TabCBM: Concept-based Interpretable Neural Networks for Tabular Data
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Research Gap: How do tabular tasks fit within
concept-based interpretable frameworks?

* Recent work in explainable artificial intelligence (XAl) [1-4] has proposed
interpretable neural networks that explain predictions via high-level “concepts”.

* However, previous works in this field have been uniquely focused on image [2],
graph-structured [3], and text [4] tasks, leaving crucial tabular tasks, such as
clinical and genomics tasks, outside of the scope of these methods.
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* Hence, in this work we explore (1) what a concept entails in a tabular task and
(2) how we can construct concept-interpretable models without sacrificing the
performance observed in simpler state-of-the-art tabular methods (e.g., GBMs).

Main Results

Key Finding #1: Interpretability without sacrificing
performance

~ Linear Nonlin Nonlin-Large scRNA

S |

—~ 100 0—4—# | 100j4—q 4| &5 i S e =
S 80 80 60 2

< 60 60 35 _ o5 |

§ 40 40 10 0

=0 1 2 o 1 2 0 12 845 018b79M

k k k k

CBM @ Hybrid-CBM v CEM ¢ TabCBM

Figure 1: Task accuracy (%) of concept-interpretable methods across synthetic tabular tasks with

known ground truth concepts. We show the accuracy as we vary the number of training concepts k.

(fixed and computed from training set)

Dataset | TabCBM (ours) SENN CCD (recon) MLP TabNet TabTransformer XGBoost LightGBM
Synth-Linear 99.84 + 0.06 98.15+02 9647+13 97.57+037 97.57 +0.37 82.91 £ 0.55 96.43 96.8
Synth-Nonlin 98.36 + 0.15 89.14 £ 0.71 8599 £228 87.65+0.98 91.57 +0.48 81.07 + 0.83 88.43 89.33

Synth-Nonlin-Large 62.78 + 1.13 49.78 +£2.08 51.64+1.71 40.73+6.42 51.01 +2.57 54.63 +1.17 2248 048 23.58 £0.78
Synth-scRNA 93.66 + 1.41 78.32+3.03 68.83+1.73 73.87+143 90.66+1.10 87.29 + 0.68 9044 +1.06 89.96 + 1.57
Higgs (without high-level) 80.42 + 0.3 70.61 £0.12 77.84+0.08 79.90+0.15 79.44 +0.16 7494 + 0.21 68.85 +0.02 68.87 £ 0.06
Higgs (with high-level) 78.62 + 0.12 73.53+0.71 77.92+0.09 78.444+0.02 78.12+0.05 74.22 + 0.42 7533 +0.04 75.33 +£0.03
PBMC 93.35 + 0.16 9224 +£0.23 93.14+£030 91.66+1.95 92.74+0.46 91.01 +0.33 93.09 +0.29 93.01 +0.24

FICO 72.08 &+ 0.42 66.78 = 0.69 6546 491 67.98+1.36 71.204+0.87 65.66 £ 0.85 7233 +£0.44 72.63 + 0.12

Table 1: Task accuracy (%) of competing methods across tabular tasks without ground truth concept
labels at train time.
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Key idea: Feature subsets as tabular concepts

Given a task on n input features, we define a tabular concept as a fixed group of highly
correlated features m € [0, 1]" that form the input to a scoring function representing a

“meta feature” s: R2™i — {0,1} .
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Tabular Concept Bottleneck Model (TabCBM)

We discover concepts via a differentiable feature selection mechanism that learns k’

. . k! . .
pairs {(ﬁ(‘), S(l))}i=1 of subsets of features &Y and scoring functions s® from which a
bottleneck of concept scores ¢ € [0, 1]% can be used to predict a downstream task.
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Key Finding #2: TabCBM discovers tabular
concepts aligned with expert-annotated concepts

| CAS (coherence) MIG (diversity) R* (coherence & diversity) Dis (diversity) Compl (completeness)
TabCBM (ours) | 87.55 +14.07 (r =1.5) 57.71 +26.27 (r=1.5) 7836 +17.65(Ff =1.5) 69.83+23.65(F=1.5) 70.44+ 22.81(Ff=1.5)
SENN 60.11 + 6.26 (7 = 2.75) 9.92 + 5.68 (7 = 3.5) 30.83 + 17.38 (¥ = 3.5) 21.49 £6.51 (7 = 3.5) 29.56 + 7.30 (7 = 3.75)
CCD 52.86 + 20.82 (¥ = 3) 29.57 £ 5.86 (7 = 2) 65.79 + 10.49 (¥ = 2) 39.66 +5.89 (r = 2) 41.04 £6.93 (¥ = 2.25)
PCA 57.54 +£12.89 (7 = 2.75) 9.48 £ 5.73 (¥ = 3) 19.59 + 28.18 (¥ = 3) 24.15 £16.9 (f = 3) 36.17 + 15.86 (7 = 2.25)

Table 2: Mean concept representation quality metrics (%) measured across several
synthetic datasets with ground-truth concept annotations (higher values are better).
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Figure 2: Five known Gene Expression Programs (GEPs) in a synthetic scRNA task together
with TabCBM'’s discovered concept with the highest absolute correlation with each GEP.
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Training: How do we learn meaningful concepts?

We include regularisers that encourage:

1. Completeness = discovered concept scores ¢ should predict a task of interest.

Etask (f(é) ) y)

2. Coherency-> Similar samples should lead to a similar set of concept scores.
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3. Diversity = different scoring functions and masks represent different concepts.
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4. Specificity = concepts should be a function of only a handful of input features.

k" Z ||7T(Z)||1

Furthermore, as in traditional concept bottleneck models (CBMs) [1], we can include
supervision for known concepts when we have train-time concept labels.
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[3] Magister, Lucie Charlotte, et al. "GCExplainer: Human-in-the-loop
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Key Finding #3: Performance can be boosted via
human-in-the-loop concept interventions
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Figure 3: TabCBM task accuracy after intervening on a varying number of concepts (x-axis),
across tasks (columns), and varying whether we intervene only on supervised concepts (rows).



