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A Simulations

A.1 Simulation Details

Simulation Environment

• Each dimension of Xt is sampled independently from Uniform(0, 5).

• ✓⇤(P) = [✓⇤0(P), ✓⇤1(P)] = [0.1, 0.1, 0.1, 0, 0, 0], where ✓⇤0(P), ✓⇤1(P) 2 R3.
Below also include simulations where [✓⇤0(P), ✓⇤1(P)] = [0.1, 0.1, 0.1, 0.2, 0.1, 0].

• t-Distributed rewards: Rt|Xt, At ⇠ t5 + X̃>

t ✓⇤0(P) + AtX̃>

t ✓⇤1(P), where t5 is a t-
distribution with 5 degrees of freedom.

• Bernoulli rewards: Rt|Xt, At ⇠ Bernoulli(expit(⌫t)) for ⌫t = X̃>

t ✓⇤0(P) + AtX̃>

t ✓⇤1(P)
and expit(x) = 1

1+exp(�x) .

• Poisson rewards: Rt|Xt, At ⇠ Poisson(exp(⌫t)) for ⌫t = X̃>

t ✓⇤0(P) +AtX̃>

t ✓⇤1(P).

Algorithm

• Thompson Sampling with N (0, Id) priors on each arm.

• 0.05 clipping

• Pre-processing rewards before received by algorithm:

– Bernoulli: 2Rt � 1

– Poisson: 0.6Rt

Compute Time and Resources All simulations run within a few hours on a MacBook Pro.
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A.2 Details on Constructing of Confidence Regions

For notational convenience, we define Zt = [X̃t, AtX̃t].

A.2.1 Least Squares Estimators

• ✓̂T =
⇣PT

t=1 WtZtZ>

t

⌘�1PT
t=1 WtZtRt

– For unweighted least squares, Wt = 1 and we call the estimator ✓̂OLS
T .

– For adaptively weighted least squares, Wt =
1p

⇡t(At,Xt,Ht�1)
; this is equivalent to

using square-root importance weights with a uniform stabilizing policy. We call the
estimator ✓̂AW-LS

T .

• We assume homoskedastic errors and estimate the noise variance �2 as follows:

�̂2
T =

1

T

TX

t=1

(Rt � Z>

t ✓̂T )
2.

• We use a Hotelling t-squared test statistic to construct confidence regions for ✓⇤(P):

CT (↵) =

⇢
✓ 2 Rd :

"
⌃̂�1/2

T

 
1

T

TX

t=1

WtZtZ
>

t

!
p

T (✓̂T � ✓)

#⌦2


d(T � 1)

T � d
Fd,T�d(1� ↵)

�
. (10)

– For the unweighted least-squares estimator we use the following variance estimator:
⌃̂T = �̂2

T
1
T

PT
t=1 ZtZ>

t .

– For the AW-Least Squares estimator we use the following variance estimator: ⌃̂T =

�̂2
T

1
T

PT
t=1

1
⇡t(At,Xt,Ht�1)

At 1
1�⇡t(At,Xt,Ht�1)

1�AtZtZ>

t .

• To construct (non-projected) confidence regions for ✓⇤1(P) 2 Rd1

we treat the unweighted least squares / AW-LS estimators, ✓̂T,1, as

N

✓
✓⇤1(P), 1

T

⇣
1
T

PT
t=1 WtZtZ>

t

⌘�1
⌃̂T

⇣
1
T

PT
t=1 WtZtZ>

t

⌘�1
◆

. We use a Hotelling

t-squared test statistic to construct confidence regions for ✓⇤1(P):

CT (↵) =

⇢
✓1 2 Rd1 :

h
V �1/2
1,T

p

T (✓̂T,1 � ✓1)
i⌦2


d1(T � 1)

T � d1
Fd1,T�d1(1� ↵)

�
,

where V1,T is the lower right d1 ⇥ d1 block of matrix⇣
1
T

PT
t=1 WtZtZ>

t

⌘�1
⌃̂T

⇣
1
T

PT
t=1 WtZtZ>

t

⌘�1
. Recall that for the unweighted

least squares estimator Wt = 1 and for AW-LS Wt =
1p

⇡t(At,Xt,Ht�1)
.

• For the AW-least squares estimator, we also construct projected confidence regions for ✓⇤1(P)
using the confidence region defined in equation (10). See Section A.2.5 below for more
details on constructing projected confidence regions.

A.2.2 MLE Estimators

Distribution ⌫ b(⌫) b0(⌫) b00(⌫) b000(⌫)
N (µ, 1) µ 1

2⌫
2 ⌫ = µ 1 0

Poisson(�) log � exp(⌫) exp(⌫) = � exp(⌫) = � exp(⌫) = �
Bernoulli(p) log

� p
1�p

�
log(1 + e⌫) e⌫

1+e⌫ = p e⌫

(1+e⌫)2 = p(1� p) p(1� p)(1� 2p)
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• ✓̂T is the root of the score function:

0 =
TX

t=1

Wt

⇣
Rt � b0(✓̂>T Zt)

⌘
Zt.

We use Newton Raphson optimization to solve for ✓̂T .
– For unweighted MLE, Wt = 1.
– For AW-MLE, Wt =

1p
⇡t(At,Xt,Ht�1)

; this is equivalent to using square-root impor-

tance weights with a uniform stabilizing policy.

• Second derivative of score function: �
PT

t=1 b
00(✓̂>T Zt)ZtZ>

t .
• We use a Hotelling t-squared test statistic to construct confidence regions for ✓⇤(P):

CT (↵) =

⇢
✓ 2 Rd :

"
⌃̂�1/2

T

 
1

T

TX

t=1

Wtb
00(✓̂>T Zt)ZtZ

>

t

!
p

T (✓̂T � ✓)

#⌦2


d(T � 1)

T � d
Fd,T�d(1� ↵)

�
. (11)

– For the MLE variance estimator, we use ⌃̂T = 1
T

PT
t=1 b

00(✓̂>T Zt)ZtZ>

t .
– For the AW-MLE variance estimator, we use ⌃̂T =

1
T

PT
t=1

1
⇡t(At,Xt,Ht�1)

At 1
1�⇡t(At,Xt,Ht�1)

1�Atb00(✓̂>T Zt)ZtZ>

t .

• To construct (non-projected) confidence regions for ✓⇤1(P) 2

Rd1 we treat the MLE / AW-MLE estimators, ✓̂T,1, as
N

⇣
✓⇤1(P), 1

T

⇣
1
T

PT
t=1 Wtb00(✓̂>T Zt)ZtZ>

t

⌘
⌃̂�1

T

⇣
1
T

PT
t=1 Wtb00(✓̂>T Zt)ZtZ>

t

⌘⌘
.

We use a Hotelling t-squared test statistic to construct confidence regions for ✓⇤1(P):

CT (↵) =

⇢
✓1 2 Rd1 :

h
V �1/2
1,T

p

T (✓̂T,1 � ✓1)
i⌦2


d1(T � 1)

T � d1
Fd1,T�d1(1� ↵)

�
,

where V1,T is the lower right d1 ⇥ d1 block of matrix⇣
1
T

PT
t=1 Wtb00(✓̂>T Zt)ZtZ>

t

⌘
⌃̂�1

T

⇣
1
T

PT
t=1 Wtb00(✓̂>T Zt)ZtZ>

t

⌘
.

• For the AW-MLE estimator, we also construct projected confidence regions for ✓⇤1(P) using
the confidence region defined in equation (11). See Section A.2.5 below for more details on
constructing projected confidence regions.

A.2.3 W-Decorrelated

The following is based on Algorithm 1 of Deshpande et al. [2018].

• The W-decorrelated estimator for ✓⇤(P) is constructed as follows with adaptive weights for
Wt 2 Rd:

✓̂WD
T = ✓̂OLS

T +
TX

t=1

Wt(Rt � X̃>

t ✓̂OLS
T ).

• The weights are set as follows:
W1 = 0 2 Rd and Wt = (Id �

Pt
s=1

Pt
u=1 WsZ>

u )Zt
1

�T+kZtk
2
2

for t > 1.

• We choose �T = mineig0.01(ZtZ>

t )/ log T and mineig↵(ZtZ>

t ) represents the ↵ quantile
of the minimum eigenvalue of ZtZ>

t . This is similar to the procedure used in the simulations
of Deshpande et al. [2018] and is guided by Proposition 5 in their paper.

• We assume homoskedastic errors and estimate the noise variance �2 as follows:

�̂2
T =

1

T

TX

t=1

(Rt � Z>

t ✓̂OLS
T )2.
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• To construct confidence ellipsoids for ✓⇤(P) are constructed using a Hotelling t-squared
statistic:

CT (↵) =

⇢
✓ 2 Rd : (✓̂WD

T � ✓)>V �1
T (✓̂WD

T � ✓) 
d(T � 1)

T � d
Fd,T�d(1� ↵)

�

where VT = �̂2
T

PT
t=1 WtW>

t .

• To construct confidence ellipsoids for ✓⇤1(P) 2 Rd1 with the following confidence ellipsoid
where VT,1 is the lower right d1 ⇥ d1 block of matrix VT :

CT (↵) =

⇢
✓1 2 Rd1 : (✓̂WD

T,1 � ✓1)
>V �1

T,1 (✓̂
WD
T,1 � ✓1) 

d1(T � 1)

T � d1
Fd1,T�d1(1� ↵)

�
.

A.2.4 Self-Normalized Martingale Bound

We construct 1 � ↵ confidence region using the following equation taken from Theorem 2 of
Abbasi-Yadkori et al. [2011]:

CT (↵) =

(
✓ 2 ⇥ : (✓̂T � ✓)>VT (✓̂T � ✓)  �

s

2 log

✓
det(VT )1/2 det(�Id)�1/2

↵

◆
+ �1/2S

)
.

• ✓̂T =
⇣
�Id +

PT
t=1 ZtZ>

t

⌘�1PT
t=1 ZtRt.

• VT = Id�+
PT

t=1 ZtZ>

t .
• � = 1 (ridge regression regularization parameter).
• � = 1 (assumes rewards are �-subgaussian).
• S = 6, where it is assumed that k✓⇤(P)k  S (recall that in our simulations ✓⇤(P) 2 R6).
• ⇥ = {✓ 2 R6 : k✓k2  6}.
• For constructing confidence regions for ✓⇤(P), we use projected confidence regions.

A.2.5 Construction of Projected Confidence Regions

We are interested in getting the confidence ellipsoid of the projection of a d-dimensional ellipsoid
onto p-dimensional space, for p < d.

• Defining the original d-dimensional ellipsoid, for x 2 Rd and B 2 Rd⇥d:

x>Bx = 1

• Partitioning the matrix B and vector x:
For y 2 Rd�p and z 2 Rp.

x =


y
z

�

For C 2 Rd�p⇥d�p, E 2 Rp⇥p, and D 2 Rd�p⇥p.

B =


C D

D> E

�

• Gradient of x>Bx with respect to x:

(B + B>)x = 2Bx =


C D

D> E

� 
y
z

�
.

Since we are projecting onto the p-dimensional space, our projection is such that the gradient
of x>Bx with respect to y is zero, which means

Cy + Dz = 0.

This means in the projection that y = �C�1Dz.
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• Returning to our definition of the ellipsoid, plugging in z, we have that

1 = x>Bx =
⇥
y> z>

⇤  C D
D> E

� 
y
z

�
= y>Cy + 2z>D>y + z>Ez

= (C�1Dz)>C(C�1Dz)� 2z>D>(C�1Dz) + z>Ez
= z>D>C�1Dz � 2z>D>C�1Dz + z>Ez

= z>(E � D>C�1D)z.
Thus the equation for the final projected ellipsoid is

z>(E � D>C�1D)z = 1.

A.3 Additional Simulation Results

In addition to the continuous reward and a binary reward settings, here we also consider a discrete
count reward setting. In this discrete reward setting, the reward Rt is generated from a Poisson
distribution with expectation EP [Rt|Xt, At] = exp(X̃>

t ✓⇤0(P) � AtX̃>

t ✓⇤1(P)). All other data
generation methods are equivalent to those used for the other simulation settings. Additionally we
will consider the setting in which ✓⇤(P) = [0.1, 0.1, 0.1, 0.2, 0.1, 0] for the continuous reward, binary
reward, and discrete count settings.

To analyze the data, in the discrete count reward setting, we assume a correctly specified model for the
expected reward. We use both unweighted and adaptively weighted maximum likelihood estimators
(MLEs), which correspond to an M-estimators with m✓(Rt, Xt, At) set to the negative log-likelihood
of Rt given Xt, At. We solve for these estimators using Newton–Raphson optimization and do not
put explicit bounds on the parameter space ⇥.

Figure 3: Poisson Rewards: Empirical coverage probabilities for 90% confidence ellipsoids for
parameters ✓⇤(P) and parameters ✓⇤1(P) (top row). We also plot the volumes of these 90% confidence
ellipsoids for ✓⇤(P) and parameters ✓⇤1(P) (bottom row). We set the true parameters to ✓⇤(P) =
[0.1, 0.1, 0.1, 0, 0, 0] (left) and to ✓⇤(P) = [0.1, 0.1, 0.1, 0.2, 0.1, 0] (right).
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Figure 4: Empirical coverage probabilities (upper row) and volume (lower row) of 90% confidence
ellipsoids. In these simulations, ✓⇤(P) = [0.1, 0.1, 0.1, 0.2, 0.1, 0]. The left two columns are for the
linear reward model setting (t-distributed rewards) and the right two columns are for the logistic
regression model setting (Bernoulli rewards). We consider confidence ellipsoids for all parameters
✓⇤(P) and for advantage parameters ✓⇤1(P) for both settings.

In Figure 5, we plot the mean squared errors of all estimators for all three simulation settings (same
simulation hyperparameters as described previously for the respective simulation settings).

Figure 5: Mean squared error estimators of ✓⇤(P) for linear model (top), logistic regression model
(middle), and generalized linear model for Poisson rewards (bottom). We consider simulations with
✓⇤(P) = [0.1, 0.1, 0.1, 0, 0, 0] (left) and simulations with ✓⇤(P) = [0.1, 0.1, 0.1, 0.2, 0.1, 0] (right).
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B Asymptotic Results

Throughout, k · k refers to the L2 norm.

B.1 Definitions

Here we define convergence in probability and distribution that is uniform over the true parameter.
We follow the definitions are based on those in Kasy [2019] and Van Der Vaart and Wellner [1996,
Chapter 1.12].
Definition 1 (Uniform Convergence in Probability). Let {ZT (P)}T�1 be a sequence of random

variables whose distributions are defined by some P 2 P and some nuisance component ⌘. We say

that ZT (P)
P
! c uniformly over P 2 P as T ! 1 if for any ✏ > 0,

sup
P2P

PP,⌘ (kZT (P)� ck > ✏) ! 0. (12)

For simplicity of notation, throughout we denote ZT (P) � c = oP2P(1) to mean ZT (P)
P
! c

uniformly over P 2 P as T ! 1.

Definition 2 (Uniformly Stochastically Bounded). Let {ZT (P)}T�1 be a sequence of random

variables whose distributions are defined by some P 2 P and some nuisance component ⌘. We say

that ZT (P) is uniformly stochastically bounded over P 2 P as T ! 1 if for any ✏ > 0 there exists

some k < 1 such that

lim sup
T!1

sup
P2P

PP,⌘ (kZT (P)k > k) < ✏.

Similarly we denote ZT (P ) = OP2P(1) to mean ZT (P) is stochastically bounded uniformly over

P 2 P as T ! 1.

Definition 3 (Uniform Convergence in Distribution). Let Z(P) 2 RdZ and {ZT (P)}T�1 2 RdZ be

a sequence of random variables whose distributions are defined by some P 2 P and some nuisance

component ⌘. We say that ZT (P)
D
! Z(P) uniformly over P 2 P as T ! 1 if

sup
P2P

sup
f2BL1

����EP,⌘ [f (ZT (P))]� EP,⌘ [f (Z(P))]

���� ! 0, (13)

where BL1 is the set of functions f : Rdz ! R with kf(z)k1  1 and |f(z)� f(z0)|  kz � z0k
for all z, z0 2 RdZ .

As discussed in Kasy [2019], Equation (12) holds if and only if for any ✏ > 0 and any sequence
{PT }T�1 such that PT 2 P for all T � 1, PPT ,⌘ (kZT (PT )� ck > ✏) ! 0.

Similarly, Equation (13) holds if and only if for any sequence {PT }T�1 such that PT 2 P for all

T � 1, supf2BL1

����EPT ,⌘ [f (ZT (PT ))]� EPT ,⌘ [f (Z(PT ))]

���� ! 0.

B.2 Consistency

We prove the first part of Theorem 1, i.e., that ✓̂T
P
! ✓⇤(P) uniformly over P 2 P. We abbreviate

m✓(Yt, Xt, At) with m✓,t. By definition of ✓̂T ,
TX

t=1

Wtm✓̂T ,t = sup
✓2⇥

TX

t=1

Wtm✓,t �

TX

t=1

Wtm✓⇤(P),t.

Note that k✓̂T � ✓⇤(P)k > ✏ > 0 implies that

sup
✓2⇥:k✓�✓⇤(P)k>✏

TX

t=1

Wtm✓,t = sup
✓2⇥

TX

t=1

Wtm✓,t.

Thus, the above two results imply the following inequality:

sup
P2P

PP,⇡

⇣
k✓̂T � ✓⇤(P)k > ✏

⌘
 sup

P2P
PP,⇡

 
sup

✓2⇥:k✓�✓⇤(P)k>✏

TX

t=1

Wtm✓,t �

TX

t=1

Wtm✓⇤(P),t

!
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= sup
P2P

PP,⇡

 
sup

✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

Wtm✓,t

)
�

1

T

TX

t=1

Wtm✓⇤(P),t � 0

!

= sup
P2P

PP,⇡

✓
sup

✓2⇥:k✓�✓⇤(P)k>✏

⇢
1

T

TX

t=1

Wtm✓,t�EP,⇡[Wtm✓,t|Ht�1]+EP,⇡[Wtm✓,t|Ht�1]

�

�
1

T

TX

t=1

⇢
Wtm✓⇤(P),t � EP,⇡[Wtm✓⇤(P),t|Ht�1] + EP,⇡[Wtm✓⇤(P),t|Ht�1]

�
� 0

◆
.

By triangle inequality,

 sup
P2P

PP,⇡

✓
sup

✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

(Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1])

)

| {z }
(a)

+ sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

EP,⇡

⇥
Wt(m✓,t �m✓⇤(P),t)

��Ht�1

⇤
)

| {z }
(b)

�
1

T

TX

t=1

⇢
Wtm✓⇤(P),t � EP,⇡[Wtm✓⇤(P),t|Ht�1]

�

| {z }
(c)

� 0

◆
! 0. (14)

We now show that the limit in Equation (14) above holds.

• Regarding term (c), by moment bounds of Condition 5 and Lemma 1,
1
T

PT
t=1

�
Wtm✓⇤(P),t � EP,⇡[Wtm✓⇤(P),t|Ht�1]

 
= oP2P(1).

• Regarding term (a), by Lemma 2,
sup✓2⇥:k✓�✓⇤(P)k>✏

n
1
T

PT
t=1 (Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1])

o
= oP2P(1).

Thus it is sufficient to show that term (b) is such that for some �0 > 0,

sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

EP,⇡[Wt(m✓,t �m✓⇤(P),t)|Ht�1]

)
 ��0 w.p. 1. (15)

By law of iterated expectations,

sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

EP,⇡[Wt(m✓,t �m✓⇤(P),t)|Ht�1]

)

= sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

EP

Z

a2A

⇡t(a,Xt,Ht�1)EP [Wt(m✓,t �m✓⇤(P),t)|Ht�1, Xt, At = a]da

����Ht�1

�)
.

Since Wt 2 �(Ht�1, Xt, At), we have that EP [Wt(m✓,t � m✓⇤(P),t)|Ht�1, Xt, At = a] =
WtEP [m✓,t � m✓⇤(P),t|Ht�1, Xt, At = a]. By Condition 1, we have that WtEP [m✓,t �

m✓⇤(P),t|Ht�1, Xt, At = a] = WtEP [m✓,t �m✓⇤(P),t|Xt, At = a]. Thus we have,

= sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T

TX

t=1

EP

Z

a2A

⇡t(a,Xt,Ht�1)WtEP [m✓,t �m✓⇤(P),t|Xt, At = a]da

����Ht�1

�)
.

Since for all ✓ 2 ⇥, EP [m✓,t �m✓⇤(P),t|Xt, At]  0 with probability 1 by Condition 7 and since
0 < Wtp

⇢max
 1 with probability 1 by Condition 9,

 sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T
p
⇢max

TX

t=1

EP

Z

a2A

⇡t(a,Xt,Ht�1)W
2
t EP [m✓,t �m✓⇤(P),t|Xt, At = a]da

����Ht�1

�)
.
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Since W 2
t = ⇡sta

t (At,Xt)
⇡t(At,Xt,Ht�1)

,

= sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T
p
⇢max

TX

t=1

EP

Z

a2A

⇡sta
t (a,Xt)EP [m✓,t �m✓⇤(P),t|Xt, At = a]da

����Ht�1

�)
.

By Condition 1 and since ⇡sta
t is pre-specified, we can drop the conditioning on Ht�1, i.e.,

= sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T
p
⇢max

TX

t=1

EP

Z

a2A

⇡sta
t (a,Xt)EP [m✓,t �m✓⇤(P),t|Xt, At = a]da

�)
.

By law of iterated expectations,

= sup
✓2⇥:k✓�✓⇤(P)k>✏

(
1

T
p
⇢max

TX

t=1

EP,⇡sta
t

⇥
m✓,t �m✓⇤(P),t

⇤
)

 �
1

p
⇢max

�.

The last inequality above holds for some � > 0 for all sufficiently large T by Condition 8. Thus
Equation (15) holds for �0 = 1

p
⇢max

�.

B.3 Asymptotic Normality

We prove the second part of Theorem 1, i.e., that

⌃T (P)�1/2M̈T (✓̂T )
p

T (✓̂T � ✓⇤(P))
D
! N (0, Id) uniformly over P 2 P. (16)

B.3.1 Main Argument

The three results we show to ensure Equation (16) holds are as follows:

⌃T (P)�1/2
p

TṀT (✓
⇤(P))

D
! N (0, Id) uniformly over P 2 P. (17)

For ...
✏ m̈ > 0 as defined in Condition 6,

sup
✓2⇥:k✓�✓⇤(P)k✏...m

�� ...
MT (✓)

��
1
= OP2P(1). (18)

For matrix H positive definite,

� M̈T (✓
⇤(P)) ⌫ H + oP2P(1). (19)

For a reminder on the notation of oP2P(1) and OP2P(1) see definitions 12 and 2. For now, we
assume that Equations (17), (18), and (19) hold; we will show they hold in Sections B.3.2, B.3.3, and
B.3.4 respectively. Our argument is based on Van der Vaart [2000, Theorem of 5.41].

By differentiability Condition 2, since ✓̂T is the maximizer of criterion MT (✓),

0 = ṀT (✓̂T ).

By differentiability Condition 2 again and Taylor’s theorem we have that for some random ✓̃T on the
line segment between ✓⇤(P) and ✓̂T ,

0 = ṀT (✓̂T ) = ṀT (✓
⇤(P))+M̈T (✓

⇤(P))(✓̂T �✓⇤(P))+
1

2
(✓̂T �✓⇤(P))>

...
MT (✓̃T )(✓̂T �✓⇤(P)).

By rearranging terms and multiplying by
p
T ,

�

p

TṀT (✓
⇤(P)) = M̈T (✓

⇤(P))
p

T (✓̂T � ✓⇤(P)) +
1

2
(✓̂T � ✓⇤(P))>

...
MT (✓̃T )

p

T (✓̂T � ✓⇤(P))

=


M̈T (✓

⇤(P)) +
1

2
(✓̂T � ✓⇤(P))>

...
MT (✓̃T )

�
p

T (✓̂T � ✓⇤(P)).
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Note that by the above equation and Equation (17), we have that

⌃T (P)�1/2


M̈T (✓

⇤(P)) +
1

2
(✓̂T � ✓⇤(P))>

...
MT (✓̃T )

�
p

T (✓̂T � ✓⇤(P))

D
! N (0, Id) uniformly over P 2 P. (20)

By Equation (19), the probability that M̈T (✓⇤(P)) is invertible goes to 1 uniformly over P 2 P.
Thus by Equation (20), we have that

⌃T (P)�1/2


Id +

1

2
(✓̂T � ✓⇤(P))>

...
MT (✓̃T )M̈T (✓

⇤(P))�1

�
M̈T (✓

⇤(P))
p

T (✓̂T � ✓⇤(P))

=


Id +

1

2
⌃T (P)�1/2(✓̂T � ✓⇤(P))>

...
MT (✓̃T )M̈T (✓

⇤(P))�1⌃T (P)1/2
�

⌃T (P)�1/2M̈T (✓
⇤(P))

p

T (✓̂T � ✓⇤(P))
D
! N (0, Id) uniformly over P 2 P. (21)

We now show that 1
2⌃T (P)�1/2(✓̂T � ✓⇤(P))>

...
MT (✓̃T )M̈T (✓⇤(P))�1⌃T (P)1/2 = oP2P(1). It

is sufficient to show that k⌃T (P)�1/2
kk✓̂T � ✓⇤(P)kk

...
MT (✓̃T )k1kM̈T (✓⇤(P))�1

kk⌃T (P)1/2k =
oP2P(1).

• By Condition 5, the minimum eigenvalue of ⌃T (P) is bounded uniformly above some
constant greater than zero, so sup

P2P k⌃T (P)�1/2
k = O(1).

• By uniform consistency of ✓̂T , k✓̂T � ✓⇤(P)k = oP2P(1).

• By uniform consistency of ✓̂T ,
k✓̃T�✓⇤(P)k✏...m

= oP2P(1). Thus by Equation (18),
...
MT (✓̃T ) = OP2P(1).

• By Equation (19), the minimum eigenvalue of �M̈T (✓⇤(P))�1 is bounded above that of
positive definite matrix H . Thus kM̈T (✓⇤(P))�1

k = OP2P(1).
• By Condition 5, sup

P2P k⌃T (P)1/2k = O(1).

Thus, by Slutsky’s Theorem and Equation (21), we have that

⌃T (P)�1/2M̈T (✓
⇤(P))

p

T (✓̂T � ✓⇤(P))
D
! N (0, Id) uniformly over P 2 P. (22)

Lastly, to show our desired result, that ⌃T (P)�1/2M̈T (✓̂T )
p
T (✓̂T � ✓⇤(P))

D
!

N (0, Id) uniformly over P 2 P, by Equation (22) and Slutsky’s Theorem it is sufficient
to show that ⌃T (P)�1/2M̈T (✓̂T )M̈T (✓⇤(P))�1⌃T (P)1/2

P
! Id uniformly over P 2 P.

Note if we can show that M̈T (✓̂T )M̈T (✓⇤(P))�1 P
! Id uniformly over P 2 P, then

⌃T (P)�1/2M̈T (✓̂T )M̈T (✓⇤(P))�1⌃T (P)1/2 = ⌃T (P)�1/2 [Id + oP2P(1)]⌃T (P)1/2 =
Id + ⌃T (P)�1/2oP2P(1)⌃T (P)1/2 = Id + oP2P(1). The last limit holds since
k⌃T (P)�1/2

k = OP2P(1) and k⌃T (P)1/2k = OP2P(1) by Condition 5 (use the same
argument as that used in the bullet points below Equation (21)).

Thus it is sufficient to show that M̈T (✓̂T )M̈T (✓⇤(P))�1 P
! Id uniformly over P 2 P. By Taylor’s

Theorem, for some random ✓̄T on the line segment between ✓̂T and ✓⇤(P),

M̈T (✓̂T ) = M̈T (✓
⇤(P)) +

...
MT (✓̄T )(✓̂T � ✓⇤(P)).

Recall that the probability the inverse of M̈T (✓⇤(P)) exists goes to 1 by Equation (19) (use
the same argument as that used in the bullet points below Equation (21)). Thus we have that
M̈T (✓̂T )M̈T (✓⇤(P))�1 equals the following:

h
M̈T (✓

⇤(P)) +
...
MT (✓̄T )(✓̂T � ✓⇤(P))

i
M̈T (✓

⇤(P))�1

= Id +
...
MT (✓̄T )(✓̂T � ✓⇤(P))M̈T (✓

⇤(P))�1

Note that
...
MT (✓̄T )(✓̂T � ✓⇤(P))M̈T (✓⇤(P))�1 = oP2P(1) because
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• By uniform consistency of ✓̂T ,
k✓̃T�✓⇤(P)k✏...m

= oP2P(1). Thus by Equation (18),
...
MT (✓̃T ) = OP2P(1).

• By uniform consistency of ✓̂T , k✓̂T � ✓⇤(P)k = oP2P(1).

• By Equation (19), kM̈T (✓⇤(P))�1
k = OP2P(1).

B.3.2 Asymptotic Normality of ⌃T (P)�1/2
p
TṀT (✓⇤(P))

We will show that Equation (17) holds by applying a martingale central limit theorem. For notational
convenience, we let ṁ✓,t := ṁ✓(Yt, Xt, At). Note that by definition ⌃T (P)�1/2

p
TṀT (✓⇤(P)) =

⌃T (P)�1/2 1
p
T

PT
t=1 Wtṁ✓⇤(P),t. We first show that

n
⌃T (P)�1/2 1

p
T
Wtṁ✓⇤(P),t

oT

t=1
is a mar-

tingale difference sequence with respect to {Ht}
T
t=0. For any t 2 [1 : T ],

EP,⇡


1

p
T
⌃T (P)�1/2Wtc>ṁ✓⇤(P),t

����Ht�1

�

=
(a)

1
p
T
EP,⇡


EP

h
⌃T (P)�1/2Wtc>ṁ✓⇤(P),t

��Ht�1, Xt, At

i ����Ht�1

�

=
(b)

1
p
T
⌃T (P)�1/2EP,⇡


Wtc>EP

⇥
ṁ✓⇤(P),t

��Ht�1, Xt, At

⇤ ����Ht�1

�
=
(c)

0

• Above, (a) holds by law of iterated expectations.
• (b) holds since Wt 2 �(Ht�1, Xt, At) and since ⌃T (P) are a function of stabilizing policies
{⇡sta

t }t�1, which are pre-specified.

• By Condition 1, EP

⇥
ṁ✓⇤(P),t

��Ht�1, Xt, At

⇤
= EP

⇥
ṁ✓⇤(P),t

��Xt, At

⇤
. Equality (c) holds

because EP

⇥
ṁ✓⇤(P),t

��Xt, At

⇤
= 0 with probability 1 by Condition 7; note that ✓⇤(P) is a

critical point of EP [m✓,t|Xt, At].

By Cramer-Wold device, to show that Equation (17) holds, it is sufficient to show that for any fixed c 2

Rd with kck2 = 1, that c>⌃T (P)�1/2 1
p
T

PT
t=1 Wtṁ✓⇤(P),t

D
! N

�
0, c>Idc

�
uniformly over P 2

P. We now apply Theorem 2, a uniform version of the martingale central limit theorem of Dvoretzky
[1972]; while the original theorem holds for any fixed P , we can show uniform convergence in
distribution by ensuring that the conditions of the theorem hold uniformly over P 2 P (see Definition
3). By Theorem 2, it is sufficient to show that the following two conditions hold:

1. Conditional Variance: 1
T

PT
t=1 EP,⇡

�
c>⌃T (P)�1/2Wtṁ✓⇤(P),t

 2
����Ht�1

�
P
! �2 uniformly

over P 2 P.

2. Conditional Lindeberg: For any � > 0,
1
T

PT
t=1 EP,⇡

�
c>⌃T (P)�1/2Wtṁ✓⇤(P),t

 2

|c>⌃T (P)�1/2Wtṁ✓⇤(P),t|>�
p
T

����Ht�1

�
P
! 0 uni-

formly over P 2 P.

1. Conditional Variance

1

T

TX

t=1

EP,⇡

⇣
c>Wt⌃T (P)�1/2ṁ✓⇤(P),t

⌘2
����Ht�1

�

=
1

T

TX

t=1

EP,⇡


W 2

t c>⌃T (P)�1/2ṁ⌦2
✓⇤(P),t⌃T (P)�1/2c

����Ht�1

�

=
(a)

c>⌃T (P)�1/2

(
1

T

TX

t=1

EP,⇡


W 2

t ṁ
⌦2
✓⇤(P),t

����Ht�1

�)
⌃T (P)�1/2c
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=
(b)

c>⌃T (P)�1/2

(
1

T

TX

t=1

EP

Z

a2A

⇡t(a,Xt,Ht�1)EP

h
W 2

t ṁ
⌦2
✓⇤(P),t

��Ht�1, Xt, At = a
i
da

����Ht�1

�)
⌃T (P)�1/2c

=
(c)

c>⌃T (P)�1/2

(
1

T

TX

t=1

EP

Z

a2A

⇡sta
t (a,Xt)EP

h
ṁ⌦2

✓⇤(P),t

��Ht�1, Xt, At = a
i
da

����Ht�1

�)
⌃T (P)�1/2c

=
(d)

c>⌃T (P)�1/2

(
1

T

TX

t=1

EP


EP,⇡sta

t

h
ṁ⌦2

✓⇤(P),t

��Xt

i ����Ht�1

�)
⌃T (P)�1/2c

=
(e)

c>⌃T (P)�1/2

(
1

T

TX

t=1

EP,⇡sta
t

h
ṁ⌦2

✓⇤(P),t

i)
⌃T (P)�1/2c

=
(f)

c>⌃T (P)�1/2⌃T (P )⌃T (P)�1/2c = c>Idc

• Above, (a) holds since ⌃T (P) are a function of stabilizing policies {⇡sta
t }t�1, which are

pre-specified.
• Equality (b) holds by law of iterated expectations.

• Equality (c) holds since Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
2 �(Ht�1, Xt, At).

• Equality (d) holds because by Condition 1, EP [ṁ
⌦2
✓⇤(P),t|Ht�1, Xt, At = a] =

EP [ṁ
⌦2
✓⇤(P),t|Xt, At = a] and by law of iterated expectations.

• Equality (e) holds because by Condition 1, the distribution of Xt does not de-

pend on Ht�1, so EP


EP,⇡sta

t

h
ṁ⌦2

✓⇤(P),t

��Xt

i ����Ht�1

�
= EP

h
EP,⇡sta

t

h
ṁ⌦2

✓⇤(P),t

��Xt

ii
=

EP,⇡sta
t

h
ṁ⌦2

✓⇤(P),t

i
; the last equality holds by law of iterated expectations.

• Equality (f) holds by definition.

2. Conditional Lindeberg

1

T

TX

t=1

EP,⇡

⇣
c>Wt⌃T (P)�1/2ṁ✓⇤(P),t

⌘2

|c>Wt⌃T (P)�1/2ṁ✓⇤(P),t|>�
p
T

����Ht�1

�

=
1

T

TX

t=1

EP,⇡


W 2

t c>⌃T (P)�1/2ṁ⌦2
✓⇤(P),t⌃T (P)�1/2c

|c>Wt⌃T (P)�1/2ṁ✓⇤(P),t|>�
p
T

����Ht�1

�


(a)

1

T 2�2

TX

t=1

EP,⇡


W 4

t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2

����Ht�1

�


(b)

⇢max

T 2�2

TX

t=1

EP,⇡


W 2

t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2

����Ht�1

�

=
(c)

⇢max

T 2�2

TX

t=1

EP

Z

a2A

⇡t(a,Xt,Ht�1)EP


W 2

t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2

����Ht�1, Xt, At = a

�
da

����Ht�1

�

=
(d)

⇢max

T 2�2

TX

t=1

EP

Z

a2A

⇡sta
t (a,Xt)EP

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2

����Ht�1, Xt, At = a

�
da

����Ht�1

�

=
(e)

⇢max

T 2�2

TX

t=1

EP


EP

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2

����Xt

� ����Ht�1

�

=
(f)

⇢max

T 2�2

TX

t=1

EP,⇡sta
t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2
�
!
(g)

0
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• Above, inequality (a) holds because
|Wtc>⌃T (P)�1/2ṁ✓⇤(P),t|>

p
T� = 1 if and only if

W 2
t

1
T�2 c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c > 1.

• Inequality (b) holds because by Condition 9, W 2
t  ⇢max with probability 1.

• Equality (c) holds by the law of iterated expectations.

• Equality (d) holds since Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
2 �(Ht�1, Xt, At).

• Equality (e) holds because by Condition 1,
EP

h
(c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c)2
��Ht�1, Xt, At = a

i
=

EP

h
(c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c)2
��Xt

i
and by law of iterated expectations.

• Equality (f) holds since the distribution of Xt does not depend on Ht�1 by Condition 1 and
by law of iterated expectations.

• Regarding limit (g), it is sufficient to show that
1
T

PT
t=1 EP,⇡sta

t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2
�

is uniformly bounded

over P 2 P for all sufficiently large T . By Condition 5, the minimum eigenvalue of ⌃T (P )
is bounded above zero uniformly over P 2 P for all sufficiently large T ; this bounds the
maximum eigenvalue of ⌃T (P )�1. Also by Condition 5 the fourth moment of ṁ✓⇤(P),t

with respect to P and policy ⇡sta
t is uniformly bounded over P 2 P and t � 1. With these

two properties we have that 1
T

PT
t=1 EP,⇡sta

t

⇣
c>⌃T (P)�1/2ṁ⌦2

✓⇤(P),t⌃T (P)�1/2c
⌘2
�

is

uniformly bounded over P 2 P for all sufficiently large T .

B.3.3 Showing that sup✓2⇥:k✓�✓⇤(P)k✏...m

�� ...
MT (✓)

��
1

is bounded in probability

Recall that for any B 2 Rd⇥d⇥d, we denote kBk1 =
Pd

i=1

Pd
j=1

Pd
k=1 |Bi,j,k|. We abbreviate

...
m✓(Yt, Xt, At) with ...

m✓,t.

By triangle inequality,
�� ...
MT (✓)

��
1
=
��� 1
T

PT
t=1 Wt

...
m✓,t

���
1


1
T

PT
t=1 Wt k

...
m✓,tk1. Thus we have

that

sup
✓2⇥:k✓�✓⇤(P)k✏...m

�� ...
MT (✓)

��
1
 sup

✓2⇥:k✓�✓⇤(P)k✏...m

1

T

TX

t=1

Wt k
...
m✓,tk1 .

By Condition 6 (ii), there exists a function ...
m (note it is not indexed by ✓) such that for all P 2 P, we

have that sup✓2⇥:k✓�✓⇤(P)k✏...m
k

...
m✓,tk1  k

...
m(Yt, Xt, At)k1.


1

T

TX

t=1

Wt k
...
m(Yt, Xt, At)k1 .

Adding and subtracting 1
T

PT
t=1 EP,⇡ [Wt k

...
m(Yt, Xt, At)k1 |Ht�1],

=
1

T

TX

t=1

Wt k
...
m(Yt, Xt, At)k1�EP,⇡ [Wt k

...
m(Yt, Xt, At)k1 |Ht�1]+EP,⇡ [Wt k

...
m(Yt, Xt, At)k1 |Ht�1] .

By second moment bounds on k
...
m(Yt, Xt, At)k1 from Condition 6 (i), by Lemma 1, we have that

1
T

PT
t=1 Wt k

...
m(Yt, Xt, At)k1 � EP,⇡ [Wt k

...
m(Yt, Xt, At)k1 |Ht�1] = oP2P(1).

= oP2P(1) +
1

T

TX

t=1

EP,⇡ [Wt k
...
m(Yt, Xt, At)k1 |Ht�1]

Since by Condition 9, Wtp
⇢min

� 1 with probability 1,

 oP2P(1) +
1

T
p
⇢min

TX

t=1

EP,⇡

⇥
W 2

t k
...
m(Yt, Xt, At)k1 |Ht�1

⇤
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Since W 2
t = ⇡sta

t (At,Xt)
⇡t(At,Xt,Ht�1)

and by Condition 1,

= oP2P(1) +
1

T
p
⇢min

TX

t=1

EP,⇡sta
t
[k

...
m(Yt, Xt, At)k1] = OP2P(1).

Note that by Jensen’s inequality, EP,⇡sta
t
[k

...
m(Yt, Xt, At)k1] 

r
EP,⇡sta

t

h
k

...
m(Yt, Xt, At)k

2
1

i
. By

Condition 6 (i), sup
P2P,t�1 EP,⇡sta

t

h
k

...
m(Yt, Xt, At)k

2
1

i
is bounded, which implies the final limit

above.

B.3.4 Lower bounding �M̈T (✓⇤(P))

We now show that �M̈T (✓⇤(P)) ⌫ H + oP2P(1), for positive definite matrix H introduced in
Condition 7 (ii).

By Condition 5 and Lemma 1, 1
T

PT
t=1 Wtm̈✓⇤(P),t � EP,⇡

⇥
Wtm̈✓⇤(P),t|Ht�1

⇤
= oP2P(1), so

�M̈T (✓
⇤(P)) = �

1

T

TX

t=1

Wtm̈✓⇤(P),t = oP2P(1)�
1

T

TX

t=1

EP,⇡

⇥
Wtm̈✓⇤(P),t|Ht�1

⇤

By law of iterated expectations,

= oP2P(1)�
1

T

TX

t=1

EP,⇡

⇥
WtEP

⇥
m̈✓⇤(P),t|Ht�1, Xt, At

⇤
|Ht�1

⇤

By Condition 1,

= oP2P(1)�
1

T

TX

t=1

EP,⇡

⇥
WtEP

⇥
m̈✓⇤(P),t|Xt, At

⇤
|Ht�1

⇤

By Condition 7, we have that EP

⇥
m̈✓⇤(P),t|Xt, At

⇤
� 0; recall that ✓⇤(P) is a maximizing value of

EP,⇡ [m✓,t|Xt, At]. Also since Wtp
⇢max

 1 with probability 1 by Condition 9,

⌫ oP2P(1)�
1

T
p
⇢max

TX

t=1

EP,⇡

⇥
W 2

t EP,⇡

⇥
m̈✓⇤(P),t|Xt, At

⇤
|Ht�1

⇤

Since W 2
t = ⇡sta

t (At,Xt)
⇡t(At,Xt,Ht�1)

,

= oP2P(1)�
1

T
p
⇢max

TX

t=1

EP,⇡sta
t

⇥
m̈✓⇤(P),t|Ht�1

⇤

Note that for any t � 1, EP,⇡sta
t

⇥
m̈✓⇤(P),t|Ht�1

⇤
= EP,⇡sta

t

⇥
m̈✓⇤(P),t

⇤
because {⇡sta

t }t�1 are pre-
specified. Recall that by Condition 7 for all sufficiently large T , � 1

T

PT
t=1 EP,⇡sta

t

⇥
m̈✓⇤(P),t

⇤
⌫ H

for all P 2 P. Thus our final result is that

� M̈T (✓
⇤(P)) ⌫ H + oP2P(1). (23)

B.4 Lemmas and Other Helpful Results

Theorem 2 (Uniform Martingale Central Limit Theorem). Let {ZT (P)}T�1 be a sequence of

random variables whose distributions are defined by some P 2 P and some nuisance component

⌘. Moreover, let {ZT (P)}T�1 be a martingale difference sequence with respect to Ft, meaning

EP,⌘[Zt(P)|Ft�1] = 0 for all t � 1 and P 2 P.

(a)
1
T

PT
t=1 EP,⌘[Zt(P)2|Ft�1]

P
! �2

uniformly over P 2 P, where �2
is a constant 0 <

�2 < 1.
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(b) For any ✏ > 0,
1
T

PT
t=1 EP,⌘[Zt(P)2 |Zt(P)|>✏|Ft�1]

P
! 0 uniformly over P 2 P.

Under the above conditions,

1
p
T

TX

t=1

Zt(P)
D
! N (0,�2) uniformly over P 2 P.

Proof: By by Kasy [2019, Lemma 1], it is sufficient to show that for any sequence {PT }
1

T=1 with
PT 2 P for all T � 1, 1

p
T

PT
t=1 Zt(PT )

D
! N (0,�2). In this setting, since PT depends on T , we

consider triangular array asymptotics and additionally index by T , e.g., FT,t.

Note that 1
T

PT
t=1 EPT ,⌘[Zt(PT )2|FT,t�1]

P
! �2, by Kasy [2019, Lemma 1] and condition (a)

above.

Also, for any ✏ > 0, 1
T

PT
t=1 EPT ,⌘

⇥
Zt(PT )2 |Zt(PT )|>✏

��FT,t�1

⇤ P
! 0, by Kasy [2019, Lemma 1]

and condition (b) above.

Thus by the martingale central limit theorem of Dvoretzky [1972], we have that for the sequence
{PT }

1

T=1,
1

p
T

TX

t=1

Zt(PT )
D
! N (0, 1).

Since the sequence {PT }
1

T=1 were chosen arbitrarily from P, the desired result is implied again by
Kasy [2019, Lemma 1].
Lemma 1. Let f(Yt, Xt, At) 2 Rdf be a function such that

sup
P2P,t�1 EP,⇡sta

t

h
kf(Yt, Xt, At)k

2
i
< m for some m < 1. Under Conditions 1 and 9,

1
p
T

TX

t=1

⇢
Wtf(Yt, Xt, At)� EP,⇡[Wtf(Yt, Xt, At)|Ht�1]

�
= OP2P(1). (24)

Note that the above equation implies that

1

T

TX

t=1

⇢
Wtf(Yt, Xt, At)� EP,⇡[Wtf(Yt, Xt, At)|Ht�1]

�
= oP2P(1).

Lemma 1 is a type of martingale weak law of large number result and the proof is similar to the weak
law of large numbers proofs for i.i.d. random variables.

Proof: We denote the kth
2 [1 : df ] dimension of vector f(Yt, Xt, At) as fk(Yt, Xt, At). It is

sufficient to show the result for any dimension of vector f(Yt, Xt, At). For notational convenience,
let ft := fk(Yt, Xt, At). Let ✏ > 0.

sup
P2P

PP,⇡

 �����
1

p
T

TX

t=1

⇢
Wtft � EP,⇡[Wtft|Ht�1]

������ > ✏

!


(a)

1

T ✏2
sup
P2P

EP,⇡

2

4
 

TX

t=1

⇢
Wtft � EP,⇡[Wtft|Ht�1]

�!2
3

5

=
(b)

1

T ✏2
sup
P2P

TX

t=1

EP,⇡

"⇢
Wtft � EP,⇡[Wtft|Ht�1]

�2
#


(c)

1

T ✏2
sup
P2P

TX

t=1

EP,⇡

⇥
W 2

t f
2
t

⇤

=
(d)

1

T ✏2
sup
P2P

TX

t=1

EP

Z

a2A

W 2
t ⇡t(a,Xt,Ht�1)EP [f

2
t |Ht�1, Xt, At = a]da

�
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=
(e)

1

T ✏2
sup
P2P

TX

t=1

EP

Z

a2A

⇡sta
t (a,Xt)EP [f

2
t |Ht�1, Xt, At = a]da

�

=
(f)

1

T ✏2
sup
P2P

TX

t=1

EP,⇡sta
t

⇥
f2
t

⇤

(g)

4m

✏2

• Above (a) holds by Chebyshev’s inequality.
• (b) holds because the above terms form a martingale difference sequence with respect

to Ht�1, i.e., EP,⇡

⇥
Wtft � EP,⇡[Wtft|Ht�1]

��Ht�1

⇤
= 0; this implies that cross terms

disappear, i.e., for t > s,

EP,⇡

✓
Wtft � EP,⇡[Wtft|Ht�1]

◆✓
Wsfs � EP,⇡[Wsfs|Hs�1]

◆�

= EP,⇡


EP,⇡

✓
Wtft � EP,⇡[Wtft|Ht�1]

◆✓
Wsfs � EP,⇡[Wsfs|Hs�1]

◆����Ht�1

��

Since s > t,

= EP,⇡

✓
Wsfs � EP,⇡[Wsfs|Hs�1]

◆
EP,⇡


Wtft � EP,⇡[Wtft|Ht�1]

����Ht�1

��
= 0.

• (c) holds because EP,⇡

h
{Wtft � EP,⇡[Wtft|Ht�1]}

2
i

= EP,⇡

⇥
W 2

t f
2
t

⇤
�

EP,⇡

⇥
EP,⇡[Wtft|Ht�1]2

⇤
 EP,⇡

⇥
W 2

t f
2
t

⇤
.

• (d) holds by law of iterated expectations.

• (e) holds because Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
.

• (f) holds since by Condition 1, EP [f2
t |Ht�1, Xt, At] = EP [f2

t |Xt, At] and by law of
iterated expectations EP,⇡sta

t

⇥
f2
t

⇤
= EP

⇥R
a2A

⇡sta
t (a,Xt)EP [f2

t |Xt, At = a]da
⇤
.

• (g) holds since sup
P2P,t�1 EP,⇡sta

t

⇥
f2
t

⇤
< m < 1.

Lemma 2. Let m✓,t := m✓(Yt, Xt, At). Under Conditions 1, 3, 4, 5, 7, and 9,

sup
✓2⇥

(
1

T

TX

t=1

Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1]

)
= OP2P(1). (25)

Lemma 1 is a type of martingale functionally uniform law of large number result and the proof
is similar to the functionally uniform law of large numbers proofs for i.i.d. random variables Van
Der Vaart and Wellner [1996, Theorem 2.4.1].

Proof:
Finite Bracketing Number: Let � > 0. We construct a set B� which is made up of pairs of functions
(l, u). We show that we can find B� that satisfies the following:

(a) For any ✓ 2 ⇥, we can find (l, u) 2 B� such that
(i) l(y, x, a)  m✓(y, x, a)  u(y, x, a) for all (x, y) in the joint support of {P 2 P} and
all a 2 A.
(ii) sup

P2P,t�1 EP,⇡sta
t
[|u(Yt, Xt, At)� l(Yt, Xt, At)|]  �.

(b) The number of pairs in this set is finite, i.e., |B�| < 1.
(c) For any (l, u) 2 B� , for some m < 1 which does no depend on �,

sup
P2P,t�1 EP,⇡sta

t

⇥
u(Yt, Xt, At)2

⇤
 m and sup

P2P,t�1 EP,⇡sta
t

⇥
l(Yt, Xt, At)2

⇤
 m.

Showing that we can find B� that satisfy (a), means that |B�| is an upper bound on the bracketing
number of {m✓ : ✓ 2 ⇥}. For more information on bracketing functions, see Van Der Vaart and
Wellner [1996] and Van der Vaart [2000].
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To construct B� , we follow a similar argument to Example 19.7 of Van der Vaart [2000] (page 271).
Make a grid over ⇥ with meshwidth �/2 > 0 and let the points in this grid be the set G�/2 ✓ ⇥;
we will specify � later. Note that by construction, for any ✓ 2 ⇥ we can find a ✓ 2 G�/2 such that
k✓0 � ✓k  �.

By our Lipschitz Condition 4, we have that for any ✓, ✓0 2 ⇥, |m✓(Yt, Xt, At)�m✓0(Yt, Xt, At)| 
g(Yt, Xt, At)k✓ � ✓0k for function g such that for some mg < 1,

sup
P2P,t�1

EP,⇡sta
t
[g(Yt, Xt, At)

2]  mg. (26)

We now show that we can choose B� =
�
(m✓ � g(Yt, Xt, At),m✓ + g(Yt, Xt, At)) : ✓ 2 G�/2

 
.

Note that by compactness of ⇥, Condition 3, the number of points in G�/2 is finite, so (b) above
holds.

To show that (a) holds for our choice of B�, recall that for any ✓ 2 ⇥ we can find a ✓0 2 G�/2

such that k✓0 � ✓k  �. Also, by the Lipschitz Condition 4, |m✓(Yt, Xt, At)�m✓0(Yt, Xt, At)| 
g(Yt, Xt, At)k✓ � ✓0k  g(Yt, Xt, At)�. Thus we have that

m✓0(Yt, Xt, At)� g(Yt, Xt, At)�  m✓(Yt, Xt, At)  m✓0(Yt, Xt, At) + g(Yt, Xt, At)�.

Note that

sup
P2P,t�1

EP,⇡sta
t
[m✓0(Yt, Xt, At) + g(Yt, Xt, At)�� {m✓0(Yt, Xt, At)� g(Yt, Xt, At)�}]

= 2� sup
P2P,t�1

EP,⇡sta
t
[g(Yt, Xt, At)]  2�

p
mg < 1.

The inequalities above hold by Equation (26) and since EP,⇡sta
t
[g(Yt, Xt, At)] q

EP,⇡sta
t
[g(Yt, Xt, At)2] by Jensen’s inequality. (a) above holds for our choice of B� by

letting meshwidth � = �/(2
p
mg).

We now show that (c) above holds. Note that

sup
P2P,t�1

EP,⇡sta
t

h
{m✓(Yt, Xt, At) + g(Yt, Xt, At)}

2
i

 3 sup
P2P,t�1

EP,⇡sta
t

⇥
m✓(Yt, Xt, At)

2
⇤
+ 3 sup

P2P,t�1
EP,⇡sta

t

⇥
g(Yt, Xt, At)

2
⇤
. (27)

Note that the above upper bound, Equation (27), also holds for
sup

P2P,t�1 EP,⇡sta
t

h
{m✓(Yt, Xt, At)� g(Yt, Xt, At)}

2
i
.

Since, m✓(Yt, Xt, At) = m✓(Yt, Xt, At)�m✓⇤(P)(Yt, Xt, At) +m✓⇤(P)(Yt, Xt, At),

 9 sup
P2P,t�1

EP,⇡sta
t

h�
m✓(Yt, Xt, At)�m✓⇤(P)(Yt, Xt, At)

 2
i

+ 9 sup
P2P,t�1

EP,⇡sta
t

⇥
m✓⇤(P)(Yt, Xt, At)

2
⇤

+ 3 sup
P2P,t�1

EP,⇡sta
t

⇥
g(Yt, Xt, At)

2
⇤
.

Note that sup
P2P,t�1 EP,⇡sta

t

⇥
m✓⇤(P)(Yt, Xt, At)2

⇤
is bounded by our moment Condition 5 and that

sup
P2P,t�1 EP,⇡sta

t

⇥
g(Yt, Xt, At)2

⇤
is bounded by Equation (26).

By our Lipschitz Condition 4, for any ✓ 2 ⇥, |m✓(Yt, Xt, At) � m✓⇤(P)(Yt, Xt, At)| 

g(Yt, Xt, At)k✓ � ✓⇤(P)k. Thus,

sup
P2P,t�1

EP,⇡sta
t

h�
m✓(Yt, Xt, At)�m✓⇤(P)(Yt, Xt, At)

 2
i

 sup
P2P,t�1

EP,⇡sta
t

⇥
g(Yt, Xt, At)

2
⇤
k✓ � ✓⇤(P)k2.

The above is bounded by Equation (26) and by compactness of ⇥, Condition 3. Thus (c) above holds
for our choice of B� .
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Main Argument: We now show that for any ✏ > 0,

sup
P2P

PP,⇡

 
sup
✓2⇥

(
1

T

TX

t=1

Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1]

)
> ✏

!
! 0. (28)

An analogous argument can be made to show that
sup

P2P PP,⇡

⇣
sup✓2⇥

n
�

1
T

PT
t=1 Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1]

o
> ✏

⌘
! 0.

Let � > 0; we will choose � later. Let B� be the set of pairs of functions as constructed earlier.

sup
✓2⇥

(
1

T

TX

t=1

Wtm✓,t � EP,⇡[Wtm✓,t|Ht�1]

)

Note that by (a), we get the following upper bound:

 max
(l,u)2B�

(
1

T

TX

t=1

Wtu(Yt, Xt, At)� EP,⇡[Wtl(Yt, Xt, At)|Ht�1]

)
.

By adding and subtracting EP,⇡

⇥
Wtu(Yt, Xt, At)

��Ht�1

⇤
and triangle inequality,

 max
(l,u)2B�

(
1

T

TX

t=1

EP,⇡

⇥
Wt {u(Yt, Xt, At)� l(Yt, Xt, At)}

��Ht�1

⇤
)

+ max
(l,u)2B�

(
1

T

TX

t=1

Wtu(Yt, Xt, At)� EP,⇡

⇥
Wtu(Yt, Xt, At)

��Ht�1

⇤
)
.

Note that by Condition 9, Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)


p
⇢max with probability 1, so

EP,⇡

⇥
Wt {u(Yt, Xt, At)� l(Yt, Xt, At)}

��Ht�1

⇤


1
p
⇢max

EP,⇡

⇥
W 2

t {u(Yt, Xt, At)� l(Yt, Xt, At)}
��Ht�1

⇤

= 1
p
⇢max

EP,⇡sta
t
[u(Yt, Xt, At)� l(Yt, Xt, At)] 

1
p
⇢max

�; the last equality holds by Condition 1
and the last inequality holds by (a). And since maxi2[1 : n]{ai} 

Pn
i=1 |ai|,


1

p
⇢max

� +
X

(l,u)2B�

�����
1

T

TX

t=1

Wtu(Yt, Xt, At)� EP,⇡ [Wtu(Yt, Xt, At)|Ht�1]

�����

By Lemma 1 and (c), for any (l, u) 2 B�, 1
T

PT
t=1 Wtu(Yt, Xt, At) �

EP,⇡

⇥
Wtu(Yt, Xt, At)

��Ht�1

⇤
= oP2P(1) . Since |B�| < 1 by (b), the convergence holds

for all (l, u) 2 B� simultaneously, so

=
1

p
⇢max

� + oP2P(1).

Equation (28) holds by choosing � =
p
⇢max✏/2.

B.5 Least-Squares Estimator

We use �(Xt, At) to denote a feature vector that constructed using context Xt and action At.
Condition 10 (Linear Expected Outcome). For all P 2 P, the following holds w.p. 1,

EP [Yt|Xt, At] = �(Xt, At)
>✓⇤(P).

Condition 11 (Moment Conditions for Least Squares). The fourth moments of

�(Xt, At)
�
Yt � �(Xt, At)>✓⇤(P)

�
and �(Xt, At) with respect to P and policy ⇡sta

t are

respectively bounded uniformly over P 2 P and t � 1.

Also the minimum eigenvalue of ⌃T (P) = 1
T

PT
t=1 EP,⇡sta

t

h
�(Yt, Xt, At)⌦2

�
Yt � �(Yt, Xt, At)>✓⇤(P)

�2i

and
1
T

PT
t=1 EP,⇡sta

t

⇥
�(Xt, At)⌦2

⇤
respectively are both bounded above constant some constant

greater than zero for all P 2 P.
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Condition 12 (Importance Ratios for Least Squares). Let ⇢min > 0 and ⇢max,T > 0 be a non-

random sequence such that
⇢max,T

T ! 0. {⇡sta
t }

T
t=1 are pre-specified and do not depend on data

{Yt, Xt, At}
T
t=1. For all P 2 P, the following holds w.p. 1,

⇢min 
⇡sta
t (At, Xt)

⇡t(At, Xt,Ht�1)
 ⇢max,T .

Note that Condition 12 allows ⇡t(At, Xt,Ht�1) to go to zero at some rate for stabilizing policies
{⇡sta

t }t�1 that are strictly bounded away from 0 and 1.

We now define the AW-LS estimator for ✓⇤(P) 2 Rd:

✓̂AW-LS
T := argmax

✓2Rd

(
�

TX

t=1

Wt

�
Yt � �(Xt, At)

>✓
�2
)
. (29)

Theorem 3 (Consistency and Asymptotic Normality of Adaptively-Weighted Least Squares Estima-
tor). Under Conditions 1, 10, 11, and 12,

⌃T (P)�1/2

 
1

p
T

TX

t=1

Wt�(Xt, At)
⌦2

!⇣
✓̂AW-LS
T � ✓⇤(P)

⌘
D
! N (0, Id) uniformly over P 2 P,

where ⌃T (P) := 1
T

PT
t=1 �(Xt, At)⌦2

�
Yt � �(Xt, At)>✓⇤(P)

�2
.

Proof: By taking the derivative of Equation (29) with respect to the parameters, we have that

0 =
TX

t=1

Wt�(Xt, At)
⇣
Yt � �(Xt, At)

>✓̂AW-LS
T

⌘
.

By rearranging terms, we have that

�
1

p
T

TX

t=1

Wt�(Xt, At)
�
Yt � �(Xt, At)

>✓⇤(P)
�

=
1

p
T

TX

t=1

Wt�(Xt, At)
⌦2

⇣
✓̂AW-LS
T � ✓⇤(P)

⌘
. (30)

We first show that the following holds:

⌃T (P)�1/2 1
p
T

TX

t=1

Wt�(Xt, At)
�
Yt � �(Xt, At)

>✓⇤(P)
� D
! N (0, Id) uniformly over P 2 P.

(31)
Equation (31) holds by a similar argument as that used in Section B.3.2, for ṁ✓(Yt, Xt, At) =
�(Xt, At)

�
Yt � �(Xt, At)>✓⇤(P)

�
by showing that the conditions of Theorem 2 hold. It can

be checked that all the arguments hold even when we allow ⇢max,T to grow at a rate such that
⇢max,T

T ! 0.

By Equations (30) and (31),

⌃T (P)�1/2 1
p
T

TX

t=1

Wt�(Xt, At)
⌦2

⇣
✓̂AW-LS
T � ✓⇤(P)

⌘
D
! N (0, Id) uniformly over P 2 P.

(32)
By Equation (32), to ensure that ✓̂AW-LS

T
P
! ✓⇤(P) uniformly over P 2 P, it is sufficient to show that

the minimum eigenvalue of ⌃T (P)�1/2 1
p
T

PT
t=1 Wt�(Xt, At)⌦2 goes to infinity uniformly over

P 2 P as T ! 1.

By Condition 11, the maximum eigenvalue of ⌃T (P) is bounded uniformly over P 2 P, so the
minimum eigenvalue of ⌃T (P)�1/2 is bounded uniformly above 0. Thus it is sufficient to show
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that the minimum eigenvalue of 1
p
T

PT
t=1 Wt�(Xt, At)⌦2 goes to infinity uniformly over P 2 P as

T ! 1.

Note that by Lemma 1 and Condition 11,

1
p
T

TX

t=1

Wt�(Xt, At)
⌦2

� EP,⇡

⇥
Wt�(Xt, At)

⌦2
��Ht�1

⇤
= OP2P(1). (33)

Note that by law of iterated expectations,

EP,⇡

⇥
Wt�(Xt, At)

⌦2
��Ht�1

⇤

= EP

Z

a2A

⇡t(a,Xt,Ht�1)EP

⇥
Wt�(Xt, At)

⌦2
|Ht,1, Xt, a

⇤
da

����Ht�1

�
.

By Condition 1 and since Wt =
q

⇡sta
t (At,Xt)

⇡t(At,Xt,Ht�1)
,

= EP

"Z

a2A

s
⇡t(a,Xt,Ht�1)

⇡sta
t (a,Xt)

⇡sta
t (a,Xt)EP

⇥
�(Xt, At)

⌦2
|Xt, a

⇤
da

����Ht�1

#

Since by Condition 12, ⇡t(a,Xt,Ht�1)
⇡sta
t (a,Xt)

�
1

p
⇢max,T

and �(Xt, At)⌦2
⌫ 0,

⌫
1

p
⇢max,T

EP

Z

a2A

⇡sta
t (a,Xt)EP

⇥
�(Xt, At)

⌦2
|Xt, a

⇤
da

����Ht�1

�
.

Since ⇡sta
t are pre-specified and since by our i.i.d. potential outcomes assumption (Condition 1) Xt

do not depend on Ht�1,

=
1

p
⇢max,T

EP

Z

a2A

⇡sta
t (a,Xt)EP

⇥
�(Xt, At)

⌦2
|Xt, a

⇤
da

�
.

By law of iterated expectations,

=
1

p
⇢max,T

EP,⇡sta
t

⇥
�(Xt, At)

⌦2
⇤
.

The above result and Equation (33) implies that

1
p
T

TX

t=1

Wt�(Xt, At)
⌦2

⌫ OP2P(1) +

s
T

⇢max,T

1

T

TX

t=1

EP,⇡sta
t

⇥
�(Xt, At)

⌦2
⇤
. (34)

By Condition 11, the minimum eigenvalue of 1
T

PT
t=1 EP,⇡sta

t

⇥
�(Xt, At)⌦2

⇤
is bounded above some

constant greater than zero for all P 2 P. By Condition 12,
q

T
⇢max,T

! 1. Thus by Equation (32)

and Equation (34), we have that ✓̂AW-LS
T

P
! ✓⇤(P) uniformly over P 2 P.
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C Choice of Stabilizing Policy

C.1 Optimal Stabilizing Policy in Multi-Arm Bandit Setting

Here we consider the multi-armed bandit setting where EP [Yt(a)] = ✓⇤a(P) and VarP(Yt(a)) = �2.
We consider the adaptively-weighted least-squares estimator where m✓(Yt, At) = � At=a(Yt �

✓⇤a(P))2. By Theorem 1, we have that
 

1

T

TX

t=1

EP,⇡sta
t

⇥
At=a(Yt � ✓⇤a(P))2

⇤
!�1/2 

1

T

TX

t=1

Wt At=a

!
p

T (✓̂AW-LS
T,a �✓⇤a(P))

D
! N (0, 1) .

While the asymptotic variance of
p
T (✓̂AW-LS

T,a � ✓⇤a(P)) does not necessarily concentrate we can
examine the following:

 
1

T

TX

t=1

Wt At=a

!�1 
1

T

TX

t=1

EP,⇡sta
t

⇥
At=a(Yt � ✓⇤a(P))2

⇤
! 

1

T

TX

t=1

Wt At=a

!�1

By Lemma 1, we have that 1
T

PT
t=1 Wt At=a �

p
⇡sta
t (a)⇡t(At,Ht�1)

P
! 0. Thus we have

=

 
1

T

TX

t=1

⇡sta
t (a)�2

! 
op(1) +

1

T

TX

t=1

p
⇡sta
t (a)⇡t(At,Ht�1)

!�2

.

As long as ⇡sta
t (a),⇡t(At,Ht�1) are bounded away from zero w.p. 1, the op(1) term is asymptotically

negligible and we can just consider
⇣

1
T

PT
t=1 ⇡

sta
t (a)�2

⌘⇣
1
T

PT
t=1

p
⇡sta
t (a)⇡t(At,Ht�1)

⌘�2
.

By Cauchy-Schwartz inequality,⇣
1
T

PT
t=1

p
⇡sta
t (a)⇡t(a,Ht�1)

⌘2


⇣
1
T

PT
t=1 ⇡

sta
t (a)

⌘⇣
1
T

PT
t=1 ⇡t(a,Ht�1)

⌘
.

Thus, 1
1
T

PT
t=1 ⇡t(a,Ht�1)


1
T

PT
t=1 ⇡sta

t (a)⇣
1
T

PT
t=1

p
⇡sta
t (a)⇡t(a,Ht�1)

⌘2 , so

1
T

PT
t=1 ⇡

sta
t (a)

⇣
1
T

PT
t=1

p
⇡t(a,Ht�1)⇡sta

t (a)
⌘2 �

1
1
T

PT
t=1 ⇡t(a,Ht�1)

.

Note that this lower bound is achieved when ⇡sta
t (a) = ⇡t(a). However, since ⇡t is a function of Ht�1

and stabilizing policies{⇡sta
t }

T
t=1 are pre-specified, setting ⇡sta

t (At) = ⇡t,a is generally an unfeasible
choice. Thus we want to choose ⇡sta

t to be as close to ⇡t as possible, subject to the constraint that the
stabilizing policies are pre-specified, i.e., not a function of the data {Yt, Xt, At}t�1.

C.2 Approximating the Optimal Stabilizing Policy

One way to approximately choose the optimal evaluation policy is to select ⇡sta
t (a, x) =

EP,⇡[⇡t(a, x,Ht�1)]. Note that EP,⇡[⇡t(a, x,Ht�1)] depends on the P , which is unknown. Thus
it is natural to choose ⇡sta

t (a, x) to be EP,⇡[⇡t(a, x,Ht�1)] weighted by a prior on P . Note that as
long as the evaluation policy ensures that weights Wt are bounded, the choice of evaluation policy
does not affect the asymptotic validity of the estimator.

In Figure 6, we display the difference in mean squared error for the AW-LS estimator in a two-armed
bandit setting for two different choices of evaluation policy: (1) the uniform evaluation policy which
selects actions uniformly from A and (2) the expected ⇡t(a,Ht�1) evaluation policy for which
⇡sta
t (a) = EP,⇡[⇡t(a,Ht�1)]. We can see in this setting that by setting ⇡sta

t (a) = EP,⇡[⇡t(a,Ht�1)]
we are able to decrease the mean squared error of the AW-LS estimator compared AW-LS with the
uniform evaluation policy. Note though that in some cases setting ⇡sta

t (a) = EP,⇡[⇡t(a,Ht�1)] is
equivalent to choosing the uniform evaluation policy. For example, a two-armed bandit with identical
arms so under common bandit algorithms EP,⇡[⇡t(a,Ht�1)] = 0.5 for all t 2 [1 : T ], which will
make the evaluation policy ⇡sta

t (a) = EP,⇡[⇡t(a,Ht�1)] equivalent to the uniform policy.
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Figure 6: Above we plot the mean squared errors for the adaptively-weighted least squares estimator
with evaluation policies: (1) uniform evaluation policy which selects actions uniformly from A and
(2) expected ⇡t(a,Ht�1) evaluation policy for which ⇡sta

t (a) = EP,⇡ [⇡t(a)] (oracle quantity). In a
two arm bandit setting we perform Thompson Sampling with standard normal priors, 0.01 clipping,
✓⇤(P) = [✓⇤0(P), ✓⇤1(P)] = [0, 1], standard normal errors, and T = 1000. Error bars denote standard
errors computed over 5,000 Monte Carlo simulations.
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D Need for Uniformly Valid Inference on Data Collected with Bandit
Algorithms

Here we consider the two-armed bandit setting where EP [Rt(a)] = ✓0,a(P), VarP(Rt(a)) = �2,
and EP [Rt(a)4] < c < 1 for a 2 {0, 1}. The unweighted least squares estimator is asymptotically
normal on adaptively collected data under the following condition of Lai and Wei [1982], there exists
a non-random sequence {bt}t�1 such that

bT ·

TX

t=1

At
P
! 1. (35)

Specifically, by Theorem 3 of Lai and Wei [1982], under (35),
vuut

TX

t=1

At(✓̂
OLS
T,1 � ✓⇤1(P)) =

PT
t=1 At(Rt � ✓⇤1(P))qPT

t=1 At

D
! N (0,�2).

However, as discussed in Deshpande et al. [2018] and Zhang et al. [2020], (35) can fail to to hold for
common bandit algorithms when there is no unique optimal policy, i.e., when ✓⇤0(P)� ✓⇤1(P) = 0.
For example, in Figure 7 we plot 1

T

PT
t=1 At for Thompson Sampling and ✏-greedy for a bandit with

two identical arms.

Figure 7: Above we plot empirical allocations, 1
T

PT
t=1 At, under both Thompson Sampling (standard

normal priors, 0.01 clipping) and ✏-greedy (✏ = 0.1) under zero margin ✓⇤0(P) = ✓⇤1(P) = 0. For
our simulations T = 100, errors are standard normal, and we use 50k Monte Carlo repetitions.

In order to construct reliable confidence intervals using asymptotic approximations, it is crucial that
that estimators converge uniformly in distribution. To illustrate the importance of uniformity, consider
the following example. We can modify Thompson Sampling to ensure that 1

T

PT
t=1 At

P
! 0.5 when

✓⇤1(P) � ✓⇤0(P) = 0. For example, we could do this by using an algorithm we call Thompson
Sampling Hodges (inspired by the Hodges estimator; see Van der Vaart [2000, Page 109]), defined
below:

⇡t(1,Ht�1) = P(✓̃1 > ✓̃0|Ht�1) |µ1,t�µ0,t|>t�4 + 0.5 |µ1,t�µ0,t|t�4

Under standard Thompson Sampling arm one is chosen according to the posterior probability
that is optimal, so ⇡t(1,Ht�1) = P(✓̃1 > ✓̃0|Ht�1). Above, µa,t denotes the posterior mean
for the mean reward for arm a at time t. Under TS-Hodges, if difference between the posterior
means, |µ1,t � µ0,t|, is less than t�4, ⇡t is set to 0.5. Additionally, we clip the action selection
probabilities to bound them strictly away from 0 and 1 for some constant ⇡min in the following sense
clip(⇡t) = (1� ⇡min) ^ (⇡t _ ⇡min). Under TS-Hodges with clipping, we can show that

1

T

TX

t=1

At
P
!

8
<

:

1� ⇡min if ✓⇤1(P)� ✓⇤0(P) > 0
⇡min if ✓⇤1(P)� ✓⇤0(P) < 0
0.5 if ✓⇤1(P)� ✓⇤0(P) = 0

(36)

By equation (36), we satisfy (35) pointwise for every fixed P and we have that the OLS estimator is
asymptotically normal pointwise [Lai and Wei, 1982]. However, equation (36) fails to hold uniformly
over P 2 P. Specifically, it fails to hold for any sequence of {Pt}

1

t=1 such that ✓⇤1(Pt)�✓⇤0(Pt) = t�4.
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In Figure 8, we show that confidence intervals constructed using normal approximations fail to
provide reliable confidence intervals, even for very large sample sizes for the worst case values of
✓⇤1(P)� ✓⇤0(P).

Figure 8: Above we construct confidence intervals for ✓⇤1(P)� ✓⇤0(P) using a normal approximation
for the OLS estimator. We compare independent sampling (⇡t = 0.5) and TS Hodges, both with
standard normal priors, 0.01 clipping, standard normal errors, and T = 10, 000. We vary the value of
✓⇤1(P)� ✓⇤0(P) in the simulations to demonstrate the non-uniformity of the confidence intervals.
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E Discussion of Chen et al. [2020]

Here we show formally that Theorem 3.1 in Chen et al. [2020], which proves that the OLS estimator
is asymptotically normal on data collected with an ✏-greedy algorithm, does not cover the case in
which there is no unique optimal policy.

They assume that for rewards Rt, context vectors Xt, and binary actions At 2 {0, 1},

E[Rt|Xt, At] = AtX>

t �1 + (1�At)X>

t �0.

They define � := �1 � �0.

Specifically at part 1(b) of their proof on page 4 of the supplementary material, they claim that
g(�̂t, ✏)

P
! g(�, ✏), where �̂t is the OLS estimator for � := �1 � �0 and g is defined as follows:

g(�0,�1, ✏) =
✏

2

Z
v>xx>vdPx + (1� ✏)

Z
�>x�0v>xx>vdPx

Above v 2 Rd is arbitrary fixed vector and x 2 Rd are the context vectors. Px is the distribution of
the context vectors Xt.

Specifically, they claim that g(�̂t, ✏)
P
! g(�, ✏) because �̂t

P
! � (Corollary 3.1) and by continuous

mapping theorem.

Recall the continuous mapping theorem for convergence in probability [Van der Vaart, 2000, Theorem
2.3]:
Theorem 4 (Continuous Mapping Theorem). Let g : Rk

! Rm
be continuous at every point of a set

C such that P(X 2 C) = 1. If Xn
P
! X , then g(Xn)

P
! g(X).

Note that g is not continuous in � at the value � = 0 2 Rd; this is due to the indicator term �>x�0.
Thus, the standard continuous mapping theorem can not be applied in this setting. Note that the case
that 0 = � = �1 � �0, is exactly when there is no unique optimal policy. This means that Theorem
3.1 in Chen et al. [2020] does not cover the setting in which there is no unique optimal policy.
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