
A Proofs499

Proof of Proposition 3.3. It is a direct result of Theorem A.1.500

Theorem A.1. Assume
dZt = ⌘(Zt, t)dt+ �(Zt, t)dWt, t 2 [0, 1].

We have Z1 2 A with probability one if there exists a function U : Rd ⇥ [0, 1] ! R such that501

1) U(·, t) 2 C2(Rd) and U(z, ·) 2 C1([0, 1]);502

2) U(z, 1) � 0, z2 Rd; U(z, 1) = 0 implies that z 2 A, where A is a measurable set in Rd;503

4) There exists a sequence {↵t, �t, �t : t 2 [0, 1]}, such that for t 2 [0, 1],504

E[rzU(Zt, t)
>⌘(Zt, t)]  �↵tE[U(Zt, t)] + �t,

E[@tU(Zt, t) +
1

2
tr(r2

zU(Zt, t)�
2(Zt, t))]  �t;

5) Define ⇣t = exp(
R t
0 ↵sds). We assume505

lim
t"T

⇣t = +1, lim
t"T

⇣tR t
0 ⇣s(�s + �s)ds

= +1. (10)

Proof. Following dZt = ⌘(Zt, t)dt+ �(Zt, t)dWt, we have by Ito’s Lemma,506

dU(Zt, t) = rU(Zt, t)
>(⌘(Zt, t)dt+ �(Zt, t)dWt) + @tU(Zt, t)dt+

1

2
tr(r2U(Zt, t)�

2(Zt, t))dt,

for t 2 [0, T ]. Taking expectation on both sides,
d

dt
E(U(Zt)) = E[rzU(Zt, t)

>⌘(Zt, t)] + E

@tU(Zt, t) +

1

2
tr(r2U(Zt, t)�

2(Zt, t))

�
.

Let ut = E[U(Zt, t)]. By the assumption above, we get
u̇t  �↵tut + �t + �t.

Following Grönwall’s inequality (see Lemma A.2 below), we have E[U(Z1, 1)] = u1 = limt"1 ut 507

0 if (10) holds. Because U(z, 1) � 0, this suggests that U(Z1, 1) = 0 and hence Z1 2 A almost508

surely.509

Lemma A.2. Let ut 2 R and ↵t,�t � 0, and d
dtut  �↵tut + �t, t 2 [0, T ] for T > 0. We have510

ut 
1

⇣t
(⇣0u0 +

Z t

0
⇣s�sds), where ⇣t = exp(

Z t

0
↵sds).

Therefore, we have limt"T ut  0 if

lim
t"T

⇣t = +1, lim
t"T

⇣tR t
0 ⇣s�sds

= +1.

Proof. Let vt = ⇣tut, where ⇣t = exp(
R t
0 ↵sds) so ⇣̇t = ⇣t↵t. Then

d

dt
vt = ⇣̇tut + ⇣tu̇t  (⇣̇t � ⇣t↵t)ut + ⇣t�t = ⇣t�t.

So

vt  v0 + �

Z t

0
�sds,

and hence

ut 
1

⇣t
(⇣0u0 +

Z t

0
⇣s�sds).

To make limt"T ut  0, we want

lim
t"T

⇣t = +1, lim
t"T

⇣tR t
0 ⇣s�sds

= +1.

511
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Corollary A.3. Let dZt =
x�Zt
1�t +&tdWt with law Q. This uses the drift term of Brownian bridge, but512

have a time-varying diffusion coefficient &t � 0. Assume supt2[0,T ] &t < 1. Then Q(Z1 = z) = 1.513

Proof. We verify the conditions in Theorem A.1. Define U(z, t) = kx� zk2 /2, and ⌘(z, t) = x�Zt
1�t .514

We have ⌘(z, t)>rU(z, t) = �U(z, t)/(T � t). So ↵t = 1/(T � t).515

Also, @tU(z, t) + 1
2 tr(&

2
t r2

zU(z, t)) = 1
2diag(&

2
t Id⇥d) =

d
2 &

2
t := �t  C < 1.516

Then ⇣t = exp(
R t
0 ↵sds) =

1
1�t ! +1 as t " T .517

Also,
R t
0 ⇣s�sds  C

R t
0 ⇣sds = CT (log(T )� log(T � t)). So

lim
t"T

⇣tR t
0 ⇣s�sds

� lim
t"T

1
1�t

CT (log(T )� log(T � t))
= +1.

518

Using Girsanov theorem, we show that introducing arbitrary non-singular changes (as defined below)519

on the drift and initialization of a process does not change its bridge conditions.520

Proposition A.4. Consider the following processes521

Q : Zt = bt(Zt)dt+ �t(Zt)dWt, Z0 ⇠ µ0

Q̃ : Zt = (bt(Zt) + �t(Zt)ft(Zt))dt+ �t(Zt)dWt, Z0 ⇠ µ̃0.

Assume we have KL(µ0 || µ̃0) < +1 and EQ[
R T
0

��ft(Z[0,t])
��2] < 1. Then for any event A, we522

have Q(Z 2 A) = 1 if and only if Q̃(Z 2 A) = 1.523

Proof. Using Girsnaov theorem [31], we have

KL(Q || Q̃) = KL(µ0 || µ̃0) +
1

2
EQ

Z 1

0
kft(Zt)k22 dt

�
.

Hence, we have KL(Q || Q̃) < +1. This implies that Q and Q̃ has the same support. Hence524

Q(Z 2 A) = 1 iff Q̃(Z 2 A) = 1 for any measurable set A.525

This gives an immediate proof of the following result that we use in the paper.526

Corollary A.5. Consider the following two processes:527

Qx,bb : dZt =

✓
�2
t
x� Zt

�1 � �t

◆
dt+ �tdWt, Z0 ⇠ µ0,

Qx,bb,f : dZt =

✓
�tft(Zt) + �2

t
x� Zt

�1 � �t

◆
dt+ �tdWt, Z0 ⇠ µ0.

Assume Qx,bb,f [kft(Zt)k2] < +1 and �t > 0 for t 2 [0,+1). Then Qx,bb,f is a bridge to x.528

B Model Details529

B.1 Model Architecture for Molecule Generation.530

Following EGM [17], we apply an E(3) equivariant GNN network (EGNN) as our basic model531

architecture. EGNNs are a type of graph neural networks that satisfies the equivariance constraint,532

Rx0 + t, h0 = f(Rx+ t, h) when x0, h0 = f(x, h), (11)

where x and h represent the 3D coordinates and additional features, orthogonal R stands for the533

random rotation and t 2 R3 is a random transformation. One EGNN is usually made up of534

multiple stacked equivariant graph convolutional layers (EGCL), and every EGCL satisfies the535
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Figure 5: More visualization result of our Bridge-Statistic method, the upper row is chair category
and the lower row is airplane category

equivariance constraint. Denote N the number of nodes, xl and hl the coordinates and features for536

layer l 2 {0, · · · , L}, we have537

mij = �e(h
l
i, h

l
j , dij), (12)

hl+1
i = �h(h

l
i, {mij}Nj=1),

xl+1
i = xl

i +
X

j 6=i

xl
i � xl

j

d+ 1
�x(h

l
i, h

l
j , dij),

where h0 = h, x0 = x, dij = kxl
i � xl

jk2, dij + 1 is introduced to improve training stability, and538

�e,�h,�x represents fully connected neural network with learnable parameters. We refer the readers539

to the previous paper [34] for more details.540

Scaling Features Following [17], we re-scale the data with additional scaling factors. The atom541

type one-hot vector and atom charge value ⇥.25 and ⇥0.1, respectively. It significantly improves542

performance over non-scaled inputs, e.g. 47% relative improvements on molecule stability.543

B.2 Model Architecture for Point Cloud Generation.544

We build up our network based on the setup in point cloud diffusion work [25] without extra545

modification for a fair comparison. The model consists two parts. The first part is a flow model that546

learns the shape prior and the second part takes the shape prior and the noisy point coordinates into a547

MLP style encoder as the denoise function. We refer the readers to the previous paper [25] for more548

details.549

C More Visualization for Point Cloud Generation550

Below we show more visualization of our point cloud generation result in both chair and airplane551

class. We focus on presenting our best performance Bridge-Statistic visualization in Figure 5.552

D Discussion of Broader Impact553

This research aims to generate molecules and point cloud samples with geometry prior guided bridge554

processes. It is possible to be beneficial for drug design, the food industry and many other fields.555

However, it might be used for generating harmful molecules and viruses.556
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