Table 1: Major notation

symbol definition

K number of the arms

T number of the rounds

B number of the batches

Tp =T/(B+K—-1)

T =T—(B+K-1)K

I(t) arm selected at round ¢

X(t) reward at round ¢

J(T) recommendation arm at the end of round T

P hypothesis class of P

Q distribution of estimated parameter of Q

PcpKk true parameters

P, eP i-th component of P

I* =ZI*(P) set of best arms under parameter P

i*(P) one arm in Z*(P) (taken arbitrary in a deterministic way)
Qcof estimated parameters of P

Q; €09 i-th component of Q

Q, c 9K estimated parameters of b-th batch

Qv € Q i-th component of Q,

Q'e QX" =(Q1,Q,...,Qu)

Q, € OF stored parameters (in Algorithm 2)

Qp,; €9 i-th component of Q;,

D(Q|P) KL divergence between ) and P

Ak probability simplex in K dimensions

re Ak allocation (proportion of arm draws)

T i-th component of r

Ty € A allocation at b-th batch

Tbi i-th component of 7

rb = (r1,re,...,Tp)

ny numbers of draws of Algorithm 2 at b-th batch

N i-th component of n,. Note that ny; > 7,(Ts — K) holds.
J(QP) recommendation arm given QP

(rB*, J*) e-optimal allocation

H() complexity measure of instances

R({nr}) worst-case rate of PoE of sequence of algorithms {7} in (1)
Re° best possible R({wr}) for oracle algorithms in (2)

RY best possible R({n}) for B-batch oracle algorithms in (3)
Rg° limp_ oo R%. Limit exists (Theorem 7)

0 model parameter of the neural network

T9 allocation by a neural network with model parameters 0
T0.i i-th component of ¢

A Notation table

Table 1 summarizes our notation.

B Uniform optimality in the fixed-confidence setting

For sufficiently small § > 0, the asymptotic sample complexity for the FC setting is known.
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Namely, any fixed-confidence §-PAC algorithm require at least C°™(P)log 6! + o(log 1)
samples, where

K -1
Cconf(]:)) — < ( sup inf ZTzD(PzHle)> . (8)

P)eay Pt (P)#T+ (P) =

Garivier and Kaufmann (2016) proposed C-Tracking and D-Tracking algorithms that have
a sample complexity bound that matches Eq. (8). This achievability bound implies that
there is no tradeoff between the performances for different instances P, and sacrificing
the performance for some P never improves the performance for another P’. To be more
specific, for example, even if we consider a (d-correct) algorithm that has a suboptimal
sample complexity of 2C°* (P)log 6! +o(log §~1) for some instance P, it is still impossible
to achieve sample complexity better than C°°™(Q)log ="' + o(log6~!) for another instance
P’ as far as the algorithm is §-PAC.

C Suboptimal performance of fixed-confidence algorithms in view
of fixed-budget setting

This section shows that an optimal algorithm for the FC-BAI can be arbitrarily bad for the
FB-BAIL

For a small € € (0,0.1), consider a three-armed Bernoulli bandit instance with P(}) =
(0.6,0.5,0.5 — €) and P = (0.4,0.5,0.5 — €). Here, the best arm is arm 1 (resp. arm 2) in
the instance P() (resp. P(?)).

Let re°nf(P) = (r$ont(P), rsenf(P), r$°" (P)) be the optimal FC allocation of Eq. (8). The
following characterizes the optimal allocation for P(1), P(2):

Lemma 8. The optimal solution of Eq. (8) for instance P(1) satisfies the following:
riot (PW), rsent (P r5erf (PW) > 0.07 = ©(1).
Lemma 9. The optimal solution of Eq. (8) for instance P(?) satisfies the following:

PO (PO), r (PR), 150 (PR) = (), 0(1), ©(1).

These two lemmas are derived in Section C.1.

Assume that we run an FC algorithm that draws arms according to allocation r°®(-) in an
FB problem with T rounds. Under the parameters P(?)| it draws arm 1 for O(e?) + o(T)
times. Letting 6 = PM[J(T) = 2], Lemma 1 in Kaufmann et al. (2016) implies that

(TO(*) + o(T))D(0.4]10.6) > d(PP[J(T) = 2], PV[J(T) = 2])
> d(1/2,PM[J(T) =2]) (assuming the consistency of algorithm)

e (3) e (s25)
(1)

POI(T) = 2] =6 > %exp (—2 (TO(e2) + o(T)) D(0.4]0.6)) )

1
2
1
2
which implies

The exponent of Eq.(9) can be arbitrarily small as e — +0. In other words, the rate of this
algorithm can be arbitrarily close to 0, while the complexity is H;(P™)) = ©(1). This fact
implies that the optimal algorithm for the FC-BAI has an arbitrarily bad performance in
terms of the minimax rate of the FB-BAI.
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C.1 Proofs of Lemmas 8 and 9

Proof of Lemma 8. For v = (1/3,1/3,1/3), we have

PO|P) > 0.6/(0.55), D(0.5/0.55
P *(P’)gZI* p<1>)zr1 I 3mm( (0.6/[0.55), D(0.5[/0.55))

(by i*(P') ¢ T*(PW) implies P| < 0.55 or Py > 0.55 or P§ > 0.55)

> 1/600.
We have
/)gz* ZTCOHf P ||P/) Conf(P(l))D(OGHOE))
(on instance P’ = (0.5,0.5,0.5 — ¢€))
< 0.0217rq,

which implies 7o (P()) > (1/600) x (1/0.021) > 0.07 for the optimal allocation r§°f(P™).
Similar discussion yields ro, 73 > 0.07. O]

Proof of Lemma 9. For r = (1/3,1/3,1/3), we have

inf r;D P(2) P))
P’ *(PI gI*(P(2))Z ||

1
> 5 min (D(0.5]0.5 — ¢/2), D(0.5 = €]|0.5 — €/2)),
(by P’ ¢ T*(P®) implies Py < 0.5 —¢/2 or P, > 0.5 —¢/2 or P} > 0.5 — ¢/2)

62
>
6

(by Pinsker’s inequality)
We have
K

. conf (2) (2) /\ « pconf (2) o
ey 2o 5 (PP LR <15 (P30 /2

(on instance P’ = (0.4,0.5 — ¢/2,0.5 — ¢/2))

which implies r¢*f(P(2)) = Q(1) for the optimal allocation. Similar discussion yields
rsef(PR) = Q(1).

In the rest of this proof, we show 7" (P()) = O(€?). For the ease of exposition, we drop

(P®) to denote reof = (rgonf pgonf reonf)  Lemma 4 in Garivier and Kaufmann (2016)
states that the optimal solution satisfies:

™ 4oL e (P, PP = (5 4T e (PP, (10)
,,,conf+rgl:0nf 7hcomf‘*ﬂﬁgonf

2 2

where

1P, PP) = aD (P, aP + (1= a)P?) + (1= a)D (P, aP + (1 - a)P).

We can confirm that

(Tgonf + ,rgonf)l gont (PQ(Q), P3(2)) = @(1) X @(62)’

conf | ,.conf
5 +7rg
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and
(,,,gonf + 7,<1:onf) > Tgonf _ @(1),
which, combined with Eq.(10), implies that

2 2
I e (PP, PP)=0(),

conf conf
TS5 +7‘1

which implies 7{°"f = ©(¢2). O

D Extension to wider models

In the main body of the paper, we assumed that P € P and @ € Q are Bernoulli or Gaussian
distributions. Many parts of the results of the paper can be extended to exponential families
or distributions over a support set S C R.

Let us consider an exponential family of form
dP(z|0) = exp(8 " T'(x) — A(0)) dF(z),

where F is a base measure and §# € © C R? is a natural parameter. We assume that
A'(0) = Ex~r(jo)[T(X)] has the inverse (A)~" : im(7T) — O, where im(T') is the image of
T.

Let P be a class of reward distributions. P can be the family of distributions over a known
support & C R. We can also consider the case where P is the above exponential family with
a possibly restricted parameter set ©' C ©. For example, P can be the set of Gaussian
distributions with mean parameters in [0, 1] and variances in (0, c0).

When we derive the lower bounds and construct algorithms, we introduce Q as a class of
distributions corresponding to the estimated reward distributions of the arms. We set Q = P
when P is a family of distributions over a known support S C R. When we consider a natural
exponential family with parameter set © C O, we set Q as this exponential family with
parameter set O, so that the estimator of P; is always within Q. For example, if we consider
P as a class of Gaussians with means in [0, 1] and variances in (0,00), Q is the class of all
Gaussians with means in (—o0,00) and variances in (0, 00).

In Algorithm 2, we use a convex combination of distributions Q and @’. The key property
used in the analysis is the convexity of KL divergence between distributions. When we
consider the family P of distributions over support set S, the convexity

D(aQ + (1 - a)Q'||P) < aD(Q|IP) + (1 — a)D(Q'||P)
holds for any P,@, Q" € Q when we define a@ + (1 — a)Q’ as the mixture of @ and @’ with
weight (o, 1 —a). When P is the exponential family, the convexity of the KL divergence holds
when a@ + (1 — «)Q’ is defined as the distribution in this family such that the expectation
of the sufficient statistics T'(X) is equal to aEx~o[T(X)] + (1 — a)Ex~q/[T(X)]. Note that
this corresponds to taking the convex combination of the empirical means when we consider
Bernoulli distributions or Gaussian distributions with a known variance.

By the convexity of the KL divergence, most parts of the analysis apply to P in this section
and we straightforwardly obtain the following result.

Proposition 10. Theorems 1 and 2, Corollary 3, and Lemma 4 hold under the models P
with the definition of the convex combination in this section.

The only part where the analysis is limited to Bernoulli or Gaussian is Theorem 5 on the PoE
upper bound of the DOT algorithm. The subsequent results immediately follow if Theorem 5
is extended to the models in this section. Since the key property of the DOT algorithm in
Lemma 4 on the trackability of the empirical divergence is still valid for these models, we
expect that Theorem 5 can also be extended though it remains as an open question.

E Computational resources

We used a modern laptop (Macbook Pro) for learning 6. It took less than one hour to learn
6. For conducting a large number of simulations (i.e., Run TNN and existing algorithms for
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10° times), we used a 2-CPU Xeon server of sixteen cores. It took less than twelve hours to
complete simulations. We did not use a GPU for computation.

F Implementation details

To speed up computation, the same @ was used for each P with the same optimal arm i*(P)
in the mini-batches.

The final model @ of the neural network is chosen as follows. We stored sequence of models
0,0 ... during training (Algorithm 3). Among these models, we chose the one with
the maximum objective function argmax; min p g)e(pemp gemr) E(P,Q;01"). Here, the
minimum is taken over a finite dataset of size |P°™P| = 32 and |Q°™P| = 10°.

The black lines in Figure 1 (a)-(c) representing exp(—tinfg >, 76.:(Q)D(Q;||P;)) are com-
puted by the grid search of @ with each Q; separated by intervals of 5.0 x 1073,

G Proofs

G.1 Proofs of Theorems 1

In this section, we prove Theorem 1. This theorem as well as its proof is a special case of
Theorem 2, but we solely prove Theorem 1 here since it is easier to follow.

In this proof, we write candidates of the true distributions and empirical distributions by
P = (P,P,...,Pk) and Q = (Q1,Q2,...,QK), respectively. In this Sections G.1 and
G.2, we write P[A] and Q[A] to denote the probability of the event A when the reward
of each arm i follows P; and @);, respectively. The entire history of the drawn arms and
observed rewards is denoted by H = ((1(1), X (1)), (1(2), X (2)),...,(I(T),X(T))). We write
Xin to denote the reward of the n-th draw of arm i. We define n = (n1,n2,...,nk)
and 7 = (r1,79,...,7x) = n/T as the numbers of draws of K arms and their fractions,
respectively, for which we write n(#) and () when we emphasize the dependence on the
history H.

We adopt the formulation of random rewards such that every X, ,,, the m-th reward of arm
1 is randomly generated before the game begins, and if an arm is drawn, then this reward is
revealed to the player. Then X; ,,, is well defined even if the arm ¢ is not drawn m times.

Fix an arbitrary ¢ > 0. We define sets of “typical” rewards under Q: we write T.(Q) to
denote the event such that the rewards (some of which might not be revealed as noted above)
satisfy

; (niD(QiHPi) —mX::llog dPZ (Xi,m)> < ¢T. 1)

By the strong law of large numbers, limr_,o, Q[7:(Q)] = 1.
Let Rt C Ak be the set of all possible » = n/T. Since n; € {0,1,...,T} we have

|Rr| < (T +1)%,

which is polynomial in 7.

Consider an arbitrary algorithm 7 and define the “typical” allocation r(Q;,€) and decision
J(Q; 7, ¢) of the algorithm for distributions @ as

r(Q;m, €) = argmax Q [T(H) = r|TE(Q)] ,
rERT

J(Q; 7, ¢) = argmax Q [J(T) - i’r(’H) = r(Q;m,e), 7;(@)} .

i€[K]

Then we have

1

T.Q)] = (12)

Q|r(H)=r(Q;,e) Ral’
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1

Q[I(T) = J(Qime)|r() = r(@im. 0. TQ)] = - (13)

Lemma 11. Let € > 0 and algorithm 7 be arbitrary. Then, for any P,Q such that
J(Q; 7€) £ I*(P) it holds that

K
Hlog PLI(T) ¢ T*(P)] = = Y ri(Qim, ) D(Ql|Py) — ¢ — i @.(T)
i=1

for a function dp,q.(T') satisfying limy_o. dp,g.(T) = 0.

Proof. For arbitrary @ we obtain by a standard argument of a change of measures that
PLI(T) ¢ I°(P )]
> P[T(Q), r(H
= Q7 T, 6) ‘ 7;(Q)a T(H) = T(Qa T, 6)]

Q;m e) | Te(Q), r(H) = r(Q;m, )] (14)

(by (13))

1TA(Q), r(H) = r(Q;,¢)] dP“”(X(t))]

(by (11))
K
= %Q[’TS(Q), r(H) =r(Q;m,¢€) exp( T;rl Q;m,e)D(Q;i||P) — )
K
> 20 exp< "3 r(@maP@iIP) - eT> (by (12))

where (14) holds since J(T') does not depend on the true distribution P given the history #.
— log QL@ -

The proof is completed by letting dp g, KR

Proof of Theorem 1. For each Q, let »(Q; {nr},€), J(Q;{mr},¢€) be such that there exists
a subsequence {1}, C N satisfying

nle r(Q;mr,,€) =r(Q;{rr}, €),

J Q7 Ty 6) = J(Q7 {7TT}, 6)) vn.

(
Such r(Q;{nr},€) € Ax and J(Q; {nr},¢€) € [K] exist since Ax and [K] are compact. By
Lemma 11, for any J(Q; {71}, €) ¢ Z*(P) we have

liTrri)ioréf % log1/P[J(T) ¢ T*(P)] < lim inf i log 1/P[J(T,) ¢ T*(P)]

Z (Q: {7}, ) D(Qil|P) +e. (15)
By taking the worst case we have

R({rr}) = inf H(P)lim inf % log 1/P[J(T) ¢ T*(P)]

IA

K
P)Y ri@Qi{mr},)D(Qi[|P) + €
=1

inf
PEPK,QEQKIJ(Q§{7TT}»€)¢I*(P)
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By optimizing {nT} we have

R({rr}) < sup inf H(P)liTnLigéf%logl/P[J(T)¢I*(P)]

{nr} PcPK
1
= sup sup inf H(P)liminf —log1/P[J(T) ¢ Z*(P)]
r()J() {mr}ir(s{mr}.e)=r() PEPX Tooe T
K
< sup sup inf r:(Q)D(Q:|| P
7(),J () {mr e (s{mr }e)=r(-) PEPK, QeQr-I(Q)¢T (P ; 1
(by (15))
K
< su inf ri(Q P;
- r(.)y?(i)PePK,QEQK:J( ¢I*(P ; Q H )
We obtain the desired result since € > 0 is arbitrary. O

G.2 Proof of Theorem 2

Theorem 2 is a generalization of Theorem 1, and we consider different candidates of empirical
distributions depending on the batch.

As in the case of the proof of Theorem 1, we write P = (Py, P, ..., P;) and P[A] to denote
a candidate of the true distributions and the probability of the event under P. We divide
T rounds into B batches, and the b-th batch corresponds to (tp,tp + 1,...,tp11 — 1)-th
rounds for b € [B] and ¢, = [(b— 1)T/B] + 1. The entire history of the drawn arms
and observed rewards is denoted by H = ((I(1), X (1)), (I1(2), X(2)),...,(I(T),X(T))). We
write Xp ;. to denote the reward of the n-th draw of arm ¢ in the b-th batch. We define
ny = (Np,1,Mp2,..., N k) and r = (rp1,7p2,...,7,x) = Np/T as the numbers of draws of
K arms and their fractions in the b-th batch, respectively, for which we write n,(*) and
rp(H) when we emphasize the dependence on the history .

We adopt the formulation of the random rewards such that every Xy ; ., the m-th reward
of arm ¢ in the b-th batch, is randomly generated before the game begins, and if an arm is
drawn then this reward is revealed to the player. Then Xy ; , is well-defined even if arm 7 is
not drawn m times in the b-th batch.

Fix an arbitrary e > 0. We define sets of “typical” rewards under QF: we write 7.(Q?) to
denote the event such that the rewards (a part of which might be unrevealed as noted above)
satisfy

Np,i

(nbz sz”P Zl le szm))

for any b € [B]. By the strong law of large numbers, limy_,o, QP[T2(QP)] = 1, where
QP[] denotes the probability under which X} (¢) follows distribution Qy; for t € {t;,t, +
1, tyer — 1)

Let Ry C (Ak)®P be the set of all possible rZ(#). Since ny; € {0,1,...,tp41 —tp} and
tpr1 —tp < T/B + 1, we see that

IR, < (T/B+2)%P

Z

<er/B (16)

which is polynomial in 7.

Consider an arbitrary algorithm 7 and define the “typical” allocation 7°(Q®; 7, ¢) and decision
J(QP; 7, ¢) of the algorithm for distributions Q° = (Q1,Q-,...,Qy) as

ri(Q'; 7, €) = argmax Q' [ —T’T QB]
rERT1
rp(Q";m,€) = argmax Q" [y (M) = w|r* (H™Y) = "1 (Q i m€), T(QP)],
rERTH

b=2,3,...,B,
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J(QF; 7, ¢) = arg max QF [J(T) - z”rB(’H) —+B(QP:7,¢), TQP)] .

1€[K]

Then we have

B B _,’,,B B, B 1
Q¥ [rP(H) = r”(@”m, | Q") 2 (. (a7
Q¥ [1(1) = (@ m. )| (1) = rP(Q%im ), T@)] = . (18)

Lemma 12. Let ¢ > 0 and algorithm 7 be arbitrary. Then, for any P, QP such that
J(QPB;m, €) # I*(P) it holds that

B K
%bgP[ ( )gél'* BZZTIMQJTE QbZHP)—E—(SPQBE(T)

b=1 i=1

for a function dp g5 (T) satisfying limr o 0p g5 (1) = 0.

Proof. For arbitrary QP we obtain by a standard argument of a change of measures that
PLJ(T) ¢ I°(P)]
> P[T.(Q"), rP(H) = rP(Q;7,¢), J(T) = J(Q";m,¢)]
= P[T(Q"), " (H) = r"(Q7; 7, ¢)]
x PJ(T) = J(Q%;m,€) | T(QF), 7P (H) = r¥(Q; 7, ¢)]
= P[T(Q"), r®(H) = r"(Q%; 7, ¢)]

x QP[J(T) = J(QF;m, ) | T(QF), 7P (H) =P (QF; 7, ¢)] (19)
> CPIT(QP), rP(H) = Q" m,0) (by (15)
_ %Ep [1[H € TA(QF), rB(H) = rP(QF; 7, €]
1 B teiil dPI(t)
= EEQB [1[7;(QB)7 rP(H) = ;m,€) bl_ll tl_!b Q.10 (t)
> %EQB [1[7—[ € 7Z(QB), TB(HB) = TB(QB;W,G)H
X exp ( ZZT;H (Q°; 7, €) D(Qyi||P;) — eT) (by (16))
b 1:=1
1
= gQB [7:(QF), rP(HP) = rP(QF; 7, €)]
B K
Xexp< EZZ b,i Q 3T 6) (sz”P)ET)
Q"[T.(Q")] Ty
2 WGXP <_B;; 75,:(Q"; 7, €) D(Qu i Pi) — €T> , (by (17))

where (19) holds since J(T') does not depend on the true distribution P given the history H.

The proof is completed by letting ép g5 . = log % O

Proof of Theorem 2. For each QF, let r2(Q%;{nr},¢), J(QE; {rr},¢) be such that there
exists a subsequence {T,,}, C N satisfying

nILH;o ,',,B(QB; ﬂ—Tn»E) = TB(QB; {ﬂ-T}a 6)7
J(QB;ﬂ'Tn,G) = J(QB; {mr},e), Vn.



Such 7B (QP; {nr},e) € (Ak)P and J(QP;{rr},€) € [K] exist since (Ax)P and [K] are

compact. By Lemma 12, for any J(QZ; {nr},¢) ¢ Z*(P) we have
1

lim inf % log1/PLI(T) ¢ T'(P)] < liminf 7~ log 1/ P[J(T,) ¢ T*(P)]

S%ZZTMQ {r1}, )D(@oillP) + €
b—1 i=1

By taking the worst case we have
1
R({n7}) = inf H(P)liminf — log 1/P[J(T) ¢ T*(P)]
P T—oo T
H(P) &
<
b=

11:=1

By optimizing {77} we have

o1 .
R({rr}) < sup Pk H(P)liminf 7 log1/PJ(T) ¢ 1°(P)]

.. H(P)
= sup sup inf
rB(),J(-) {nr}rB(;{nr},e)=rB () PEPK

< sup sup inf H(P) iirb ‘(Qb)D(Qb 1Pi) +
= 10 (rr}irs (sfmr) =rB() PEPK.QPEQRP (@M (P) B i ’
(by (20))
( K
<  sup inf — .4(Q%)D || P;) + €
< anea g i 23 @ ID(IR)
We obtain the desired result since € > 0 is arbitrary. O
G.3 Proof of Corollary 3
Proof of Corollary 3. We have
g
H(P
= sup inf inf (P) Z 7, D(Qv,il| P;)
rB(QB),J(QB) Q" P: s@¥)ez () B i€[K],be[B] |
H(P
< sup inf inf (P) Z rp,:D(Qpi||P;)  (inf over a subset).
rP(QP),J(QP) Q7:Q1=Q2==Qp P: sty B i€[K],be(B]

= sup inf inf H(P) Z Z rpi | D(Qil|P;)

rB(Q),J(Q) Q@ P:J(QEI*(P) ik be[B]
(by denoting @ = Q1 = Q2 = ...Qp)

sup inf inf H(P rs D(Q; || P,
H@I(@) @ PIQET(P) ( )Z_ez[;q (Qil|F)

(by letting 7, = (1/B) Zrb,i)
b

= R%°  (by definition).
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inf i( il P:) +
PEPK QPEQRP QP {nr}0¢ T (P) B ZZ”’ (@ {mr}, ) D(Quill P) + ¢

o1 \
liminf — log 1/P[J(T) ¢ T*(P)

€



G.4 Additional lemmas

The following lemma is used to derive the regret bound.
Lemma 13. Assume that we run Algorithm 2. Then, for any Bo € K, K +1,..., B, it
follows that

Y miD(@uillP) = Y. raDQulIP) + ) D@pogirllP). (21)

i,b€[Bc] i,a€[Bc—K] i€[K]

Proof of Lemma 15. We use induction over Bc > K. (i) It is trivial to derive Eq. (21) for
Be = K. (ii) Assume that Eq. (21) holds for Be. In batch B¢ + 1, the algorithm draws
arms in accordance with allocation rp, 11 = rg, ;. We have,

> 75,:D(Qu,i|Pi)
i€[K],bE[Bc+1]

> > e D@0 lIP) + > D Qb ki1illP)+ Y TBor1:D(QBotn.i

i€[K],a€[Bc—K] i€[K] %

|P;)

Batch B + 1
(by the assumption of the induction)

= Z Z TZ,’iD(Q:l,ini) + TTBO—K-&-LiD(QSBc—K-&-Li'|Pi) + Z (1 - T*BO—K+1,i) D(QZBC—K-&-IJ‘HPZ')
i \ae[Bo—K] i

+ Y 7Bo+1,iD(Qpot1,il | P)
i

= Z Z 70 D(QuillPi) + 1ho— k41D @pe—k 414l P2) | + Z (1 =7pe+1,0) D(Qpe— k1,11 Pi)
i \ae[Bo—K] i

+ Z?‘BC+1,1'D(QBC+1,¢HH)

(2

(by definition)

= Z Z 70 D(QuillPi) + 1ho— k41D @pe—k 14l P2) | + ZD(QZBC—K-&-Q,ini)
i \a€[Bc—K] i

(by Jensen’s inequality and Q. _x0; = "Bet1,iQ@Bot1,i + (1 = TBoy1,:)QBe—K11.4)

= Z Z T:,iD(Q;,iHPi)"‘ZD(Q’BchH,z‘HPi)

i a€[Bo—K+1]

G.5 Proof of Lemma 4
Proof of Lemma 4.
Y maD@QullP) = > i D@lIP) + D> D(Qp P (by (21))

i,b€E[B+K—1] i,b€[B—1]
> N D(QlIP)
i,b€[B]
B(RE —¢)

= T H(P) (by definition of e-optimal solution).
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G.6 Proof of Theorem 5

Proof of Theorem 5, Bernoulli rewards. Since the reward is binary, the possible values that
Qv,; lie in a finite set

V:{Z:ZEN,meN+},
m

where it is easy to prove |V| < (T/(B+ K — 1) +2)? < (T/B + 2)2. We have

> P

Vi,...,VBeEVK

PLI(T) ¢ 7°(P)]

b

J(T) ¢ T°(P),( {Qs = %}]

> p [m{czb:vb}].

Vi,..,VBEVE J*(Wi,...,VB)@T*(P) b

By using the Chernoff bound, we have

P|Qos=Vois| [ {Q = Vi}| < e mrmaralVasllP), (22)
b'e[b—1]
and thus
P [ﬂ {Qy = %}1
b
b—1
=[P [Qb =Vi| () {Qv = Vb/}]
b b=1
< H67$K/4 LireiDWVoallP)  (hy Eq. (22))
b
e B+7;</—1 220, o, i D (Vi il [P (23)
Furthermore,
P [m {Qv= VL}]
b
B(RY —¢)
m {Qb Vi)} 5 - Z Tb,i (Qb,z” z) = H(P)
| b i,be[B+K—1]
(by Lemma 4).
| 1.1 B(R% — ¢
—P|@=W}|E| 3 n.D@QulP) > <H§P) "N @=vi)
L b 1 ibe(B+K-1] b
[ ] B(RY —¢)
=P = P D(V,,||P) > —L2_—
m {Qb ‘/b} . Z Tb,i (%JH z) = H(P)
L b i | 4,bE[B+K—1]
[ ] B(R% —¢)
=P = E (1 D(Vyi||P) > —EB__~
ﬂ{Qb ‘/b} ‘ Z Tb,i (%’LH z) = H(P)
L b i i,be[B+K—1]
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g0
—%E i T,i D(Va,i|[P3) . | P B(RB )
< e BFK b,i T b E |1 | Z 5, D (Vo i|| Ps) > H(P)
| ibe[B+K—1] 1]
(by Eq. (23))
T’ ) X B(Rgo )
—F | e~ mFR=1 20,i 0 D(Voil[Pi) 1 DV, || P) > B
e | > miDVillP) > H(P)
| 3,bE[B+K—1] 1
P B(RE —¢)
<E eB+K1H<P>]

T B(R% —e¢)
— e BFK—-1~ H(P)

Therefore, we have

PlJ(T) ¢ T7(P)]
Z e B+i’—1 (R%(—;))T/
(by Eq. (24))

< (T/B + 2)*KBe~ w7kt

IN

(RgBo—e)T’
H(P)

Here, log((T/B + 2)258) = o(T) to T when we consider K, B as constants.

O

Proof of Theorem 5, Normal rewards. For the ease of discussion, we assume unit variance

o = 1. Extending it to the case of common known variance o is straightforward. Let
B = J{lQu:l >T}.
ib
Then, it is easy to see
P[B] = T*P0(e /%),
which is negligible because log(1/P[B])/T diverges.
The PoE is bounded as

PIJ(T) ¢ T*(P)] = P[J(T) ¢ Z*(P), B] + P[B]

We have,
PLJ(T) ¢ I*(P), B°]
/ / )¢ " (P)p(QplQ@p-1-.-Q1)dQ5 ... p(Q5|QB-1...Q1)dQy . ..
Here,
P(Qb|Qb-1 .. (_W)
%GXP(*%JD( %))

P;)).

T exp (—np,i D(

-
i€ K]
= 11
i€[K]
< II
1€[K]
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p(Q1)dQ:.
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Finally, we have

T T
eo<r? [ [ aumer @) [ I ew(-miDQudlR) 4Qs . dQ:

-T -r i€[K] be[B+K—1]

g g T 7(0,)
STBK/ / [ ¢I* H H exp (_B+TI(1D(Qb”L||Pl)> dQBdQl

-T -T i€[K] be[B+K—1]

<o [ [ am e Ples (< ) 4QedQu (by Lemma 1)

T T B (RgO*G)T/
BK 5
<T /_T.../_Texp<—B+K_1 H(P) )dQB...dQl

B (R% -1
< TBK (9\BK _ B
S eXp<B+K—1 mP)>

O
G.7 Proof of Theorem 7
Proof of Theorem 7. We first show that the limit
20 — : g0
R = fim 1
exists. Namely, for any 1 > 0 there exists By € N such that for any B; > By we have
B~ BE| <.
Theorem 5 implies that Algorithm 2 with B = By and e = /2 satisfies!'®
* Rgo _ 2
i BB TP By R — w2
T—o0 T BO + K -1 H(P)
and thus
: . log(1/PJ(T) ¢ I*(P))) By U
> e —=).
inf H(P) lﬂl&f T Z B K1 (R 2) (26)
Moreover, Theorem 2 implies that any algorithm satisfies
log(1/P[J(T) ¢ Z*(P
inf H(P) li;nsup og(1/ [J(T) ¢ (P < RY. (27)
—00

Combining Eq. (26) and Eq. (27), we have

By o
b0 ° _ 1/9) < RSO
Bo+K—1(RBO 77/ )—RBI

and thus

K -1
R&° < Re° n I -1
Bo = Bl+2+BO+K71 Bo
go n K-1 g0 11
SRBI+§+mR (by Coro ary 3)
n

<R% 41 ; + 5 (by K > 2, by taking By > 2K R®°/n)

15Strictly speaking, Algorithm 2 depends on T, and we take sequence of the algorithm
(mpoT,T)T=1,2,...-
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< RE +1.
By swapping By, Bi, it is easy to show that
RE < RE +m,

and thus

‘RgBO - RgBl‘ <n,
which implies that the limit exists. It is easy to confirm that the performance of Algorithm 2
with any B > 2K R8°/n and € = n/2 satisfies Eq. (6). O
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