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Abstract

The existing graph-based analytic methods for
single-cell RNA sequencing utilize gene-gene in-
teraction networks. However, existing gene-gene
interaction databases like STRING and BioGrid
have significant drawbacks, including incomplete-
ness, static nature, and lack of descriptive informa-
tion. Recently, large language model (LLM) has
demonstrated powerful capabilities in understand-
ing and reasoning in the biomedical field without
any fine-tuning. To address the drawbacks of tra-
ditional gene-gene interaction databases and use
the reasoning capabilities of LLMs, we propose
LLM-GeneGraph, a novel generative framework
that can dynamically generates detailed, scientifi-
cally validated gene-gene interaction networks by
integrating retrieval-augmented generation (RAG)
techniques and employing an ensemble of three
state-of-the-art LLMs along with an LLM-as-a-
judge. The proposed method shows its capabili-
ties to produce validated interactions and novel
insights beyond the scope of traditional databases.

1. Introduction

Advances in single-cell RNA sequencing (scRNA-seq) make
profiling millions of cells at near-transcriptome scale more
accessible to biologists and generate large quantities of se-
quencing data. To effectively analyze those complex high-
dimensional datasets, researchers have developed many
computational methods (Li & Nabavi, 2024; Zhao et al.,
2022; Lin et al., 2022b; Li & Nabavi, 2023). Many of these
approaches utilize the graph neural network by incorporat-
ing gene-gene interaction networks as prior knowledge (Li
& Nabavi, 2023; Lin et al., 2022b). The quality and com-
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prehensiveness of these gene-gene interaction networks sig-
nificantly impact downstream analyses.

The two most widely adopted databases for gene-gene in-
teractions are STRING(Szklarczyk et al., 2023) and Bi-
0Grid(Oughtred et al., 2021). These databases computed
the interaction networks by mining publicly available litera-
ture and gene expression data. However, they suffer from
three major drawbacks: (i) incompleteness, these gene-gene
interaction networks are biased toward well-studied path-
ways; (ii) static nature, these databases are expensive to
maintain and updated infrequently; and (iii) lack of informa-
tion, as interactions are represented by scalar scores without
any descriptive text about the interaction mechanism. We
aim to propose a novel interaction generation framework to
address all these drawbacks.

Recent development in large language models (LLM) has
led to many novel methods for text reasoning and genera-
tion, demonstrating remarkable performance (Wei et al.,
2022; Achiam et al.,, 2023; Liu et al., 2024). LLMs
have also shown a strong understanding and reasoning
within the biomedical domain without any fine-tuning (Chen
& Zou, 2024). Furthermore, researchers have expanded
LLM’s strong text reasoning capability to graph-structured
data (Wang et al., 2024; He et al., 2024; Li et al., 2024).
Among these works, textual graphs get a lot of attention due
to their rich information and real-world applications (Zhu
et al., 2024; Tianxiang Jin et al., 2023). However, this power-
ful textual graph approach is currently unable to be applied
to genomic analysis due to the drawbacks of current gene-
gene interaction networks. Inspired by LLM’s powerful
understanding of genomic and textual graphs, we aim to
address the following question:

Can we utilize LLMs to create a new descriptive gene-gene
interaction network that is scientifically accurate, biolog-
ically validated, and provides new knowledge about ge-
nomics beyond the current networks?

To address this challenge, we propose LLM-GeneGraph,
the first generative framework that utilizes zero-shot LLM’s
powerful understanding of genomics. LLM-GeneGraph is
able to be updated dynamically and produce rich informa-
tion of the interaction mechanism. Our contributions are:
(i) a novel LLM-based generative framework for descrip-
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Figure 1. The proposed Gene-gene interaction network generation framework is shown. It consists of three major component: (a) the
retreieval-agumented generation (RAG) that passes all the known information about the gene pair to the LLM model, which includes
BioGrid database, STRING database and the abstracts of top 3 papers resulted by searching this gene pair on PubMed; (b) three
independent LL.Ms that take the prior information and generate the description of the gene pair interactions; (c) a judge based on a
reasoning LLM that takes all three descriptions and ranks the best one out of factual accuracy, biological relevance, and clear writing.

tive gene-gene interaction networks; (ii) an ensemble struc-
ture integrating three state-of-the-art LLM with a reasoning
LLM as a judge for candidate selection; (iii) comprehensive
validation, including scientific soundness checks against cur-
rent genetic interaction networks and biological validation
of newly generated interactions.

2. Related Works

As mentioned earlier, traditional gene-gene interaction
databases, like BioGrid and STRING databases, suffer from
several major drawbacks, such as incompleteness, static
nature, and lack of information. These drawbacks can sever-
ally deteriorate the performance of downstream tasks based
on these graphs. Bertin et al. show that even well-curated
graphs often fall short of capturing the full dependencies ob-
served in gene expression datasets, especially in single-cell
contexts where interactions can vary dramatically by cell
state or tissue (Bertin et al., 2019).

There are several studies that leverage LLMs to generate,
enhance, or validate biomedical knowledge graphs (Rosen-

baum et al., 2024; Feng et al., 2025). MedG-KRP is a graph-
based probe to validate and interpret LLM’s biomedical rea-
soning by comparing generated knowledge graphs to curated
ontologies like BIOS (Rosenbaum et al., 2024). Knowledge
Graph-based Thought (KGT) demonstrates that LLMs can
interface with biomedical graphs to significantly reduce
hallucinations and improve factual accuracy in pan-cancer
question (Feng et al., 2025). These approaches demonstrate
LLMs’ potential to serve as dynamic and context-aware
knowledge graph generators or validators.

To the best of our knowledge, LLM-GeneGraph is the first
to utilize LLMs to generate descriptive gene-gene interac-
tion network along with an LLM-as-a-judge. Our work
aims to address all the drawbacks of traditional gene-gene
interaction databases and provides a foundation for future
single-cell analysis tools to built upon.

3. Method

As shown in Figure 1, the proposed interaction generation
framework has three major components: (i) the retrieval-
augmented generation (RAG) module; (ii) the ensemble
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Table 1. A Demo of the Gene-gene Interaction Network Generated by LLM-GeneGraph Vs. BioGrid and STRING Databases

Strength: Strong

Description: KRT17 and KRT6B are both keratin proteins often
co-expressed in epithelial tissues. Their interaction is important
in the structural integrity of skin and epithelial cells, and they are
known to participate in the pathogenesis of skin disorders such
as Pachyonychia Congenita.

Disease: Pachyonychia Congenita

Gene Pair BioGrid STRING LLM-GeneGraph
KRT17, KRT6B 1.5 0.874
IL8, WNT2 0 0

Strength: Weak

Description: Based on the provided PubMed abstracts, IL.8 and
WNT?2 are both expressed in gastric cancer and their expression
levels are associated with the prognosis of the disease. However,
there is no direct evidence of a strong interaction between these
two genes from the STRING or BioGRID scores or the abstracts.
The abstracts suggest a potential correlation in expression in
a specific context (gastric cancer), but not necessarily a direct

interaction.
Disease: Gastric Cancer

structure of three LLMs; (iii) a reasoning LLM as the judge.

3.1. Retrieval-Augmented Generation (RAG)

The major challenge in generating scientifically accurate
content with LLMs is hallucinations. Previous studies have
shown that RAG can help reduce hallucinations and improve
the factual accuracy of LLM outputs (Shuster et al., 2021;
Ayala & Bechard, 2024). We integrate both BioGrid and
STRING databases, and the relevant PubMed literature of
each gene pair to provide context for gene—gene interac-
tion generation. The genetic and protein interaction counts
were obtained from BioGRID (Oughtred et al., 2021). The
genetic interactions have 1.0 weight and the protein inter-
actions have 1.5 weight, and the total weight is log normal-
ized across all human genetic interactions. The confidence
scores for the gene-gene interactions were retrieved from
STRING data base (Szklarczyk et al., 2023). Both BioGrid
and STRING scores are scaled between 0 and 1. The rel-
evant PubMed literature was the abstracts of the top three
search results by gene names. All three types of RAG infor-
mation are passed into the LLM models in a JSON format
as the evidence basis for assessing and generating detailed
descriptions of gene-gene interactions.

3.2. Zero-Shot Interaction Generation

Previous study has shown that LLMs have been trained
on sufficient biomedical literature and have significant ca-
pabilities to understand, reason, and generate biomedical
texts (Chen & Zou, 2024; Ayers et al., 2023). We found
that given identical RAG information and question prompts,
different LLMs produced distinct interpretations and de-
scriptions of genetic interactions. To combine the strength

of multiple LLMs, we designed an ensemble structure that
consists of three LLMs. In preliminary experiment, we
found that large LLMs performed superiorly while acting as
a generator. Therefore, the three LLM generators we used
were GPT-40, Gemini-2.0-Flash, and DeepSeek-V3 (Hurst
et al., 2024; Liu et al., 2024; Team et al., 2024). Each
LLM was independently prompted in a zero-shot setting.
Each prompt consists of structured evidence from STRING
and BioGRID databases, excerpts from PubMed abstracts,
and an instruction to produce a structured object with the
following major components, as shown in Figure 1:

* The strength of the interaction at three levels: strong,
weak, or none.

* A brief description of the interaction.

* Any major diseases associated with this interaction.

3.3. LLM-as-a-Judge Evaluation

We found in our preliminary experiment that even human ex-
perts have difficulty to deterministically judge whether one
description is more accurate and scientifically sound than
others without consulting external resources, such as exist-
ing databases and related literature. Due to the large volume
of data we generated, direct annotations by human experts
are infeasible. To efficiently identify the best gene-gene
interaction description, we employ a reasoning LLM model,
referred to as LLM-as-a-Judge. Using LLMs as evaluation
judges are common practices to improve text generation in
domain knowledge (Gu et al., 2024). When at least one
”non-none” interaction is generated by the LLM generators,
the LLLM judge evaluates the outputs from all three can-
didate models using a structured evaluation prompt. The
judge assesses each description based on three criteria: fac-
tual accuracy, biological relevance, and writing clarity. The
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LLM judge is instructed to return a JSON object indicating
the selected candidate with a brief justification.

4. Experiment

We generated gene-gene interaction descriptions for 84,233
gene pairs across 2,000 genes, selected based on the high-
est variance in the TCGA Pan-cancer dataset via the Xena
platform (Goldman et al., 2020). Among the generated inter-
actions, 1,753 gene pairs have at least one non-null output
from the LLM generators. After evaluation by LLM-as-a-
judge, 506 interactions were identified with a strength level
other than “none”. The LLM-as-a-Judge was implemented
using a zero-shot DeepSeek Distilled 32B model run locally
on a server with two RTX 5090 GPUs (Guo et al., 2025).

4.1. LLM-GeneGraph Vs. Related Biology Knowledge
Data

A demonstration of the interactions generated by LLM-
GeneGraph and the corresponding BioGrid and STRING
scores, is shown in Table 1. The comparison highlights the
dramatic difference in the amount of information provided
between traditional gene-gene interaction databases, like
the BioGrid and STRING databases and the descriptive in-
teraction information generated by the LLM-GeneGraph.
By providing detailed textual context, LLM-GeneGraph
serves as a foundation for future single-cell and spatial tran-
scriptomics analysis tools built upon the generated textual
knowledge graphs.

The percentiles of the BioGrid and STRING scores for all
generated connections are summarized in Table 2. While
more than half of the interactions have high-confidence
STRING scores (> 0.7), more than 75% of the interactions
have a BioGrid score of 0. This discrepancy showed the
limitation of the current biological database, static nature
and incompleteness.

Table 2. The Percentiles of BioGrid and STRING Scores for the
Generated Interactions

Percentile | BioGrid STRING
25th 0 0.429
50th 0 0.732
75th 0 0.843
90th 0.125 0.938
100th 0.314 0.999

4.2. Scientific Validation on New Found Interactions

To further access the scientific validity of the interactions
identified by LLM-GeneGraph, we examined the interac-
tions with both BioGrid and STRING scores equal to zero.
There are nine such interactions, all classified as weak. For
six out of nine interactions, we were able to find supporting
evidence in the literature suggesting some level of associ-

ation between the corresponding gene pairs, as shown in
Table 3. These findings indicate that LLM-GeneGraph is
capable of finding biologically plausible interactions that are
omitted by existing databases, which concludes that LLM-
GeneGraph outputs have relatively high scientific accuracy.

Table 3. Generated Interactions Not in BioGrid and STRING

Databases
Genel Gene2 Evidence
C8A CR2 N/A
IL8 WNT2 (Lin et al., 2022a; 2024)
DES MUC4 (Forgé et al., 2021)
DES UGT1A9 | N/A
EMX2 EMX20S | (Spigoni et al., 2010)
GC REG4 (Rowe et al., 2020)
CP FOXEI1 (Moreno et al., 2009)
OLIG2 TF (Cheli et al., 2023)
CCL21 PAH N/A

Using the associated disease information, we identified 103
interactions linked to cancer. We computed the Pearson
correlation coefficients for all 103 interactions using TCGA
Pan-cancer expression data. The results showed an average
correlation coefficient of 0.55 and a median of 0.583, indi-
cating a moderate expression correlation in cancer-related
data. Therefore, we can conclude that LLM-GeneGraph
is not only able to generate genetic interactions consistent
with current biological knowledge of genome, like BioGrid
and STRING, but also new interactions that are beyond the
scope of traditional databases as shown in Table 3.

5. Conclusion

In this work, we proposed LLM-GeneGraph, a zero-shot
LLM-based framework designed to dynamically generate
descriptive gene-gene interaction networks. It utilizes an en-
semble structure composed of three state-of-the-art LLMs,
and incorporates a reasoning LLM as a judge to select the
best generated interaction description based on actual accu-
racy, biological relevance, and writing clarity.

We generated 84,233 candidate gene-gene interactions
across 2,000 genes. After the evaluation of the LLM judge,
the final data consists of 506 interactions with a strength
level other than “none”. We compared the generated in-
teractions against BioGrid and STRING scores and con-
cluded that most of the interactions are supported by the
current gene-gene interaction databases. We identified nine
new interactions that are not in BioGrid norm mn STRING
databases. For six out of the nine interactions, we found
supporting evidence, suggesting a degree of association
between the gene pair. Therefore, we can conclude that
LLM-GeneGraph can construct a scientifically accurate and
biologically validated textual gene-gene interaction network,
while discovering new insights of genomics beyond the
scope of traditional datasets.
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Software and Data

The generation code, all generated interactions, and
final interactions filtered by the LLM-as-a-Judge are
available at https://github.com/NabaviLab/
LLM-GeneGraph.
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