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with Multi-Objetive Guidance via Importance Sampling
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Overview

EQUIVARIANT TARGET-AWARE DIFFUSION TRAINING AND INFERENCE
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MOTIVATION AND BACKGROUND POTENCY OPTIMIZATION

Performance comparison among unconditional and pIC50-conditional sampling using the Kinodata3D
test set comprising 10 kinase targets for 100 sampled ligands each. Evaluation based on mean docking
score as proxy for binding affinity using QVina2, predicted pIC50 and other RDKit-based chemical
properties like drug-likeness (QED) and synthetic accessibility (SA)

1. Prior works utilizing equivariant autoregressive or diffusion models for target-aware 3D ligand
design demonstrated suboptimal performance regarding synthetic accessibility. Is there a way
to alleviate this issue?

2. How can we design molecules that have optimized pharmacological properties specifically
tailored to given protein targets?

3. Can we increase performance and generality by pre-training the diffusion model on large Model Vina (All) |  Vina (Top-10%) | pIC50 1 QED 1 SA 1 Lipinski T Diversity 1
corpora of unconditional molecular data derived at a low level of theory? How does this —

transfer to target-conditioned drug design? Training set 9204113 - 1054128 0494016 0751007 4731052 i
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We introduce  PILOT , a novel de novo generative model, denoted as py(M|P,c), de- unconditional -8.4911.05 9791087 0281068 0031014 0751013 4951025  0.6510.06

signed for generating 3D ligands represented by z = (H,X,E), with H € {0,1}V*f¢ E ¢ pIC50-conditional ~ -8.601¢.98 9754086 7.6510.78 0.621016 0.671909 4941028  0.5710.06

{0, 1}VXNxE - X e RVX3. This model processes both continuous and discrete variables and is
conditioned on a specific protein pocket P. We propose trajectory-based importance sampling to
optimize multiple objectives, including synthetic accessibility, docking score, and predicted half-
maximal inhibitory concentration (IC5g), thereby enhancing the targeted design of ligands.

left: Density plot comparing unconditional with pIC50-conditional sampling

right: Scatter heatmap overlap of unconditional and pIC50-conditional sampling comparing docking

scores and predicted pIC50 values
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Scatter plots with Gaussian kernel density estimation illustrating the evolution of QED, SA and docking
scores for all sampled ligands across test targets for unconditional, SA-conditional and docking-
conditional samplingRed rectangles within these plots highlight regions where sampled ligands

demonstrate superior QED, SA, and docking scores compared to the test set
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