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A LOWER BOUNDING THE TEACHER OBJECTIVE

We are interested in showing that the lower bound used in Section 3.2 holds. As a reminder, the
lower bound is:

max
��(Ccurr)

Eccurr⇠��(·)

"
X

rcurr2R

Z

Rd

p(Rtest = 1|C test, ✓test)p(✓test|rcurr, ccurr, ✓curr)p(rcurr|ccurr, ✓curr)d✓test

#

� max
��(Ccurr)

Eccurr⇠��(·)

"
X

rcurr2R

Z

✓⇤2⇥⇤
p(Rtest = 1|C test, ✓⇤)p(✓⇤|rcurr, ccurr, ✓curr)p(rcurr|ccurr, ✓curr)d✓⇤

#

To see how this is true, we do the following:
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We assume that ⇥⇤ is the set of all model parameters that maximize p(Rtest = 1|C test, ✓⇤).
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B ZONE ANALYSIS

B.1 PRELIMINARIES

For any arbitrary set X , we use �(X ) to denote the space of all probability distributions with support
on X . For any two arbitrary sets X and Y , we denote the collection of all functions mapping between
them as {X ! Y} , {f | f : X ! Y}.

B.2 PROBLEM FORMULATION

A standard choice for representing a single sequential decision-making problem is the infinite-
horizon, discounted Markov Decision Process (MDP) (Bellman, 1957; Puterman, 1994) defined by
hS, A, R, T , µ, �i. Here S denotes a set of states, A is a set of actions, R : S ⇥ A ! [0, 1]
is a deterministic reward function providing evaluative feedback signals (in the unit interval),
T : S ⇥ A ! �(S) is a transition function prescribing distributions over next states, µ 2 �(S)
is an initial state distribution, and � 2 [0, 1) is the discount factor. Building on this formalism,
our work is concerned with decision-making agents that endeavor to learn optimal behaviors across
multiple tasks or goals (Kaelbling, 1993; Schaul et al., 2015), a problem we formulate as a Con-
textual MDP (Brunskill & Li, 2013; Hallak et al., 2015; Modi et al., 2018) (CMDP) given by
M = hS, A, C, R, T , µ, �, �i. Here, each task of interest is identified by an individual context
contained in C while jointly sharing the same state-action space S ⇥A and discount factor �; mean-
while, variations in the context lead to different environment configurations that may differ in tran-
sition structure T : C ⇥ S ⇥ A ! �(S), reward structure R : C ⇥ S ⇥ A ! [0, 1], and initial state
distribution µ : C ! �(S).

At the beginning of an episode, a single random context is sampled c ⇠ �(·) 2 �(C) and
held fixed as the agent contends with learning optimal behavior in the resulting MDP denoted by
hS, A, Rc, Tc, µc, �i. At each discrete timestep t 2 N, beginning with an initial state s0 ⇠ µc(·), the
agent observes the current state st 2 S , execute an action at 2 A, enjoys a reward rt = Rc(st, at),
and transitions to the next state st+1 ⇠ Tc(· | st, at).

Defining ⇧ , {S ⇥ C ! �(A)}, a contextual policy ⇡ 2 ⇧ encodes a pattern of behavior that
maps the current context and state to a distribution over actions. For any fixed context c, the perfor-
mance of an agent in the resulting MDP when starting in state s 2 A and taking action a 2 A is

assessed by the associated action-value function Q⇡
c (s, a) = E

 1P
t=0

�tRc(st, at) | s0 = s, a0 = a

�
,

where the expectation integrates over randomness in the action selections at ⇠ ⇡(· | st, c) and
transition dynamics st+1 ⇠ Tc(· | st, at). With the corresponding value function defined as
V ⇡
c (s) = Ea⇠⇡(·|st,c) [Q⇡

c (s, a)], we slightly abuse notation and use V ⇡
c (µ) , Es0⇠µ(·|c) [V ⇡

c (s0)]
to integrate over the randomness in the initial state. The optimal CMDP policy ⇡? is defined as
achieving supremal value sup

⇡2⇧
Ec⇠�(·) [V ⇡

c (µ)].

Our work operates in a general function-approximation setting where individual policies ⇡✓ 2 ⇧
are parameterized by a vector ✓ 2 ⇥ ⇢ Rd of arbitrary dimension d, for instance representing the
weights of a neural network with fixed architecture. Consequently, the optimal policy ⇡✓? within
this policy class ⇧⇥ , {⇡✓ 2 ⇧ | ✓ 2 ⇥} ✓ ⇧ is defined as achieving sup

⇡✓2⇧⇥

Ec⇠�(·) [V ⇡✓
c (µ)]. In

this setting, the approximation error associated with a particular choice of policy parameterization
is then given by Ec⇠�(·) [V ?

c (µ) � V ⇡✓?
c (µ)].

A priori, there is no reason to suspect that the context distribution � an agent is charged with solving
will be tailored in any sort of helpful manner to facilitate rapid or efficient learning. Intuitively,
CMDPs that arise in application areas of interest will likely consist of a rich, expressive context space
C alongside a distribution of challenging, complex tasks � that can be easily specified by a domain
expert. Consequently, the onerous burden of mastering a difficult collection of tasks with little to no
scaffolding falls to the agent. This reality motivates the use of a teacher-student framework wherein
the agent is viewed as a student who gradually faces tasks prescribed by a teacher. A successful
teacher can incrementally synthesize a useful curriculum of tasks for the student to solve, building

14



Under review as a conference paper at ICLR 2023

competency that allows to student to ultimately generalize and succeed across the original collection
of challenging tasks prescribed by the distribution �.

In the next section, we provide a illustrative analysis that identifies a particular objective function
for a teacher to maximize whose corresponding lower bound motivates the two key elements of
the ZONE framework. Our proof techniques are inspired by the Natural Policy Gradient regret
lemma of Agarwal et al. (2021) and the performance guarantee for the Policy Search by Dynamic
Programming algorithm of Bagnell et al. (2003).

B.3 A TEACHER OBJECTIVE FOR DERIVING THE ZONE

Recall that a function f : Rd ! R is �-smooth if

||rf(x) � rf(x0)||2  �||x � x0||2 8x, x0 2 Rd.

A consequence of this is that r2f(x) � �I , 8x 2 Rd and so, by Taylor’s Theorem,

|f(x0) � f(x) � rf(x)>(x0 � x)|  �

2
||x0 � x||22 8x, x0 2 Rd.

Assumption 1. (Policy Smoothness) We assume that log (⇡✓(a | s, c)) is a �-smooth function of
✓ 2 ⇥, 8(s, a) 2 S ⇥ A and c 2 C.

Let ⌧ = (s0, a0, s1, a1, . . .) be a random trajectory sampled according to a current student policy ⇡✓

under a fixed context c 2 C. Defining the advantage function as

A⇡
c (s, a) = Q⇡

c (s, a) � V ⇡
c (s),

we consider an abstract policy-gradient method that updates the student policy parameters based on
the advantage function and a learning rate ⌘ 2 R�0 via

✓0 = ✓ + ⌘r✓ log (⇡✓(a | s, c)) A⇡✓
c (s, a).

In practice, one would choose a suitable estimator of the advantage function (Mnih et al., 2016;
Schulman et al., 2016). Suppose that on-policy policy-gradient updates are performed sequentially
on the state-action pairs of the sampled trajectory ⌧ so that the student policy parameters at the
beginning of the episode are ✓(0) = ✓ and

✓(t+1) = ✓(t) + ⌘r✓ log (⇡✓(t)(at | st, c)) A⇡✓
c (st, at).

By Assumption 1, we have that

log
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||r✓ log (⇡✓(t)(at | st, c)) ||22,

where the final line leverages the fact that rewards are bounded in the unit interval implying value
is upper bounded by 1

(1��) . Note that this inequality only holds in this exact form for the (random)
state-action pair (st, at) that led to the update from policy parameters ✓(t) to ✓(t+1). Let ⇢⇡✓

c denote
the distribution over trajectories induced by the policy ⇡✓ under context c 2 C. Let ⇡✓ denote the
student policy at the start of the episode and ⇡✓0 denote the updated student policy after the episode
terminates.

For brevity, we omit the state and context arguments to each policy in the following. For any tra-
jectory ⌧ = (s0, a0, s1, a1, . . .), we introduce notation to denote a partial trajectory whose start and
end are indexed by timesteps i, j 2 N respectively: ⌧ j

i = (si, ai, si+1, ai+1, . . . , sj�1, aj�1, sj , aj).
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With a further abuse of notation, we still use ⇢⇡c to denote the distribution over such partial trajec-
tories sampled while executing policy ⇡ in the MDP induced under context c 2 C. An objective for
the teacher ⇤ 2 �(C) is

max
⇤2�(C)

Ec⇠⇤(·)

" 1X

t=0

E⌧t�1
0 ⇠⇢

⇡✓?
c (·)
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Est⇠Tc(·|st�1,at�1) [DKL(⇡✓? || ⇡✓(t)) � DKL(⇡✓? || ⇡✓(t+1))]

⇤
#

.

At a high level, this says that a good teacher prescribes a distribution over environments for a fixed
student such that the resulting policy updates bring the student closer to the optimal policy in ⇧✓.
In slightly more detail, this is achieved by examining rollouts of increasing lengths generated by
the optimal policy ⇡✓? and assessing the reduction in KL-divergence between the student policy and
the optimal policy before and after the policy-gradient update. For brevity, we continue onward
assuming a fixed context c 2 C, allowing us to drop the outermost expectation.

Let X be an arbitrary set consider any two distributions ⌫, ⌫0 2 �(X ). Recall that the total variation
distance is an integral probability metric (Müller, 1997; Sriperumbudur et al., 2009) defined as

DTV(⌫ || ⌫0) = sup
f2F

|Ex⇠⌫(·) [f(x)] � Ex⇠⌫0(·) [f(x)] |, F = {f : X ! R | ||f ||1  1}.

Consequently, for any function f : X ! R such that ||f ||1  C < 1, it follows that

|Ex⇠⌫(·) [f(x)] � Ex⇠⌫0(·) [f(x)] |  C · DTV(⌫ || ⌫0).

In order to apply this fact to induce a distribution shift, we make the following assumption which
controls for the variability in log-likelihood ratio between two policies separated by a single policy-
gradient update:
Assumption 2. (Bounded log-likelihood ratio) Let ✓ be an initial set of policy parameters and ✓0

denote the policy parameters after a single policy-gradient update. For any fixed c 2 C, we assume
that there exists a numerical constant C < 1 such that log

⇣
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where the first inequality follows as � 2 [0, 1], the second inequality leverages Assumption 2 and
the aforementioned fact to shift trajectory distributions, the penultimate inequality applies our earlier
policy-gradient norm lower bound, and the final inequality follows as Pinsker’s inequality (Pinsker,
1964).

Now accounting for the randomness in the contexts, we have the following lower bound to the
teacher (maximization) objective:
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| {z }
2

3

777775

Observe that term 1 captures a notion of learning potential for the current student under tasks
sampled by the teacher. Intuitively, this is quantified by looking at the average, advantage-weighted
policy-gradient norm across trajectories generated by the student policy ⇡✓ in each sampled context
c ⇠ ⇤(·). Orthogonally, term 2 encapsulates a notion of problem difficulty as measured by how
much the trajectory distribution of the student differs from that of the optimal policy in each sampled
context.

When this latter quantity 2 is too large, suggesting an overwhelmingly difficult problem for the
student where a large number of samples or environment interactions will be needed to improve per-
formance, this term overpowers any learning potential captured in term 1 . Conversely, tasks that are
too easy for the student will lead to scenarios where both 2 and the advantage terms encountered in
1 will be small (or even zero), suggesting little opportunity for improving performance. Naturally,

the “sweet spot” or ZPD suggested by this lower bound consists of a teacher selecting tasks with
reasonably large policy gradient norms (signaling learning potential) while being within the students
means (as measured by the divergence between the student’s trajectory distribution from that of the
optimal policy). Practical approaches to automated curriculum design use a notion of pseudo-regret
in lieu of 2 , accounting for a lack of knowledge about the optimal policy in advance (Florensa et al.,
2018b; Dennis et al., 2020).

C ADDITIONAL TEACHER ANALYSIS

Here we include additional analysis on the teacher.

C.1 PAIRED ON MUJOCO ENVIRONMENTS

Figure 6 shows the rejection rate and student’s gradient norms. Interestingly, REJECT tends to have
higher rejection rates. In general, GRAD and PAIRED have similar rejection rates.

C.2 GOAL GAN

Figure 7 shows the rejection rates on the Goal GAN environments and the MuJoCo environments.
In general, the rejection rates are similar across environments.

D ALGORITHM INFO

We provide information on the PAIRED and Goal GAN implementations.

D.1 PAIRED ON MINIGRID ENVIRONMENTS

We use the implementation at https://github.com/ucl-dark/paired which is based on
Dennis et al. (2020)’s implementation. We do not change any hyperparameters in their algorithm.
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Figure 6: On the MuJoCo environments. The rejection rate is reported in the first row (a-d), and the
gradient norms are reports in the second row (e-h).
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Figure 7: Reported is the rejection rate. The rate for Goal GAN on the original Goal GAN environ-
ments is reported in the first row, and the rate on the MuJoCo environments is reported in the last
row.

All hyperparameters are the same as those reported in Dennis et al. (2020). We refer to their paper
for more details on PAIRED. We run all the variants of PAIRED with ZONE with 10 seeds.

D.2 GOAL GAN ON GOAL GAN ENVIRONMENTS

We use the original implementation at https://github.com/florensacc/

rllab-curriculum. We do not change any hyperparameters. We refer to their paper
(Florensa et al., 2018b) for more details on Goal GAN. We run all the variants of Goal GAN with
ZONE with 5 seeds.
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Figure 8: PAIRED on the Walker domain. The figures show the performance of the student on the
out-of-domain goals. (a) shows the student’s test return over the course of training. (b) shows the
student’s success rate over the course of training.

D.3 PAIRED AND GOAL GAN ON MUJOCO ENVIRONMENTS

We use Du et al. (2022)’s implementation of PAIRED and Goal GAN on their MuJoCo environ-
ments. Their MuJoCo setup is designed to test students on out-of-domain goals, that the students
have not yet seen. We run all the variants of both algorithms with ZONE with 10 seeds. We do not
change any of the hyperparameters. We use the default Goal GAN implementation in their work.
Goal GAN stores 500 goals and the student is evaluated on the goals 3 times. The mean reward is
taken and used to determine the label for the teacher. The label is 1 if the mean reward lies within
the difficulty criterion (r 2 [0.1, 0.9]), and 0 otherwise. Every 500 steps, the teacher trains on the
labelled data.

PAIRED is implemented using the default parameters from Du et al. (2022)’s algorithms but with
symmetrization turned off (ie. we remove the second teacher in their work).

E DO MEASURES OF DIFFICULTY MATTER?

A key component to ZONE is the choice of difficulty measure. Most prior work use reward to model
difficulty: The lower of the reward, the more difficulty the problem. If the problem is more difficult,
then the student is less likely to succeed on the problem.

However, we find that using dense rewards as a proxy measure for difficulty is misleading. Dense
rewards are typically used for training students in the MuJoCo control setting, as done in Du et al.
(2022). Running ZONE on PAIRED in this setting reveals an interesting discrepancy: ZONE can
achieve higher episodic reward than the base algorithm (Figure 8a), however achieves low success
(Figure 8b). For example, at 2000 steps, episode reward scores increasingly higher from PAIRED,
PAIRED+GRAD, PAIRED+REJECT, to PAIRED+REJECT+GRAD. However, success scores in-
creasingly higher from PAIRED+GRAD, PAIRED+REJECT, PAIRED+REJECT+GRADto PAIRED.

This discrepancy reveals that training the teacher based on a dense-reward difficulty measure can
be misleading when the reward function does not correlate well with the student’s success. ZONE
is sensitive to this choice of difficulty measure that is not well correlated with success. Thus, for
MuJoCo experiments, we choose to use the student’s success as a measure of difficulty which is
what PAIRED in Dennis et al. (2020) and Goal GAN assume. This gives us the results from the
previous section in Figure 3 and Figure 4.
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