) = J(\mathbf{Q}; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)]$$

$$= P[\mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)] Q[J(T) = J(\mathbf{Q}; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)]$$

$$\geq \frac{1}{K} P[\mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)]$$

$$= \frac{1}{K} \mathbb{E}_{\mathbf{P}} \left[\mathbf{1}[\mathcal{H} \in \mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)] \prod_{t=1}^{T} \frac{dP_{I(t)}}{dQ_{I(t)}} (X(t)) \right]$$

$$\geq \frac{1}{K} \mathbb{E}_{\mathbf{Q}} \left[\mathbf{1}[\mathcal{H} \in \mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon)] \exp \left(-T \sum_{i=1}^{K} r_{b,i}(\mathbf{Q}; \pi, \epsilon) D(Q_{i} || P_{i}) - \epsilon T \right) \right]$$

$$= \frac{1}{K} Q \left[\mathcal{T}_{\epsilon}(\mathbf{Q}), \mathbf{r}(\mathcal{H}) = \mathbf{r}(\mathbf{Q}; \pi, \epsilon) \exp \left(-T \sum_{i=1}^{K} r_{i}(\mathbf{Q}; \pi, \epsilon) D(Q_{i} || P_{i}) - \epsilon T \right) \right]$$

$$\geq \frac{Q[\mathcal{T}_{\epsilon}(\mathbf{Q})]}{K|\mathcal{R}_{T}|} \exp \left(-T \sum_{i=1}^{K} r_{i}(\mathbf{Q}; \pi, \epsilon) D(Q_{i} || P_{i}) - \epsilon T \right), \quad (by (12))$$

where (14) holds since J(T) does not depend on the true distribution \boldsymbol{P} given the history \mathcal{H} . The proof is completed by letting $\delta_{\boldsymbol{P},\boldsymbol{Q},\epsilon} = \log \frac{\boldsymbol{Q}[\mathcal{H} \in \mathcal{T}_{\epsilon}(\boldsymbol{Q})]}{K|\mathcal{R}_T|}$.

Proof of Theorem 1. For each Q, let $r(Q; \{\pi_T\}, \epsilon)$, $J(Q; \{\pi_T\}, \epsilon)$ be such that there exists a subsequence $\{T_n\}_n \subset \mathbb{N}$ satisfying

$$\lim_{n \to \infty} r(Q; \pi_{T_n}, \epsilon) = r(Q; \{\pi_T\}, \epsilon),$$
 $J(Q; \pi_{T_n}, \epsilon) = J(Q; \{\pi_T\}, \epsilon), \quad \forall n.$

Such $r(Q; \{\pi_T\}, \epsilon) \in \Delta_K$ and $J(Q; \{\pi_T\}, \epsilon) \in [K]$ exist since Δ_K and [K] are compact. By Lemma 11, for any $J(Q; \{\pi_T\}, \epsilon) \notin \mathcal{I}^*(P)$ we have

$$\liminf_{T \to \infty} \frac{1}{T} \log 1/\mathbf{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})] \le \liminf_{n \to \infty} \frac{1}{T_n} \log 1/\mathbf{P}[J(T_n) \notin \mathcal{I}^*(\mathbf{P})]$$

$$\le \sum_{i=1}^K r_i(\mathbf{Q}; \{\pi_T\}, \epsilon) D(Q_i \| P_i) + \epsilon. \tag{15}$$

By taking the worst case we have

$$R(\{\pi_T\}) = \inf_{\boldsymbol{P}} H(\boldsymbol{P}) \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^*(\boldsymbol{P})]$$

$$\leq \inf_{\boldsymbol{P} \in \mathcal{P}^K, \boldsymbol{Q} \in \mathcal{Q}^K: J(\boldsymbol{Q}; \{\pi_T\}, \epsilon) \notin \mathcal{I}^*(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i=1}^K r_i(\boldsymbol{Q}; \{\pi_T\}, \epsilon) D(Q_i || P_i) + \epsilon.$$

By optimizing $\{\pi^T\}$ we have

$$R(\{\pi_{T}\}) \leq \sup_{\{\pi_{T}\}} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}} H(\boldsymbol{P}) \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})]$$

$$= \sup_{\boldsymbol{r}(\cdot), J(\cdot)} \sup_{\{\pi_{T}\}: \boldsymbol{r}(\cdot; \{\pi_{T}\}, \epsilon) = \boldsymbol{r}(\cdot)} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}} H(\boldsymbol{P}) \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})]$$

$$\leq \sup_{\boldsymbol{r}(\cdot), J(\cdot)} \sup_{\{\pi_{T}\}: \boldsymbol{r}(\cdot; \{\pi_{T}\}, \epsilon) = \boldsymbol{r}(\cdot)} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q} \in \mathcal{Q}^{K}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i=1}^{K} r_{i}(\boldsymbol{Q}) D(Q_{i} || P_{i}) + \epsilon$$

$$(\text{by (15)})$$

$$\leq \sup_{\boldsymbol{r}(\cdot), J(\cdot)} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q} \in \mathcal{Q}^{K}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i=1}^{K} r_{i}(\boldsymbol{Q}) D(Q_{i} || P_{i}) + \epsilon.$$

We obtain the desired result since $\epsilon > 0$ is arbitrary.

G.2 Proof of Theorem 2

Theorem 2 is a generalization of Theorem 1, and we consider different candidates of empirical distributions depending on the batch.

As in the case of the proof of Theorem 1, we write $\mathbf{P} = (P_1, P_2, \dots, P_i)$ and $\mathbf{P}[A]$ to denote a candidate of the true distributions and the probability of the event under \mathbf{P} . We divide T rounds into B batches, and the b-th batch corresponds to $(t_b, t_b + 1, \dots, t_{b+1} - 1)$ -th rounds for $b \in [B]$ and $t_b = \lfloor (b-1)T/B \rfloor + 1$. The entire history of the drawn arms and observed rewards is denoted by $\mathcal{H} = ((I(1), X(1)), (I(2), X(2)), \dots, (I(T), X(T)))$. We write $X_{b,i,n}$ to denote the reward of the n-th draw of arm i in the b-th batch. We define $\mathbf{n}_b = (n_{b,1}, n_{b,2}, \dots, n_{b,K})$ and $\mathbf{r} = (r_{b,1}, r_{b,2}, \dots, r_{b,K}) = \mathbf{n}_b/T$ as the numbers of draws of K arms and their fractions in the b-th batch, respectively, for which we write $\mathbf{n}_b(\mathcal{H})$ and $\mathbf{r}_b(\mathcal{H})$ when we emphasize the dependence on the history \mathcal{H} .

We adopt the formulation of the random rewards such that every $X_{b,i,m}$, the m-th reward of arm i in the b-th batch, is randomly generated before the game begins, and if an arm is drawn then this reward is revealed to the player. Then $X_{b,i,m}$ is well-defined even if arm i is not drawn m times in the b-th batch.

Fix an arbitrary $\epsilon > 0$. We define sets of "typical" rewards under \mathbf{Q}^B : we write $\mathcal{T}_{\epsilon}(\mathbf{Q}^B)$ to denote the event such that the rewards (a part of which might be unrevealed as noted above) satisfy

$$\sum_{i=1}^{K} \left| \left(n_{b,i} D(Q_{b,i} || P_i) - \sum_{m=1}^{n_{b,i}} \log \frac{\mathrm{d}Q_{b,i}}{\mathrm{d}P_i} (X_{b,i,m}) \right) \right| \le \epsilon T/B$$
 (16)

for any $b \in [B]$. By the strong law of large numbers, $\lim_{T\to\infty} \mathbf{Q}^B[\mathcal{T}^B_{\epsilon}(\mathbf{Q}^B)] = 1$, where $\mathbf{Q}^B[\cdot]$ denotes the probability under which $X_k(t)$ follows distribution $Q_{b,i}$ for $t \in \{t_b, t_b + 1, \dots, t_{b+1} - 1\}$.

Let $\mathcal{R}_{T,B} \subset (\Delta_K)^B$ be the set of all possible $\mathbf{r}^B(\mathcal{H})$. Since $n_{b,i} \in \{0,1,\ldots,t_{b+1}-t_b\}$ and $t_{b+1}-t_b \leq T/B+1$, we see that

$$|\mathcal{R}_{T,B}| \le (T/B+2)^{KB},$$

which is polynomial in T.

Consider an arbitrary algorithm π and define the "typical" allocation $r^b(Q^b; \pi, \epsilon)$ and decision $J(Q^B; \pi, \epsilon)$ of the algorithm for distributions $Q^b = (Q_1, Q_2, \dots, Q_b)$ as

$$\begin{aligned} \boldsymbol{r}_1(\boldsymbol{Q}^1; \pi, \epsilon) &= \argmax_{\boldsymbol{r} \in \mathcal{R}_{T,1}} \boldsymbol{Q}^1 \left[\boldsymbol{r}_1(\mathcal{H}) = \boldsymbol{r} \middle| \mathcal{T}_{\epsilon}(\boldsymbol{Q}^B) \right], \\ \boldsymbol{r}_b(\boldsymbol{Q}^b; \pi, \epsilon) &= \argmax_{\boldsymbol{r} \in \mathcal{R}_{T,b}} \boldsymbol{Q}^b \left[\boldsymbol{r}_b(\mathcal{H}) = \boldsymbol{r} \middle| \boldsymbol{r}^{b-1}(\mathcal{H}^{b-1}) = \boldsymbol{r}^{b-1}(\boldsymbol{Q}^{b-1}; \pi, \epsilon), \, \mathcal{T}_{\epsilon}(\boldsymbol{Q}^B) \right], \\ b &= 2, 3, \dots, B, \end{aligned}$$

$$J(\boldsymbol{Q}^B;\pi,\epsilon) = \argmax_{i \in [K]} \boldsymbol{Q}^B \left[J(T) = i \middle| \boldsymbol{r}^B(\mathcal{H}) = \boldsymbol{r}^B(\boldsymbol{Q}^B;\pi,\epsilon), \, \mathcal{T}_{\epsilon}(\boldsymbol{Q}^B) \right].$$

Then we have

$$Q^{B}\left[r^{B}(\mathcal{H}) = r^{B}(Q^{B}; \pi, \epsilon) \middle| \mathcal{T}_{\epsilon}(Q^{B})\right] \ge \frac{1}{|\mathcal{R}_{T,B}|},$$
(17)

$$\mathbf{Q}^{B}\left[J(T) = J(\mathbf{Q}^{B}; \pi, \epsilon) \middle| \mathbf{r}^{B}(\mathcal{H}) = \mathbf{r}^{B}(\mathbf{Q}^{B}; \pi, \epsilon), \, \mathcal{T}_{\epsilon}(\mathbf{Q}^{B}) \right] \ge \frac{1}{K}.$$
 (18)

Lemma 12. Let $\epsilon > 0$ and algorithm π be arbitrary. Then, for any P, Q^B such that $J(Q^B; \pi, \epsilon) \neq \mathcal{I}^*(P)$ it holds that

$$\frac{1}{T}\log \mathbf{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})] \ge -\frac{1}{B}\sum_{b=1}^B \sum_{i=1}^K r_{b,i}(\mathbf{Q}^b; \pi, \epsilon) D(Q_{b,i} || P_i) - \epsilon - \delta_{\mathbf{P}, \mathbf{Q}^B, \epsilon}(T)$$

for a function $\delta_{P,Q^B,\epsilon}(T)$ satisfying $\lim_{T\to\infty} \delta_{P,Q^B,\epsilon}(T) = 0$.

Proof. For arbitrary Q^B we obtain by a standard argument of a change of measures that

$$P[J(T) \notin \mathcal{I}^*(P)]$$

$$\geq P[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon), J(T) = J(Q^B; \pi, \epsilon)]$$

$$= P[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]$$

$$\times P[J(T) = J(Q^B; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]$$

$$= P[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]$$

$$\times Q^B[J(T) = J(Q^B; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]$$

$$\geq \frac{1}{K}P[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]$$

$$= \frac{1}{K}\mathbb{E}_{P}\left[1[\mathcal{H} \in \mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]\right]$$

$$= \frac{1}{K}\mathbb{E}_{Q^B}\left[1[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]\right]$$

$$\geq \frac{1}{K}\mathbb{E}_{Q^B}\left[1[\mathcal{H} \in \mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}) = r^B(Q^B; \pi, \epsilon)]\right]$$

$$\times \exp\left(-\frac{T}{B}\sum_{b=1}^{B}\sum_{i=1}^{K} r_{b,i}(Q^b; \pi, \epsilon)D(Q_{b,i}||P_i) - \epsilon T\right)$$

$$(by (16))$$

$$= \frac{1}{K}Q^B\left[\mathcal{T}_{\epsilon}(Q^B), r^B(\mathcal{H}^B) = r^B(Q^B; \pi, \epsilon)\right]$$

$$\times \exp\left(-\frac{T}{B}\sum_{b=1}^{B}\sum_{i=1}^{K} r_{b,i}(Q^b; \pi, \epsilon)D(Q_{b,i}||P_i) - \epsilon T\right)$$

$$\geq \frac{Q^B[\mathcal{T}_{\epsilon}(Q^B)]}{K|\mathcal{R}_{TB}|} \exp\left(-\frac{T}{B}\sum_{b=1}^{B}\sum_{i=1}^{K} r_{b,i}(Q^b; \pi, \epsilon)D(Q_{b,i}||P_i) - \epsilon T\right), \quad (by (17))$$

where (19) holds since J(T) does not depend on the true distribution \boldsymbol{P} given the history \mathcal{H} . The proof is completed by letting $\delta_{\boldsymbol{P},\boldsymbol{Q}^B,\epsilon} = \log \frac{\boldsymbol{Q}^B[\mathcal{T}_{\epsilon}(\boldsymbol{Q}^B)]}{K[\mathcal{R}_{T,B}]}$.

Proof of Theorem 2. For each Q^B , let $r^B(Q^B; \{\pi_T\}, \epsilon)$, $J(Q^B; \{\pi_T\}, \epsilon)$ be such that there exists a subsequence $\{T_n\}_n \subset \mathbb{N}$ satisfying

$$\lim_{n \to \infty} \boldsymbol{r}^B(\boldsymbol{Q}^B; \pi_{T_n}, \epsilon) = \boldsymbol{r}^B(\boldsymbol{Q}^B; \{\pi_T\}, \epsilon),$$
$$J(\boldsymbol{Q}^B; \pi_{T_n}, \epsilon) = J(\boldsymbol{Q}^B; \{\pi_T\}, \epsilon), \quad \forall n.$$

Such $r^B(\mathbf{Q}^B; \{\pi_T\}, \epsilon) \in (\Delta_K)^B$ and $J(\mathbf{Q}^B; \{\pi_T\}, \epsilon) \in [K]$ exist since $(\Delta_K)^B$ and [K] are compact. By Lemma 12, for any $J(\mathbf{Q}^B; \{\pi_T\}, \epsilon) \notin \mathcal{I}^*(\mathbf{P})$ we have

$$\lim_{T \to \infty} \inf \frac{1}{T} \log 1/\mathbf{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})] \le \lim_{n \to \infty} \inf \frac{1}{T_n} \log 1/\mathbf{P}[J(T_n) \notin \mathcal{I}^*(\mathbf{P})]$$

$$\le \frac{1}{B} \sum_{b=1}^B \sum_{i=1}^K r_{b,i}(\mathbf{Q}^b; \{\pi_T\}, \epsilon) D(Q_{b,i} || P_i) + \epsilon. \quad (20)$$

By taking the worst case we have

$$R(\{\pi_T\}) = \inf_{\boldsymbol{P}} H(\boldsymbol{P}) \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^*(\boldsymbol{P})]$$

$$\leq \inf_{\boldsymbol{P} \in \mathcal{P}^K, \boldsymbol{Q}^B \in \mathcal{Q}^{KB}: J(\boldsymbol{Q}^B; \{\pi_T\}, \epsilon) \notin \mathcal{I}^*(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^B \sum_{i=1}^K r_{b,i}(\boldsymbol{Q}^b; \{\pi_T\}, \epsilon) D(Q_{b,i} || P_i) + \epsilon.$$

By optimizing $\{\pi^T\}$ we have

$$R(\{\pi_{T}\}) \leq \sup_{\{\pi_{T}\}} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}} H(\boldsymbol{P}) \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})]$$

$$= \sup_{\boldsymbol{r}^{B}(\cdot),J(\cdot)} \sup_{\{\pi_{T}\}: \boldsymbol{r}^{B}(\cdot; \{\pi_{T}\}, \epsilon) = \boldsymbol{r}^{B}(\cdot)} \inf_{\boldsymbol{P} \in \mathcal{P}^{K}} \frac{H(\boldsymbol{P})}{B} \liminf_{T \to \infty} \frac{1}{T} \log 1/\boldsymbol{P}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})]$$

$$\leq \sup_{\boldsymbol{r}^{B}(\cdot),J(\cdot)} \sup_{\{\pi_{T}\}: \boldsymbol{r}^{B}(\cdot; \{\pi_{T}\}, \epsilon) = \boldsymbol{r}^{B}(\cdot)} \sup_{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q}^{B} \in \mathcal{Q}^{KB}: J(\boldsymbol{Q}^{B}) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b,i}(\boldsymbol{Q}^{b}) D(Q_{b,i} \| P_{i}) + \epsilon$$

$$(\text{by } (20))$$

$$\leq \sup_{\boldsymbol{r}^{B}(\cdot),J(\cdot)} \sup_{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q}^{B} \in \mathcal{Q}^{KB}: J(\boldsymbol{Q}^{B}) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b,i}(\boldsymbol{Q}^{b}) D(Q_{b,i} \| P_{i}) + \epsilon.$$

We obtain the desired result since $\epsilon > 0$ is arbitrary.

G.3 Proof of Corollary 3

Proof of Corollary 3. We have

 $R_B^{\rm gc}$

$$:= \sup_{\boldsymbol{r}^{B}(\boldsymbol{Q}^{B}), J(\boldsymbol{Q}^{B})} \inf_{\boldsymbol{Q}^{B}} \inf_{\boldsymbol{P}: J(\boldsymbol{Q}^{B}) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{i \in [K], b \in [B]} r_{b,i} D(Q_{b,i} || P_{i})$$

$$\leq \sup_{\boldsymbol{r}^{B}(\boldsymbol{Q}^{B}), J(\boldsymbol{Q}^{B})} \inf_{\boldsymbol{Q}^{B}: \boldsymbol{Q}_{1} = \boldsymbol{Q}_{2} = \dots = \boldsymbol{Q}_{B}} \inf_{\boldsymbol{P}: J(\boldsymbol{Q}^{B}) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{i \in [K], b \in [B]} r_{b,i} D(Q_{b,i} || P_{i}) \quad \text{(inf over a subset)}.$$

$$= \sup_{\boldsymbol{r}^{B}(\boldsymbol{Q}), J(\boldsymbol{Q})} \inf_{\boldsymbol{Q}} \inf_{\boldsymbol{P}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i \in [K]} \left(\frac{1}{B} \sum_{b \in [B]} r_{b,i} \right) D(Q_{i}||P_{i})$$
(by denoting $\boldsymbol{Q} = \boldsymbol{Q}_{1} = \boldsymbol{Q}_{2} = \dots \boldsymbol{Q}_{B}$)
$$= \sup_{\boldsymbol{r}(\boldsymbol{Q}), J(\boldsymbol{Q})} \inf_{\boldsymbol{Q}} \inf_{\boldsymbol{P}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i \in [K]} r_{i} D(Q_{i}||P_{i})$$
(by letting $r_{i} = (1/B) \sum_{b} r_{b,i}$)

 $= R^{go}$ (by definition).

G.4 Additional lemmas

The following lemma is used to derive the regret bound.

Lemma 13. Assume that we run Algorithm 2. Then, for any $B_C \in K, K+1, \ldots, B$, it follows that

$$\sum_{i,b \in [B_C]} r_{b,i} D(Q_{b,i}||P_i) \geq \sum_{i,a \in [B_C - K]} r_{a,i}^* D(Q'_{a,i}||P_i) + \sum_{i \in [K]} D(Q'_{B_C - K + 1,i}||P_i). \tag{21}$$

Proof of Lemma 13. We use induction over $B_C \geq K$. (i) It is trivial to derive Eq. (21) for $B_C = K$. (ii) Assume that Eq. (21) holds for B_C . In batch $B_C + 1$, the algorithm draws arms in accordance with allocation $r_{B_C+1} = r_{B_C-K+1}^*$. We have,

$$\sum_{i \in [K], b \in [B_C + 1]} r_{b,i} D(Q_{b,i}||P_i)$$

$$\geq \sum_{i \in [K], a \in [B_C - K]} r_{a,i}^* D(Q'_{a,i}||P_i) + \sum_{i \in [K]} D(Q'_{B_C - K + 1,i}||P_i) + \underbrace{\sum_{i} r_{B_C + 1,i} D(Q_{B_C + 1,i}||P_i)}_{\text{Batch } B_C + 1}$$

(by the assumption of the induction)

$$= \sum_{i} \left(\sum_{a \in [B_C - K]} r_{a,i}^* D(Q'_{a,i}||P_i) + r_{B_C - K + 1,i}^* D(Q'_{B_C - K + 1,i}||P_i) \right) + \sum_{i} \left(1 - r_{B_C - K + 1,i}^* \right) D(Q'_{B_C - K + 1,i}||P_i)$$

$$+\sum_{i} r_{B_C+1,i} D(Q_{B_C+1,i}||P_i)$$

$$= \sum_{i} \left(\sum_{a \in [B_C - K]} r_{a,i}^* D(Q'_{a,i}||P_i) + r_{B_C - K + 1,i}^* D(Q'_{B_C - K + 1,i}||P_i) \right) + \sum_{i} \left(1 - r_{B_C + 1,i} \right) D(Q'_{B_C - K + 1,i}||P_i)$$

$$+\sum_{i} r_{B_C+1,i} D(Q_{B_C+1,i}||P_i)$$

(by definition)

$$= \sum_{i} \left(\sum_{a \in [B_C - K]} r_{a,i}^* D(Q'_{a,i}||P_i) + r_{B_C - K + 1,i}^* D(Q'_{B_C - K + 1,i}||P_i) \right) + \sum_{i} D(Q'_{B_C - K + 2,i}||P_i)$$

(by Jensen's inequality and $Q'_{B_C-K+2,i}=r_{B_C+1,i}Q_{B_C+1,i}+(1-r_{B_C+1,i})Q'_{B_C-K+1,i}$)

$$= \sum_{i} \sum_{a \in [B_C - K + 1]} r_{a,i}^* D(Q'_{a,i}||P_i) + \sum_{i} D(Q'_{B_C - K + 2,i}||P_i).$$

G.5 Proof of Lemma 4

Proof of Lemma 4.

$$\sum_{i,b \in [B+K-1]} r_{b,i} D(Q_{b,i}||P_i) \ge \sum_{i,b \in [B-1]} r_{b,i}^* D(Q'_{b,i}||P_i) + \sum_i D(Q'_{B,i}||P_i).$$
 (by (21))
$$\ge \sum_{i,b \in [B]} r_{b,i}^* D(Q'_{b,i}||P_i)$$

$$\ge \frac{B(R_B^{\text{go}} - \epsilon)}{H(\mathbf{P})}$$
 (by definition of ϵ -optimal solution).

G.6 Proof of Theorem 5

Proof of Theorem 5, Bernoulli rewards. Since the reward is binary, the possible values that $Q_{b,i}$ lie in a finite set

$$\mathcal{V} = \left\{ \frac{l}{m} : l \in \mathbb{N}, m \in \mathbb{N}^+ \right\}$$

where it is easy to prove $|\mathcal{V}| \leq (T/(B+K-1)+2)^2 \leq (T/B+2)^2$. We have

$$\mathbb{P}[J(T) \notin \mathcal{I}^*(\boldsymbol{P})] = \sum_{\boldsymbol{V}_1, \dots, \boldsymbol{V}_B \in \mathcal{V}^K} \mathbb{P}\left[J(T) \notin \mathcal{I}^*(\boldsymbol{P}), \bigcap_b \{\boldsymbol{Q}_b = \boldsymbol{V}_b\}\right]$$
$$= \sum_{\boldsymbol{V}_1, \dots, \boldsymbol{V}_B \in \mathcal{V}^K : J^*(\boldsymbol{V}_1, \dots, \boldsymbol{V}_B) \notin \mathcal{I}^*(\boldsymbol{P})} \mathbb{P}\left[\bigcap_b \{\boldsymbol{Q}_b = \boldsymbol{V}_b\}\right].$$

By using the Chernoff bound, we have

$$\mathbb{P}\left[Q_{b,i} = V_{b,i} \middle| \bigcap_{b' \in [b-1]} \{ Q_{b'} = V_{b'} \} \right] \le e^{-\frac{T'}{B+K-1} r_{b,i} D(V_{b,i}||P_i)}, \tag{22}$$

and thus

$$\mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\} \right] \\
= \prod_{b} \mathbb{P}\left[\mathbf{Q}_{b} = \mathbf{V}_{b} \middle| \bigcap_{b'=1}^{b-1} \left\{ \mathbf{Q}_{b'} = \mathbf{V}_{b'} \right\} \right] \\
\leq \prod_{b} e^{-\frac{T'}{B+K-1} \sum_{i} r_{b,i} D(V_{b,i}||P_{i})} \quad \text{(by Eq. (22))} \\
= e^{-\frac{T'}{B+K-1} \sum_{b,i} r_{b,i} D(V_{b,i}||P_{i})}.$$
(23)

Furthermore,

$$\mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}\right] \\
= \mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}, \sum_{i,b \in [B+K-1]} r_{b,i} D(Q_{b,i}||P_{i}) \ge \frac{B(R_{B}^{\text{go}} - \epsilon)}{H(\mathbf{P})}\right] \\
\text{(by Lemma 4).} \\
= \mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}\right] \mathbb{P}\left[\sum_{i,b \in [B+K-1]} r_{b,i} D(Q_{b,i}||P_{i}) \ge \frac{B(R_{B}^{\text{go}} - \epsilon)}{H(\mathbf{P})} \middle| \bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}\right] \\
= \mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}\right] \mathbb{P}\left[\sum_{i,b \in [B+K-1]} r_{b,i} D(V_{b,i}||P_{i}) \ge \frac{B(R_{B}^{\text{go}} - \epsilon)}{H(\mathbf{P})}\right] \\
= \mathbb{P}\left[\bigcap_{b} \left\{ \mathbf{Q}_{b} = \mathbf{V}_{b} \right\}\right] \mathbb{E}\left[\mathbf{1}\left[\sum_{i,b \in [B+K-1]} r_{b,i} D(V_{b,i}||P_{i}) \ge \frac{B(R_{B}^{\text{go}} - \epsilon)}{H(\mathbf{P})}\right]\right]$$

$$\leq e^{-\frac{T'}{B+K-1}} \sum_{b,i} r_{b,i} D(V_{b,i}||P_{i}) \mathbb{E} \left[\mathbf{1} \left[\sum_{i,b \in [B+K-1]} r_{b,i} D(V_{b,i}||P_{i}) \geq \frac{B(R_{B}^{go} - \epsilon)}{H(\mathbf{P})} \right] \right]
\text{(by Eq. (23))}
= \mathbb{E} \left[e^{-\frac{T'}{B+K-1}} \sum_{b,i} r_{b,i} D(V_{b,i}||P_{i}) \mathbf{1} \left[\sum_{i,b \in [B+K-1]} r_{b,i} D(V_{b,i}||P_{i}) \geq \frac{B(R_{B}^{go} - \epsilon)}{H(\mathbf{P})} \right] \right]
\leq \mathbb{E} \left[e^{-\frac{T'}{B+K-1}} \frac{B(R_{B}^{go} - \epsilon)}{H(\mathbf{P})} \right]
= e^{-\frac{T'}{B+K-1}} \frac{B(R_{B}^{go} - \epsilon)}{H(\mathbf{P})} .$$
(24)

Therefore, we have

$$\mathbb{P}[J(T) \notin \mathcal{I}^{*}(\mathbf{P})] \\
\leq \sum_{\mathbf{V}_{1},...,\mathbf{V}_{B} \in \mathcal{V}^{K}} e^{-\frac{B}{B+K-1} \frac{(R_{B}^{go} - \epsilon)T'}{H(\mathbf{P})}} \\
\text{(by Eq. (24))} \\
\leq (T/B+2)^{2KB} e^{-\frac{B}{B+K-1} \frac{(R_{B}^{go} - \epsilon)T'}{H(\mathbf{P})}}$$

Here, $\log((T/B+2)^{2KB}) = o(T)$ to T when we consider K, B as constants.

Proof of Theorem 5, Normal rewards. For the ease of discussion, we assume unit variance $\sigma = 1$. Extending it to the case of common known variance σ is straightforward. Let

$$\mathcal{B} = \bigcup_{i,b} \{|Q_{b,i}| \ge T\}.$$

Then, it is easy to see

$$\mathbb{P}[\mathcal{B}] = T^{2KB}O(e^{-T^2/2}).$$

which is negligible because $\log(1/\mathbb{P}[\mathcal{B}])/T$ diverges.

The PoE is bounded as

$$\mathbb{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})] = \mathbb{P}[J(T) \notin \mathcal{I}^*(\mathbf{P}), \mathcal{B}^c] + \mathbb{P}[\mathcal{B}]$$

We have,

$$\mathbb{P}\left[J(T) \notin \mathcal{I}^*(\boldsymbol{P}), \mathcal{B}^c\right]$$

$$= \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}[J(T) \notin \mathcal{I}^*(\boldsymbol{P})] p(\boldsymbol{Q}_B | \boldsymbol{Q}_{B-1} \dots \boldsymbol{Q}_1) \, \mathrm{d}\boldsymbol{Q}_B \dots p(\boldsymbol{Q}_B | \boldsymbol{Q}_{B-1} \dots \boldsymbol{Q}_1) \, \mathrm{d}\boldsymbol{Q}_b \dots p(\boldsymbol{Q}_1) \, \mathrm{d}\boldsymbol{Q}_1.$$
(25)

Here,

$$p(\mathbf{Q}_b|\mathbf{Q}_{b-1}\dots\mathbf{Q}_1) = \prod_{i\in[K]} \frac{n_{b,i}}{\sqrt{2\pi}} \exp\left(-\frac{n_{b,i}(Q_{b,i}-P_i)^2}{2}\right)$$
$$= \prod_{i\in[K]} \frac{n_{b,i}}{\sqrt{2\pi}} \exp\left(-n_{b,i}D(Q_{b,i}||P_i)\right)$$
$$\leq \prod_{i\in[K]} T \exp\left(-n_{b,i}D(Q_{b,i}||P_i)\right).$$

Finally, we have

$$(25) \leq T^{BK} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})] \prod_{i \in [K]} \prod_{b \in [B+K-1]} \exp\left(-n_{b,i} D(Q_{b,i}||P_{i})\right) d\boldsymbol{Q}_{B} \dots d\boldsymbol{Q}_{1}$$

$$\leq T^{BK} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})] \prod_{i \in [K]} \prod_{b \in [B+K-1]} \exp\left(-\frac{T'r^{(b,i)}}{B+K-1} D(Q_{b,i}||P_{i})\right) d\boldsymbol{Q}_{B} \dots d\boldsymbol{Q}_{1}$$

$$\leq T^{BK} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})] \exp\left(-\frac{B}{B+K-1} \frac{(R_{B}^{go} - \epsilon)T'}{H(\boldsymbol{P})}\right) d\boldsymbol{Q}_{B} \dots d\boldsymbol{Q}_{1} \quad \text{(by Lemma 4)}$$

$$\leq T^{BK} \int_{-T}^{T} \cdots \int_{-T}^{T} \exp\left(-\frac{B}{B+K-1} \frac{(R_{B}^{go} - \epsilon)T'}{H(\boldsymbol{P})}\right) d\boldsymbol{Q}_{B} \dots d\boldsymbol{Q}_{1}$$

$$\leq T^{BK} (2T)^{BK} \exp\left(-\frac{B}{B+K-1} \frac{(R_{B}^{go} - \epsilon)T'}{H(\boldsymbol{P})}\right).$$

G.7 Proof of Theorem 7

Proof of Theorem 7. We first show that the limit

$$R_{\infty}^{\mathrm{go}} = \lim_{B \to \infty} R_{B}^{\mathrm{go}}$$

exists. Namely, for any $\eta > 0$ there exists $B_0 \in \mathbb{N}$ such that for any $B_1 > B_0$ we have

$$|R_{B_0}^{\text{go}} - R_{B_1}^{\text{go}}| \le \eta.$$

Theorem 5 implies that Algorithm 2 with $B = B_0$ and $\epsilon = \eta/2$ satisfies¹⁵

$$\liminf_{T \to \infty} \frac{\log(1/\mathbb{P}[J(T) \notin \mathcal{I}^*(\boldsymbol{P})])}{T} \ge \frac{B_0}{B_0 + K - 1} \frac{R_{B_0}^{\text{go}} - \eta/2}{H(\boldsymbol{P})},$$

and thus

$$\inf H(\mathbf{P}) \liminf_{T \to \infty} \frac{\log(1/\mathbb{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})])}{T} \ge \frac{B_0}{B_0 + K - 1} \left(R_{B_0}^{\text{go}} - \frac{\eta}{2} \right). \tag{26}$$

Moreover, Theorem 2 implies that any algorithm satisfies

$$\inf H(\mathbf{P}) \limsup_{T \to \infty} \frac{\log(1/\mathbb{P}[J(T) \notin \mathcal{I}^*(\mathbf{P})])}{T} \le R_{B_1}^{\text{go}}.$$
 (27)

Combining Eq. (26) and Eq. (27), we have

$$\frac{B_0}{B_0 + K - 1} \left(R_{B_0}^{\text{go}} - \eta / 2 \right) \le R_{B_1}^{\text{go}}$$

and thus

$$\begin{split} R_{B_0}^{\text{go}} & \leq R_{B_1}^{\text{go}} + \frac{\eta}{2} + \frac{K - 1}{B_0 + K - 1} R_{B_0}^{\text{go}} \\ & \leq R_{B_1}^{\text{go}} + \frac{\eta}{2} + \frac{K - 1}{B_0 + K - 1} R^{\text{go}} \quad \text{(by Corollary 3)} \\ & \leq R_{B_1}^{\text{go}} + \frac{\eta}{2} + \frac{\eta}{2} \quad \text{(by } K \geq 2 \text{, by taking } B_0 \geq 2K R^{\text{go}} / \eta) \end{split}$$

The strictly speaking, Algorithm 2 depends on T, and we take sequence of the algorithm $(\pi_{DOT,T})_{T=1,2,...}$.

$$\leq R_{B_1}^{\mathrm{go}} + \eta.$$

By swapping B_0, B_1 , it is easy to show that

$$R_{B_1}^{\mathrm{go}} \le R_{B_0}^{\mathrm{go}} + \eta,$$

and thus

$$|R_{B_0}^{\text{go}} - R_{B_1}^{\text{go}}| \le \eta$$

and thus $|R_{B_0}^{\rm go}-R_{B_1}^{\rm go}|\leq \eta,$ which implies that the limit exists. It is easy to confirm that the performance of Algorithm 2 with any $B\geq 2KR^{\rm go}/\eta$ and $\epsilon=\eta/2$ satisfies Eq. (6).