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A PROBABILITY FLOW ODE IN TERMS OF LOG-SNR

Song et al. (2021c) formulate the forward diffusion process in terms of an SDE of the form
dz = f(z, t)dt+ g(t)dW, (10)

and show that samples from this diffusion process can be generated by solving the associated prob-

ability flow ODE:

dz = [f(z, t)� 1

2
g2(t)rz log pt(z)]dt, (11)

where in practice rz log pt(z) is approximated by a learned denoising model using

rz log pt(z) ⇡
↵tx̂✓(zt)� zt

�2
t

. (12)

Following Kingma et al. (2021) we have f(z, t) = d log↵t
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(without loss of generality, see Kingma et al. (2021)), we get
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Similarly, we get
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Plugging these in to the probability flow ODE then gives

dz = [f(z, t)� 1

2
g2(t)rz log pt(z)]dt (15)

=
1

2
�2
�[z� +rz log p�(z)]d�. (16)

Plugging in our function approximation from Equation 12 gives
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B DDIM IS AN INTEGRATOR OF THE PROBABILITY FLOW ODE

The DDIM update rule (Song & Ermon, 2020) is given by

zs =
�s

�t
[zt � ↵tx̂✓(zt)] + ↵sx̂✓(zt), (20)

for s < t. Taking the derivative of this expression with respect to �s, assuming again a variance
preserving diffusion process, and using d↵�

d� = 1
2↵��2

� and d��
d� = � 1

2��↵2
�, gives
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Evaluating this derivative at s = t then gives
z�s

d�s
|s=t = �1
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Comparison with Equation 19 now shows that DDIM follows the probability flow ODE up to first
order, and can thus be considered as an integration rule for this ODE.
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C EVALUATION OF INTEGRATORS OF THE PROBABILITY FLOW ODE

In a preliminary investigation we tried several numerical integrators for the probability flow ODE.
As our model we used a pre-trained class-conditional 128x128 ImageNet model following the de-
scription in Ho et al. (2020). We tried a simple Euler integrator, RK4 (the “classic” 4th order
Runge–Kutta integrator), and DDIM (Song et al., 2021a). In addition we compared to a Gaussian
sampler with variance equal to the lower bound given by Ho et al. (2020). We calculated FID scores
on just 5000 samples, hence our results in this experiment are not comparable to results reported in
the literature. This preliminary investigation gave the results listed in Table 3 and identified DDIM
as the best integrator in terms of resulting sample quality.

Sampler Number of steps FID
Stochastic 1000 13.35
Euler 1000 16.5
RK4 1000 16.33
DDIM 1000 15.98
Stochastic 100 18.44
Euler 100 23.67
RK4 100 18.94
DDIM 100 16.35

Table 3: Preliminary FID scores on 128 ⇥ 128 ImageNet for various integrators of the probability
flow ODE, and compared against a stochastic sampler. Model specification and noise schedule
follow Ho et al. (2020).

D EXPRESSION OF DDIM IN ANGULAR PARAMETERIZATION

We can simplify the DDIM update rule by expressing it in terms of �t = arctan(�t/↵t), rather than
in terms of time t or log-SNR �t, as we show here.

Given our definition of �, and assuming a variance preserving diffusion process, we have ↵� =
cos(�), �� = sin(�), and hence z� = cos(�)x+ sin(�)✏. We can now define the velocity of z� as

v� ⌘ dz�
d�

=
d cos(�)

d�
x+

d sin(�)

d�
✏ = cos(�)✏� sin(�)x. (26)

Rearranging ✏,x,v, we then get

sin(�)x = cos(�)✏� v� (27)

=
cos(�)

sin(�)
(z� cos(�)x)� v� (28)

sin2(�)x = cos(�)z� cos2(�)x� sin(�)v� (29)

(sin2(�) + cos2(�))x = x = cos(�)z� sin(�)v�, (30)

and similarly we get ✏ = sin(�)z� + cos(�)v�.

Furthermore, we define the predicted velocity as

v̂✓(z�) ⌘ cos(�)✏̂✓(z�)� sin(�)x̂✓(z�), (31)

where ✏̂✓(z�) = (z� � cos(�)x̂✓(z�))/ sin(�).

Rewriting the DDIM update rule in the introduced terms then gives

z�s = cos(�s)x̂✓(z�t) + sin(�s)✏̂✓(z�t) (32)
= cos(�s)(cos(�t)z�t � sin(�t)v̂✓(z�t)) + sin(�s)(sin(�t)z�t + cos(�t)v̂✓(z�t)) (33)
= [cos(�s) cos(�t)� sin(�s) sin(�t)]z�t + [sin(�s) cos(�t)� cos(�s) sin(�t)]v̂✓(z�t).

(34)
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Finally, we use the trigonometric identities

cos(�s) sin(�t)� sin(�s) cos(�t) = cos(�s � �t) (35)
sin(�s) cos(�t)� cos(�s) sin(�t) = sin(�s � �t), (36)

to find that

z�s = cos(�s � �t)z�t + sin(�s � �t)v̂✓(z�t). (37)

or equivalently

z�t�� = cos(�)z�t � sin(�)v̂✓(z�t). (38)

Viewed from this perspective, DDIM thus evolves z�s by moving it on a circle in the (z�t , v̂�t) ba-
sis, along the �v̂�t direction. The relationship between z�t ,vt,↵t,�t,x, ✏ is visualized in Figure 5.

Figure 5: Visualization of reparameterizing the diffusion process in terms of � and v�.

E SETTINGS USED IN EXPERIMENTS

Our model architectures closely follow those described by Dhariwal & Nichol (2021b). For 64⇥ 64
ImageNet we use their model exactly, with 192 channels at the highest resolution. All other models
are slight variations with different hyperparameters.

For CIFAR-10 we use an architecture with a fixed number of channels at all resolutions of 256. The
model consists of a UNet that internally downsamples the data twice, to 16 ⇥ 16 and to 8 ⇥ 8. At
each resolution we apply 3 residual blocks, like described by Dhariwal & Nichol (2021b). We use
single-headed attention, and only apply this at the 16⇥ 16 and 8⇥ 8 resolutions. We use dropout of
0.2.

For LSUN we use a model similar to that for ImageNet, but with a reduced number of 128 channels
at the 64 ⇥ 64 resolution. Compared to ImageNet we have an additional level in the UNet, corre-
sponding to the input resolution of 128 ⇥ 128, which we process using 3 residual blocks with 64
channels. We only use attention layers for the resolutions of 32⇥ 32 and lower.

For CIFAR-10 we take the output of the model to represent a prediction of x directly, as discussed
in Section 4. For the other data sets we used the combined prediction of (x, ✏) like described in
that section also. All original models are trained with Adam with standard settings (learning rate of
3⇤10�4), using a parameter moving average with constant 0.9999 and very slight decoupled weight
decay (Loshchilov & Hutter, 2017) with a constant of 0.001. We clip the norm of gradients to a
global norm of 1 before calculating parameter updates. For CIFAR-10 we train for 800k parameter
updates, for ImageNet we use 550k updates, and for LSUN we use 400k updates. During distillation
we train for 50k updates per iteration, except for the distillation to 2 and 1 sampling steps, for which
we use 100k updates. We linearly anneal the learning rate from 10�4 to zero during each iteration.

15



Under review as a conference paper at ICLR 2022

We use a batch size of 128 for CIFAR-10 and 2048 for the other data sets. We run our experiments
on TPUv4, using 8 TPU chips for CIFAR-10, and 64 chips for the other data sets. The total time
required to first train and then distill a model varies from about a day for CIFAR-10, to about 5 days
for ImageNet.

F ADDITIONAL RANDOM SAMPLES

(a) 128 sampling steps (b) 4 sampling steps (c) 1 sampling step

Figure 6: Random samples from our distilled CIFAR-10 model, for varying numbers of sampling
steps.

(a) 128 sampling steps (b) 4 sampling steps (c) 1 sampling step

Figure 7: Random samples from our distilled LSUN bedrooms model, for varying numbers of sam-
pling steps.
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(a) 128 sampling steps (b) 4 sampling steps (c) 1 sampling step

Figure 8: Random samples from our distilled LSUN church-outdoor model, for varying numbers of
sampling steps.
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