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Table 2: Performance comparison among unconditional sampling, SA-conditional, and SA-docking-
conditioned sampling using the CrossDocked2020 test set, which includes 100 targets. For each
target, 100 ligands were sampled. We assessed the performance based on several criteria: mean
docking scores obtained from QVina2 re-docking, the top-10 mean docking scores per target, drug-
likeness (QED), synthetic accessibility score (SA), compliance with Lipinski’s Rule of Five (Lipin-
ski), and mean diversity (Diversity) across targets and ligands.

Model QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑
Training set -7.57±2.09 - 0.53±0.20 0.75±0.10 4.57±0.91 -
Test set -6.88±2.33 - 0.47±0.20 0.72±0.13 4.34±1.14 -
TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07

un-conditional -7.33±2.19 -9.28±2.26 0.49±0.22 0.64±0.13 4.40±1.05 0.69±0.07

SA-conditional -7.32±2.25 -8.91±2.29 0.58±0.19 0.77±0.10 4.82±0.54 0.73±0.08

SA-docking-conditional -8.35±2.75 -10.36±2.62 0.58±0.17 0.72±0.12 4.88±0.44 0.68±0.09

SA-docking-conditional (norm) -7.92±2.44 -9.85±2.33 0.56±0.19 0.78±0.11 4.84±0.47 0.75±0.13

to be smaller and possess fewer rings. Conversely, the SA-docking-conditional model, which inte-
grates both SA and docking objectives, represents a balanced compromise between these extremes.

In assessing drug-likeness, Lipinski’s rule of five is frequently referenced, which includes criteria
such as the number of rotatable bonds and logP values. The number of rotatable bonds exhibits a
slight negative correlation with both SA and docking scores, while logP shows a positive correlation
with SA scores, as highlighted in Fig. 3. The data in the lower row of Fig. 4 illustrates effective
conditioning: both the SA- and docking-conditional models generally result in a lower average
number of rotatable bonds compared to the unconditional model, while logP values tend to increase
under both conditions.

These findings underscore that using importance sampling as a guidance mechanism in the diffu-
sion model is a potent strategy for steering the generation of molecules towards desired regions of
chemical space. This approach effectively modifies molecular properties in line with predefined ob-
jectives, demonstrating the capability of importance sampling to fine-tune molecular characteristics
based on specific property profiles, albeit within the constraints set by the data distribution used for
training the models.

To delve deeper into our analysis, we also examine the distribution of ring structures, a known
challenge for 3D-based models Xia et al. (2024). The top panel in Fig. 5 illustrates the occurrence
of fused and uncommon rings for all models. We observe that TargetDiff, as well as our models,
tend to generate more uncommon rings compared to the train and test sets. However, both the
SA- and SA-docking-conditional models effectively mitigate this issue by reducing the number of
uncommon rings and aligning more closely with the distribution observed in the training and test
data.

Consistent with our earlier discussion, the docking-conditional model exhibits a strong propensity
for generating numerous rings, including fused and uncommon ones. As depicted in the lower panel
of Fig. 5, all models also tend to produce rings that are less common in drug-like molecules, such as
three-, four-, seven-membered, or larger rings. These ring structures are often associated with poor
synthetic accessibility, chemical stability, toxicity, or metabolic instability Taylor et al. (2014); Yu
et al. (2022); Rusu et al. (2023).

In contrast, five- and six-membered heterocycles containing one or more heteroatoms are consid-
ered the gold standard in drug-like molecules Taylor et al. (2014); Rusu et al. (2023); Jampilek
(2019), and we observe that these are well represented in the sample space following the training
distribution.

Notably, the SA-conditional model effectively regulates the formation of unfavorable ring sys-
tems, particularly three- and seven-membered rings. Conversely, the SA-docking-conditional model
strikes a reasonable balance, with only a slight increase in seven-membered rings compared to the
docking-conditional model, where such rings are more prevalent.
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Despite the significant advances in virtual screening and the widespread use of docking as a tool
for evaluating ligand efficacy, the correlation between docking scores and actual binding affinities,
such as IC50 values, remains weak at best. Consequently, reliance on docking scores as stand-ins
for binding affinities is problematic and potentially misleading.

To address this challenge, we have refined our guidance mechanism to directly utilize experimental
binding affinities—specifically, the half maximal inhibitory concentration (IC50). More accurately,
we employ the pIC50 values, which are logarithmic transformations of IC50, facilitating easier
computational handling and interpretation. We leverage the Kinodata3D dataset, annotated with
these experimental pIC50 values, to train our unconditional model on ligand-kinase complexes.
Simultaneously, we develop an expert model specifically for importance sampling guidance based
on pIC50 values. This strategy aims to enhance our model’s ability to preferentially sample ligands
that are more likely to be effective inhibitors, thus reducing our reliance on less reliable proxies such
as docking scores.

For our analysis, we have established a hold-out test set comprising ten kinase targets that were
not included in either the training or validation datasets. The performance of our pIC50-conditional
model on this test set is summarized in Table 3. As can be seen, the pIC50-conditional model not
only shows a significant improvement in pIC50 values compared to the test set ligands but also
maintains robust performance metrics in terms of docking scores and other critical properties such
as QED, SA-score, and compliance with Lipinski’s rule of five.

These outcomes underscore the effectiveness of directly integrating experimental binding data into
the model training and guidance processes.

Table 3: Performance comparison among unconditional and pIC50-conditional sampling using the
Kinodata3D test set, which includes 10 targets. For each target, 100 ligands were sampled. We
assessed the performance based on several criteria: mean docking scores obtained from QVina2
re-docking, the top-10 mean docking scores per target, (predicted) pIC50, drug-likeness (QED),
synthetic accessibility score (SA), compliance with Lipinski’s Rule of Five (Lipinski), and mean
diversity (Diversity) across targets and ligands.

Model Vina (All) ↓ Vina (Top-10%) ↓ pIC50 ↑ QED ↑ SA ↑ Lipinski ↑ Diversity ↑
Training set -9.20±1.13 - 7.05±1.28 0.49±0.16 0.75±0.07 4.73±0.52 -
Test set -8.78±1.13 - 6.41±1.56 0.61±0.14 0.79±0.05 4.96±0.22 -
unconditional -8.49±1.05 -9.79±0.87 6.28±0.68 0.63±0.14 0.75±0.13 4.95±0.25 0.65±0.06

pIC50-conditional -8.60±0.98 -9.75±0.86 7.65±0.78 0.62±0.16 0.67±0.09 4.94±0.28 0.57±0.06

In Fig. 7, we provide a visual comparison of the sample spaces generated by the unconditional
model and the pIC50-conditional model. This visualization illustrates how effectively the guidance
mechanism optimizes for pIC50 values. The plot on the left demonstrates a significant shift in
the overall density of samples towards higher pIC50 values when using the importance sampling
guidance. The right side of Fig. 7 illustrates the relationship between docking scores and pIC50
values across the samples generated. Notably, while the pIC50-conditional model yields samples
with on average higher pIC50 values, these ligands also maintain competitive docking scores. This
is crucial, as it suggests that the model does not compromise docking efficacy for higher pIC50
values.

It’s important to acknowledge two significant challenges in our approach. First, pIC50 values are
inherently noisy, especially when collected from various data sources Landrum & Riniker (2024).
Second, experimental validation of these values falls outside the scope of our study, necessitating
reliance on predicted values. Given the substantial noise in the label space, these predicted values
should be interpreted cautiously. However, to enhance prediction generality, we adopt ensemble
modeling techniques commonly used, e.g., in stabilizing Machine Learning Force Fields (MLFFs)
Unke et al. (2021).

In the upper panel of Fig. 8, we demonstrate how ensemble modeling significantly improves the
stability and generality of pIC50 predictions. Here, we employ an ensemble of expert models for
importance sampling guidance. Each expert model, denoted as seed1, seed2, etc., is trained with a
different global seed. The base model is used to sample 100 ligands per test target, both with and
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Figure 7: Left: Density plot comparing unconditional with pIC50-conditional sampling. Right:
Scatter heatmap overlap of un- and pIC50-conditional samples comparing docking scores and (pre-
dicted) pIC50 values.

without ensemble guidance. The term ”single model guidance” refers to the base model guiding
itself. We observe that single model guidance results in a notable offset between the predictions of
the base model and those of all other models, indicating poor generality. However, with ensemble
guidance, even just two additional seed models lead to a significant improvement in generality. This
enhancement is evident in the pIC50 predictions of all seed models not included in the ensemble
guidance (i.e., seed1, seed2, seed15, and seed800).

Interestingly, as depicted in the lower panel of Fig. 8, further increasing the ensemble size, such as by
adding another model, here seed800, leads to additional refinement in predictions and consequently,
greater generality in pIC50 predictions. This demonstrates the effectiveness of ensemble modeling
in stabilizing and enhancing the robustness of our predictions.
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Motivation and Background

Research Questions:

1. Prior works utilizing equivariant autoregressive or diffusion models for target-aware 3D ligand
design demonstrated suboptimal performance regarding synthetic accessibility. Is there a way
to alleviate this issue?

2. How can we design molecules that have optimized pharmacological properties specifically
tailored to given protein targets?

3. Can we increase performance and generality by pre-training the diffusion model on large
corpora of unconditional molecular data derived at a low level of theory? How does this
transfer to target-conditioned drug design?

We introduce EQGAT-diff-pocket, a novel *de novo* generative model, denoted as pθ(M |P, c),
designed for generating 3D ligands represented by x = (H, X, E), with H ∈ {0, 1}N×Ka, E ∈
{0, 1}N×N×Kb, X ∈ RN×3. This model processes both continuous and discrete variables and is
conditioned on a specific protein pocket P . We propose trajectory-based importance sampling to
optimize multiple objectives, including synthetic accessibility, docking score, and predicted half-
maximal inhibitory concentration (IC50), thereby enhancing the targeted design of ligands.

Experiments and Results

The effect of timestep-dependent loss weighting

We hypothesize that denoising requires high accuracy close to the data distribution for generating
valid molecules, while errors close to the noise distribution are negligible. We propose using the
time-dependent weighting:

ws(t) = max(0.05, min(1.5, SNR(t))). (1)

QM9 GEOM-Drugs

Weighting Mol. Stability ↑ Validity ↑ Connect. Comp. ↑ Mol. Stability ↑ Validity ↑ Connect. Comp. ↑
wu 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33
ws(t) 98.68±0.11 98.96±0.07 99.94±0.03 91.60±0.14 84.02±0.19 95.08±0.12

Model parameterization (x̂0, ϵ̂) and Gaussian vs. discrete diffusion Kristof suggests to remove the
table and consolidate the results. As findings from upper-right panel from graphical abstract

Dataset QM9 GEOM-Drugs

Model EQGATx0
disc EQGATx0

cont EQGATϵ
cont EQGATx0

disc EQGATx0
cont EQGATϵ

cont

Mol. Stab. ↑ 98.68±0.11 96.45±0.17 96.18±0.16 91.60±0.14 90.46±0.09 85.19±0.72
Atom. Stab ↑ 99.92±0.00 99.79±0.01 99.68±0.02 99.72±0.01 99.73±0.01 99.32±0.04
Validity ↑ 98.96±0.07 96.79±0.15 97.04±0.17 84.02±0.19 80.96±0.38 79.13±0.58
Connect. Comp. ↑ 99.94±0.03 99.82±0.05 99.71±0.03 95.08±0.12 93.30±0.21 94.10±0.48
Novelty ↑ 64.03±0.24 60.96±0.54 73.40±0.32 99.87±0.04 99.83±0.04 99.82±0.0
Uniqueness ↑ 100.00±0.00 100.0±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Diversity ↑ 91.72±0.02 91.51±0.03 91.89±0.03 89.00±0.03 88.87±0.04 88.97±0.05
KL Divergence ↑ 91.36±0.29 91.41±0.54 88.97±0.31 87.17±0.34 87.35±0.35 87.70±0.58

Train Similarity ↓ 0.076±0.00 0.076±0.00 0.075±0.00 0.113±0.00 0.114±0.00 0.114±0.00
AtomsTV [10−2] ↓ 1.0±0.00 2.0±0.00 2.7±0.00 3.4±0.10 3.6±0.10 2.9±0.20
BondsTV [10−2] ↓ 1.2±0.00 1.8±0.00 1.2±0.00 2.4±0.00 2.4±0.00 2.4±0.00
ValencyW1 [10−2] ↓ 0.6±0.10 1.9±0.00 0.9±0.00 1.2±0.10 1.9±0.10 1.6±0.00
BondLenghtsW1 [10−2] ↓ 0.2±0.10 0.5±0.00 0.2±0.10 0.2±0.10 0.3±0.00 0.7±0.40
BondAnglesW1 ↓ 0.42±0.03 1.86±0.06 0.52±0.03 0.92±0.02 0.95±0.02 1.07±0.06

State-of-the-art Molecule Generation

Dataset GEOM-Drugs

Model EQGATx0
disc EQGAT

x0,ft
disc EQGATx0,af

disc EQGATx0,af,ft
disc EDM MiDi

Mol. Stab. ↑ 93.11±0.31 93.92±0.13 94.51±0.18 95.01±0.37 40.3 89.7±0.60
Atom. Stab ↑ 99.79±0.01 99.81±0.01 99.83±0.01 99.84±0.00 97.8 99.7±0.01
Validity ↑ 85.86±0.33 88.04±0.17 87.89±0.31 88.42±0.26 87.8 70.5±0.41
Connect. Comp. ↑ 96.32±0.25 96.57±0.18 96.36±0.25 96.71±0.20 41.4 88.76±0.55
Novelty ↑ 99.82±0.05 99.84±0.02 99.82±0.05 99.82±0.03 100.00 100.00±0.00
Diversity ↑ 89.03±0.03 89.05±0.05 88.98±0.02 88.96±0.01 - -
KL Divergence ↑ 87.66±0.31 87.58±0.56 88.38±0.25 87.62±0.19 - -

Train Similarity ↓ 0.114±0.0 0.113±0.0 0.114±0.0 0.114±0.0 - -
AtomsTV [10−2] ↓ 3.02±0.08 3.02±0.10 2.88±0.10 2.91±0.10 21.2 5.11±0.19
BondsTV [10−2] ↓ 2.44±0.01 2.40±0.00 2.42±0.00 2.40±0.00 4.8 2.44±0.00
ValencyW1 [10−2] ↓ 1.18±0.09 1.20±0.00 0.85±0.12 0.90±0.10 28.5 2.48±0.52
BondLenghtsW1 [10−2] ↓ 0.56±0.38 0.10±0.00 0.50±0.51 0.20±0.10 0.2 0.2±0.10
BondAnglesW1 ↓ 0.83±0.03 0.79±0.02 0.65±0.01 0.62±0.01 6.23 1.73±0.32

Ourproposed EQGATx0
discmodel achieves state-of-the-art (SOTA) performance compared to other

recent Diffusion Models (EDM and MiDi) while showing significantly faster training convergence
and reduced inference time. See our manuscript for more details.

Transferability of Diffusion Models

Diffusion models are effective in learning vast data distributions but require large datasets to be
trained on. We explore the effect of pre-training on PubChem3d for generalization on the Geom-
Drugs dataeset. We observe that the fine-tuned model performs better than models trained from
scratch, even if the fine-tuning was done on a subset of data.

Structure-based ligand design

Here, we train a conditional diffusion model pθ(x|P ) where P is a protein pocket. Particularly,
a pre-trained model that learned on a vast, yet unconditional chemical space, generalizes better
when fine-tuned on CrossDocked2020 than a model trained from scratch.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 [10−2] ↓ BondAngles W1 ↓

EQGATx0
disc(wu) 85.51±0.09 95.15±0.14 0.20±0.0 4.37±0.20

EQGATx0
disc(ws(t)) 89.62±0.08 97.65±0.11 0.12±0.0 2.12±0.26

EQGATx0,ft
disc (ws(t)) 95.65±0.12 99.66±0.10 0.11±0.0 1.55±0.21

We compare our model against recent methods and show that the generated ligands exhibit on
average better evaluation metrics compared to TargetDiff and DiffSBDD.

Model Vina (All) ↓ Vina (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑

EQGATx0,ft
disc (ws(t)) -7.423±2.33 -9.571±2.14 0.522±0.18 0.697±0.20 4.66±0.72 0.742±0.07

TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07
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Motivation and Background

Research Questions:

1. Failing to consider the essential chemical properties for target binding can lead to a significant
lack of specificity and result in ineffective drug candidates. Moreover, drug candidates must
exhibit favorable absorption, distribution, metabolism, excretion (ADME), and toxicity profiles

2. But, the respective data is often too sparse and too noisy for developing effective machine
learning models. Thus, designing ligands from scratch without addressing these critical
properties may produce molecules with poor bioavailability or potential toxicity, thereby
limiting their therapeutic potential

3. However, can we use machine learning during the hit expansion phase of drug discovery?
This crucial stage involves enhancing and exploring the chemical space around promising hits
that are already identified through high-throughput screening or other methods and might
provide significantly better starting points for generative models

4. Can we perform hit expansion by just adding one layer of control to generative diffusion
models? We propose

We introduce PoLiForgeAI, a novel de novo generative model, denoted as pθ(M |P, c), de-
signed for generating 3D ligands represented by x = (H, X, E), with H ∈ {0, 1}N×Ka, E ∈
{0, 1}N×N×Kb, X ∈ RN×3. This model processes both continuous and discrete variables and is
conditioned on a specific protein pocket P . We propose trajectory-based importance sampling to
optimize multiple objectives, including synthetic accessibility, docking score, and predicted half-
maximal inhibitory concentration (IC50), thereby enhancing the targeted design of ligands.

Research Questions:

1. Failing to consider the essential chemical properties for target binding can lead to a significant
lack of specificity and result in ineffective drug candidates. Moreover, drug candidates must
exhibit favorable absorption, distribution, metabolism, excretion (ADME), and toxicity profiles.

2. But, the respective data is often too sparse and too noisy for developing effective machine
learning models. Thus, designing ligands from scratch without addressing these critical
properties may produce molecules with poor bioavailability or potential toxicity, thereby
limiting their therapeutic potential.

3. However, can we use machine learning during the hit expansion phase of drug discovery?
This crucial stage involves enhancing and exploring the chemical space around promising hits
that are already identified through high-throughput screening or other methods and might
provide significantly better starting points for generative models.

4. Can we perform hit expansion by just adding one layer of control to a generative diffusion
model? We propose a latent-conditional training and sampling. Here, a seed molecule is given
to the model in form of a jointly learned latent embedding to steer the diffusion process.

We introduce PoLiGenX (Pocket-based Ligand Generator for hit eXpansion), a novel latent-
controlled de novo generative model, denoted as pθ(M |P, z), designed for generating 3D ligands
represented by x = (H, X, E), withH ∈ {0, 1}N×Ka, E ∈ {0, 1}N×N×Kb, X ∈ RN×3. This model
processes both continuous and discrete variables and is conditioned on a specific protein pocket
P and a seed molecule embedding z.

Experiments and Results

The effect of timestep-dependent loss weighting

We hypothesize that denoising requires high accuracy close to the data distribution for generating
valid molecules, while errors close to the noise distribution are negligible. We propose using the
time-dependent weighting:

ws(t) = max(0.05, min(1.5, SNR(t))). (1)

QM9 GEOM-Drugs

Weighting Mol. Stability ↑ Validity ↑ Connect. Comp. ↑ Mol. Stability ↑ Validity ↑ Connect. Comp. ↑
wu 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33
ws(t) 98.68±0.11 98.96±0.07 99.94±0.03 91.60±0.14 84.02±0.19 95.08±0.12

Model parameterization (x̂0, ϵ̂) and Gaussian vs. discrete diffusion Kristof suggests to remove the
table and consolidate the results. As findings from upper-right panel from graphical abstract

Dataset QM9 GEOM-Drugs

Model EQGATx0
disc EQGATx0

cont EQGATϵ
cont EQGATx0

disc EQGATx0
cont EQGATϵ

cont

Mol. Stab. ↑ 98.68±0.11 96.45±0.17 96.18±0.16 91.60±0.14 90.46±0.09 85.19±0.72
Atom. Stab ↑ 99.92±0.00 99.79±0.01 99.68±0.02 99.72±0.01 99.73±0.01 99.32±0.04
Validity ↑ 98.96±0.07 96.79±0.15 97.04±0.17 84.02±0.19 80.96±0.38 79.13±0.58
Connect. Comp. ↑ 99.94±0.03 99.82±0.05 99.71±0.03 95.08±0.12 93.30±0.21 94.10±0.48
Novelty ↑ 64.03±0.24 60.96±0.54 73.40±0.32 99.87±0.04 99.83±0.04 99.82±0.0
Uniqueness ↑ 100.00±0.00 100.0±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Diversity ↑ 91.72±0.02 91.51±0.03 91.89±0.03 89.00±0.03 88.87±0.04 88.97±0.05
KL Divergence ↑ 91.36±0.29 91.41±0.54 88.97±0.31 87.17±0.34 87.35±0.35 87.70±0.58

Train Similarity ↓ 0.076±0.00 0.076±0.00 0.075±0.00 0.113±0.00 0.114±0.00 0.114±0.00
AtomsTV [10−2] ↓ 1.0±0.00 2.0±0.00 2.7±0.00 3.4±0.10 3.6±0.10 2.9±0.20
BondsTV [10−2] ↓ 1.2±0.00 1.8±0.00 1.2±0.00 2.4±0.00 2.4±0.00 2.4±0.00
ValencyW1 [10−2] ↓ 0.6±0.10 1.9±0.00 0.9±0.00 1.2±0.10 1.9±0.10 1.6±0.00
BondLenghtsW1 [10−2] ↓ 0.2±0.10 0.5±0.00 0.2±0.10 0.2±0.10 0.3±0.00 0.7±0.40
BondAnglesW1 ↓ 0.42±0.03 1.86±0.06 0.52±0.03 0.92±0.02 0.95±0.02 1.07±0.06

State-of-the-art Molecule Generation

Dataset GEOM-Drugs

Model EQGATx0
disc EQGAT

x0,ft
disc EQGATx0,af

disc EQGATx0,af,ft
disc EDM MiDi

Mol. Stab. ↑ 93.11±0.31 93.92±0.13 94.51±0.18 95.01±0.37 40.3 89.7±0.60
Atom. Stab ↑ 99.79±0.01 99.81±0.01 99.83±0.01 99.84±0.00 97.8 99.7±0.01
Validity ↑ 85.86±0.33 88.04±0.17 87.89±0.31 88.42±0.26 87.8 70.5±0.41
Connect. Comp. ↑ 96.32±0.25 96.57±0.18 96.36±0.25 96.71±0.20 41.4 88.76±0.55
Novelty ↑ 99.82±0.05 99.84±0.02 99.82±0.05 99.82±0.03 100.00 100.00±0.00
Diversity ↑ 89.03±0.03 89.05±0.05 88.98±0.02 88.96±0.01 - -
KL Divergence ↑ 87.66±0.31 87.58±0.56 88.38±0.25 87.62±0.19 - -

Train Similarity ↓ 0.114±0.0 0.113±0.0 0.114±0.0 0.114±0.0 - -
AtomsTV [10−2] ↓ 3.02±0.08 3.02±0.10 2.88±0.10 2.91±0.10 21.2 5.11±0.19
BondsTV [10−2] ↓ 2.44±0.01 2.40±0.00 2.42±0.00 2.40±0.00 4.8 2.44±0.00
ValencyW1 [10−2] ↓ 1.18±0.09 1.20±0.00 0.85±0.12 0.90±0.10 28.5 2.48±0.52
BondLenghtsW1 [10−2] ↓ 0.56±0.38 0.10±0.00 0.50±0.51 0.20±0.10 0.2 0.2±0.10
BondAnglesW1 ↓ 0.83±0.03 0.79±0.02 0.65±0.01 0.62±0.01 6.23 1.73±0.32

Ourproposed EQGATx0
discmodel achieves state-of-the-art (SOTA) performance compared to other

recent Diffusion Models (EDM and MiDi) while showing significantly faster training convergence
and reduced inference time. See our manuscript for more details.

Transferability of Diffusion Models

Diffusion models are effective in learning vast data distributions but require large datasets to be
trained on. We explore the effect of pre-training on PubChem3d for generalization on the Geom-
Drugs dataeset. We observe that the fine-tuned model performs better than models trained from
scratch, even if the fine-tuning was done on a subset of data.

Structure-based ligand design

Here, we train a conditional diffusion model pθ(x|P ) where P is a protein pocket. Particularly,
a pre-trained model that learned on a vast, yet unconditional chemical space, generalizes better
when fine-tuned on CrossDocked2020 than a model trained from scratch.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 [10−2] ↓ BondAngles W1 ↓

EQGATx0
disc(wu) 85.51±0.09 95.15±0.14 0.20±0.0 4.37±0.20

EQGATx0
disc(ws(t)) 89.62±0.08 97.65±0.11 0.12±0.0 2.12±0.26

EQGATx0,ft
disc (ws(t)) 95.65±0.12 99.66±0.10 0.11±0.0 1.55±0.21

We compare our model against recent methods and show that the generated ligands exhibit on
average better evaluation metrics compared to TargetDiff and DiffSBDD.

Model Vina (All) ↓ Vina (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑

EQGATx0,ft
disc (ws(t)) -7.423±2.33 -9.571±2.14 0.522±0.18 0.697±0.20 4.66±0.72 0.742±0.07

TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07
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T R A I N I N G  A N D  I N F E R E N C E

I M P O R T A N C E  S A M P L I N G

Performance comparison among unconditional, SA-conditional, and SA-docking-conditional sampling 
using the CrossDocked2020 test set comprising 100 protein targets for 100 sampled ligands each. 

(YDOXDWLRQ�EDVHG�RQ�PHDQ�GRFNLQJ�VFRUH�DV�SUR[\�IRU�ELQGLQJ�DI¿�QLW\�XVLQJ�49LQD��DQG�RWKHU�5'.LW�
EDVHG�FKHPLFDO�SURSHUWLHV�OLNH�GUXJ�OLNHQHVV��4('��DQG�V\QWKHWLF�DFFHVVLELOLW\��6$�

6FDWWHU�SORWV�ZLWK�*DXVVLDQ�NHUQHO�GHQVLW\�HVWLPDWLRQ�LOOXVWUDWLQJ�WKH�HYROXWLRQ�RI�4('��6$�DQG�GRFNLQJ�
scores for all sampled ligands across test targets for unconditional, SA-conditional and docking-
FRQGLWLRQDO�VDPSOLQJ5HG�UHFWDQJOHV�ZLWKLQ�WKHVH�SORWV�KLJKOLJKW�UHJLRQV�ZKHUH�VDPSOHG�OLJDQGV�

GHPRQVWUDWH�VXSHULRU�4('��6$��DQG�GRFNLQJ�VFRUHV�FRPSDUHG�WR�WKH�WHVW�VHW

3HUIRUPDQFH�FRPSDULVRQ�DPRQJ�XQFRQGLWLRQDO�DQG�S,&���FRQGLWLRQDO�VDPSOLQJ�XVLQJ�WKH�.LQRGDWD�'�
test set comprising 10 kinase targets for 100 sampled ligands each. Evaluation based on mean docking 
VFRUH�DV�SUR[\�IRU�ELQGLQJ�DI¿�QLW\�XVLQJ�49LQD���SUHGLFWHG�S,&���DQG�RWKHU�5'.LW�EDVHG�FKHPLFDO�

SURSHUWLHV�OLNH�GUXJ�OLNHQHVV��4('��DQG�V\QWKHWLF�DFFHVVLELOLW\��6$�

left: Density plot comparing unconditional with pIC50-conditional sampling
right: Scatter heatmap overlap of unconditional and pIC50-conditional sampling comparing docking 

scores and predicted pIC50 values
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