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A LITERATURE OVERVIEW

The literature on the system identification problem focused until recently on the asymptotic properties
of the least squares estimator (LSE) Chen & Guo (2012); Ljung et al. (1999); Ljung & Wahlberg
(1992); Bauer et al. (1999). With the growing popularity of statistical learning theory Vershynin
(2018); Wainwright (2019), understanding the number of samples required for a certain error threshold
for the system identification problem has gained significant importance. For an overview of the
results and proof techniques, the reader is referred to the survey paper Tsiamis et al. (2023). The
literature on the non-asymptotic analysis mainly focused on the linear-time invariant (LTI) system
identification problem with i.i.d. noise. The earlier research used mixing arguments that are highly
dependent on system stability Kuznetsov & Mohri (2017); Rostamizadeh & Mohri (2007). The most
recent studies used martingale and small-ball techniques to provide sample complexity guarantees
for least-squares estimators applied to LTI systems Simchowitz et al. (2018); Faradonbeh et al.
(2018); Tsiamis & Pappas (2019). These works showed that the LSE converges to the true system
parameters with the rate T−1/2, where T is the number of samples. This result was applied to the
linear-quadratic regulator problem using adaptive control to obtain optimal regret bounds Dean et al.
(2020); Abbasi-Yadkori & Szepesvári (2011); Dean et al. (2019).

The nonlinear system identification problem is vastly studied Noël & Kerschen (2017); Nowak
(2002). Yet, the research on the non-asymptotic analysis of the nonlinear system identification is in its
infancy and is mostly focused on parameterized nonlinear systems. Recursive and gradient algorithms
designed for the least-squares loss function converge to the true system parameters with the rate T−1/2

for nonlinear systems with a known link function ϕ of the form ϕ(Āxt) using martingale techniques
Foster et al. (2020) and mixing time arguments Sattar & Oymak (2022). Most recently, Ziemann
et al. (2022) provided sample complexity guarantees for non-parametric learning of nonlinear system
dynamics, which scales with T−1/(2+q). Here, q scales with the size of the function class in which
we search for the true dynamics. Existing studies on both linear and nonlinear system identification
analyzed the problem under i.i.d. (sub)-Gaussian noise structures.

Despite the growing interest on non-asymptotic system identification, the literature on the system
identification problem with nonsmooth estimators that can handle dependent and adversarial noise
vectors is limited to linear systems. The studies Feng & Lavaei (2021) and Feng et al. (2023)
considered a nonsmooth convex estimator in the form of the least absolute deviation estimator and
analyzed the required conditions for the exact recovery of the system dynamics using the KKT
conditions and the Null Space Property from the LASSO literature. Later, Yalcin et al. (2023) showed
that exact recovery of system parameters is achievable with high probability even when more than
half of the data is corrupted. This provides a further avenue of research for the adversarially robust
system identification problem. Yalcin et al. (2023) was the first paper that employed a nonsmooth
estimator for nonlinear system identification. Compared with Yalcin et al. (2023), the presence of
nonlinear basis functions makes it impossible to directly analyze the optimization problem by writing
the explicit expression of xt; see the proof of Theorem 2 in Yalcin et al. (2023). Note that when the
system is in the form of xt+1 = Axt, then xt can be written directly as Atx0 and we only need to
analyze the eigenvalues of A. For a nonlinear system in the form of xt+1 = f(xt), writing xt in
terms of x0 needs the composition of t functions, and this cannot be done analytically. There does
not exist counterpart of linear-system eigenvalue analysis for nonlinear systems. This challenge is
repeatedly acknowledged in many textbooks of nonlinear systems in the area of control theory, and
for that reason several results known for linear systems do not have a counterpart in the nonlinear
setting. Therefore, we took a different approach to estimate the terms that appear in the uniqueness
condition equation 7 in Section 3 In addition, we do not need the stability assumption (Assumption 5)
in the case of a bounded basis function (note that the stability assumption was the key in the linear
case since it was directly related to the eigenvalues of A and the behavior of At when t goes to
infinity). As a result, the proof for the bounded case is novel and different from those in Yalcin et al.
(2023). Finally, by utilizing the generalized Farkas’ lemma, the necessary and sufficient conditions in
Sections 2-3 are novel and stronger than the sufficient conditions in Yalcin et al. (2023).

On the other hand, robust regression techniques have been developed using regularizers in the
objective function Xu et al. (2009); Bertsimas & Copenhaver (2018); Huang et al. (2016). In addition,
the robust estimation literature provided multiple nonsmooth estimators, such as M-estimators, least
absolute deviation, convex estimators, least median squares, and least trimmed squares Seber & Lee
(2012). The convex estimator equation 2 was proposed in Bako & Ohlsson (2016); Bako (2017) in

13
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the context of robust regression. They showed that the estimator can achieve the exact recovery when
we have infinitely many samples. However, the study lacks a non-asymptotic analysis on the sample
complexity. Additionally, the analysis techniques cannot be applied to the analysis of dynamical
systems due to the autocorrelation among the samples.

The two recent papers Wu et al. (2022); Kumar et al. (2022) focused on the reinforcement learning
(RL) problem, whose goal is to maximize the reward function. In contrast, in the system identification
problem, the goal is to recover the underlying system dynamics and the application may not incur a
naturally defined reward function. The two referenced papers assumed the perturbation to be bounded,
which is a strict assumption and may not hold in practice. More importantly, controlling a system
without learning its dynamics (e.g., by model-free RL techniques) is a dangerous approach since the
policy during exploration could shift the state move out of safe regions and trigger instability; see
the survey paper Moerland et al. (2023). Hence, for safety-critical systems, it is usually essential
to first learn the system and then apply a control method, which could be classic optimal control
or RL algorithms. Our paper is concerned with learning the model of the system where there is an
attack to its dynamics. The existing RL methods, including Wu et al. (2022); Kumar et al. (2022), are
concerned with a different problem. In addition, we note that although the area of robust model-based
RL techniques is rich, our setting of unknown systems requires model-free RL techniques.

B COMPARING RESULTS TO EXISTING WORK

Example 1 (First-order systems). In the special case when n = m = 1 and the basis function is
f(x) = x, condition equation 6 reduces to∣∣∣∣∣∑

t∈K
d̂txt

∣∣∣∣∣ ≤ ∑
t∈Kc

|xt|,

which is the same as Theorem 1 in Feng & Lavaei (2021).
Example 2 (Linear systems). We consider the case when m = n and the basis function is f(x) = x.
We also assume the ∆-spaced attack model; see the definition in Yalcin et al. (2023). By considering
the attack period starting at the time step t1, a sufficient condition to guarantee condition equation 4
is given by

d̂⊤ZĀ∆−1d̄t1 ≤
∆−2∑
t=0

∥∥ZĀtd̄t1
∥∥
2
, ∀Z ∈ Rn×n, (12)

where we denote d̂ := d̂t1 for simplicity. Let D̂ ∈ Rn×(n−1) be the matrix of orthonormal bases of
the orthogonal complementary space of f , namely, D̂⊤d̂ = 0, D̂⊤D̂ = In−1, and D̂D̂⊤ = In− d̂d̂⊤.
Then, we can calculate that ∥∥ZĀtd̄t1

∥∥2
2
≥
(
ZĀtd̄t1

)⊤
d̂d̂⊤

(
ZĀtd̄t1

)
,

where the equality holds when D̂⊤ZĀtd̄t1 = 0, i.e., ZĀtd̄t1 is parallel with d̂. Therefore, for
condition equation 12 to hold, it is equivalent to consider Z with the form Z = d̂z⊤ for some vector
z ∈ Rn. In this case, condition equation 12 reduces to

z⊤Ā∆−1d̄t1 ≤
∆−2∑
t=0

∣∣z⊤Ātd̄t1
∣∣ , ∀z ∈ Rn. (13)

Condition equation 13 leads to a better sufficient condition than that in Yalcin et al. (2023). To
illustrate the improvement, we consider the special case when the ground truth matrix is Ā = λIn
for some λ ∈ R. Then, condition equation 13 becomes

|λ|∆−1 ≤
∆−2∑
t=0

|λ|t = 1− |λ|∆−1

1− |λ|
, which is further equivalent to |λ|+ |λ|1−∆ ≤ 2,

which is a stronger condition than that in Yalcin et al. (2023). When the attack period ∆ is large, we
approximately have |λ| ≤ 2− 21−∆, which is a better condition than that in Figure 1 of Yalcin et al.
(2023).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Example 3 (First-order linear systems). In the case when m = n = 1 and f(x) = x, our results
state that the uniqueness of global solutions is equivalent to∣∣∣∣∣∑

t∈K
d̂txt

∣∣∣∣∣ < ∑
t∈Kc

|xt|. (14)

As a comparison, the sufficient condition in Theorem 1 in Feng & Lavaei (2021) is∑
t∈K

|xt| <
∑
t∈Kc

|xt|.

Since |d̂t| = 1 for all t ∈ K, our results equation 14, as well as Theorem 2, are more general and
stronger than that in Feng & Lavaei (2021).

C FUTURE WORKS

One potential future direction is to study the case when there exists dense but small noises in the
observations of xt. Our analysis can be naturally extended to this case if an upper bound on the noise
scale is assumed. In this work, we mainly focus on large but sparse attacks to exhibit the relation
between the sample complexity and the attacks. To provide an intuitive explanation, first assume
that the small and dense noise ξt is zero. The Lasso-type estimator equation 2 can be written as a
constrained optimization problem, where each equation

xt+1 −Af(xt)− dt = 0

appears as a constraint. We have derived conditions under which the optimal solution is the correct
parameters of the system. Adding ξt is essentially equivalent to a perturbation to the constraints of an
optimization problem. It is easy to measure how much the optimal solution changes when there is a
right-hand side uncertainty. The bound is easy to derive and depends on a given upper bound on the
magnitude of ξt. This relies on classic results in optimization. Moreover, it is possible to improve
the sample complexity by injecting small noise into the system dynamics. Intuitively, the injected
noise accelerates the “exploration” of f(xt) in the basis space. This claim can be rigorously proved
by utilizing the same techniques as in the paper; see Section V of Yalcin et al. (2023) for an example
of the linear system identification problem.

The extension to more general parameterized dynamical systems is another important future direction.
The theoretical challenge of the generalization lies in the fact that more complex models, such as
generative language models, do not use linear parameterization equation 2 The optimality conditions
for deep neural networks are still vague without additional assumptions. This work serves as a first
step towards understanding non-linearly parameterized dynamical systems.

D PROOFS

D.1 PROOF OF THEOREM 1

Proof of Theorem 1. Since problem equation 3 is convex in A, the ground truth matrix Ā is a global
optimum if and only if

0 ∈
∑
t∈Kc

f(xt)⊗ ∂∥0n∥2 +
∑
t∈K

f(xt)⊗ d̂t. (15)

Using the form of the subgradient of the ℓ2-norm, condition equation 15 holds if and only if there
exist vectors

gt ∈ Rn, ∀t ∈ Kc

such that ∑
t∈Kc

f(xt)g
⊤
t +

∑
t∈K

f(xt)d̂
⊤
t = 0n×n, ∥gt∥2 ≤ 1, ∀t ∈ Kc. (16)

15
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Define the matrices

B := [f(xt) ∀t ∈ Kc] ∈ Rm×(T−|K|), V := [f(xt) ∀t ∈ K] ∈ Rm×|K|,

G := [gt ∀t ∈ Kc] ∈ Rn×(T−|K|), F :=
[
d̂t ∀t ∈ K

]
∈ Rn×|K|.

Condition equation 16 can be written as a combination of second-order cone constraints and linear
constraints:

∃G ∈ Rn×(T−|K|), s, r ∈ R s.t. BG⊤ + V F⊤ = 0m×n, ∥G:,t∥2 ≤ s, ∀t,
s+ r = 1, s, r ≥ 0, (17)

where G:,t is the t-th column of G for all t ∈ {1, . . . , T − |K|}. We define the closed convex cone

S :=

{
z ∈ R(T−|K|)n+2

∣∣∣∣∣
√√√√ n∑

i=1

z2(T−|K|)i+t ≤ z(T−|K|)n+1, ∀t ∈ {0, . . . , T − |K| − 1},

z(T−|K|)n+1, z(T−|K|)n+2 ≥ 0

}
,

and we define the matrix and vector

A :=

[
In ⊗B 0 0

0 1 1

]
∈ R(mn+1)×[(T−|K|)n+2], b :=


−(V F⊤):,1
−(V F⊤):,2

...
−(V F⊤):,n

1

 ∈ Rmn+1,

where (V F⊤):,i is the i-th column of V F⊤. Then, condition equation 17 can be equivalently written
as

∃z ∈ R(T−|K|)n+2 s.t. Az = b, z ∈ S. (18)

Since the cone S is closed and convex, we can apply the generalized Farka’s lemma to conclude that
condition equation 18 is equivalent to

∀y ∈ Rmn+1,
(
A⊤y ∈ S∗ =⇒ b⊤y ≥ 0

)
, (19)

where S∗ is the dual cone of S . It can be verified that the dual cone is

S∗ =

{
z ∈ R(T−|K|)n+2

∣∣∣∣∣
T−|K|−1∑

t=0

√√√√ n∑
i=1

z2(T−|K|)i+t ≤ z(T−|K|)n+1,

z(T−|K|)n+1, z(T−|K|)n+2 ≥ 0

}
.

We can equivalently write condition equation 19 as

∀Z ∈ Rn×m, p ∈ R,
(
∥ZB∥2,1 ≤ p, p ≥ 0 =⇒ ⟨V F⊤, Z⊤⟩ ≤ p

)
,

By eliminating variable p, we get

⟨V F⊤, Z⊤⟩ ≤ ∥ZB∥2,1, ∀Z ∈ Rn×m,

where the ℓ2,1-norm is defined as

∥M∥2,1 :=

n∑
j=1

√√√√ m∑
i=1

M2
ij , ∀M ∈ Rn×m.

The above condition is equivalent to condition equation 4, and this completes the proof.
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D.2 PROOF OF COROLLARY 1

Proof of Corollary 1. The sufficient condition follows from the fact that ∥d̂t∥2 = 1 and

d̂⊤t Zf(xt) ≤ ∥Zf(xt)∥2, ∀t ∈ K.

This completes the proof.

D.3 PROOF OF COROLLARY 2

Proof of Corollary 2. We choose

Z :=

∑
t∈K d̂tf(xt)

⊤∥∥∥∑t∈K d̂tf(xt)⊤
∥∥∥
F

.

Then, condition equation 4 implies∥∥∥∥∥∑
t∈K

f(xt)d̂
⊤
t

∥∥∥∥∥
F

=
∑
t∈K

d̂⊤t Zf(xt) ≤
∑
t∈Kc

∥Zf(xt)∥2 ≤
∑
t∈Kc

∥f(xt)∥2,

where the last step is because ∥Z∥2 ≤ ∥Z∥F = 1. Now, suppose that the basis dimension is m = 1.
In this case, we have∑

t∈K
d̂⊤t Zf(xt) =

(∑
t∈K

f(xt)d̂t

)⊤

Z⊤ ≤

∥∥∥∥∥∑
t∈K

f(xt)d̂t

∥∥∥∥∥
F

∥Z∥2,∑
t∈Kc

∥Zf(xt)∥2 =
∑
t∈Kc

|f(xt)|∥Z∥2 =
∑
t∈Kc

∥f(xt)∥2∥Z∥2.

Combining the above two inequalities shows that condition equation 6 is also a sufficient condition.

D.4 PROOF OF THEOREM 2

We establish the sufficient and the necessary parts of Theorem 2 by the following two lemmas.
Lemma 1 (Sufficient condition for uniqueness). Suppose that condition equation 4 holds. If for
every nonzero Z ∈ Rn×m such that∑

t∈K
d̂⊤t Zf(xt) =

∑
t∈Kc

∥Zf(xt)∥2,

it holds that ∑
t∈K

∣∣∣d̂⊤t Zf(xt)
∣∣∣ <∑

t∈K
∥Zf(xt)∥2.

Then, the ground truth matrix Ā is the unique global solution to problem equation 3.

Proof. The ground truth Ā is the unique solution if and only if for every matrix A ∈ Rn×m such that
A ̸= Ā, the loss function of A is larger than that of Ā, namely,∑

t∈K
∥d̄t∥2 <

∑
t∈Kc

∥(Ā−A)f(xt)∥2 +
∑
t∈K

∥(Ā−A)f(xt) + d̄t∥2. (20)

Denote
Z := A− Ā ∈ Rn×m.

The inequality equation 20 becomes∑
t∈Kc

∥ − Zf(xt)∥2 +
∑
t∈K

(
∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2

)
> 0. (21)

Since problem equation 3 is convex in A, it is sufficient to guarantee that Ā is a strict local minimum.
Therefore, the uniqueness of global solutions can be formulated as

condition equation 21 holds, ∀Z ∈ Rn×m s.t. 0 < ∥Z∥F ≤ ϵ, (22)
where ϵ > 0 is a sufficiently small constant. In the following, we fix the direction Z and discuss two
different cases.
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Case I. We first consider the case when condition equation 4 holds strictly, namely,∑
t∈Kc

∥Zf(xt)∥2 −
∑
t∈K

d̂⊤t Zf(xt) > 0.

Since the ℓ2-norm is a convex function, it holds that

∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2 ≥
〈
∂∥d̄t∥2,−Zf(xt)

〉
= −d̂⊤t Zf(xt).

Therefore, we get ∑
t∈Kc

∥ − Zf(xt)∥2 +
∑
t∈K

(
∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2

)
≥
∑
t∈Kc

∥ − Zf(xt)∥2 +
∑
t∈K

−d̂⊤t Zf(xt) > 0,

which exactly leads to inequality equation 21.

Case II. Next, we consider the case when∑
t∈K

d̂⊤t Zf(xt) =
∑
t∈Kc

∥Zf(xt)∥2,
∑
t∈K

∣∣∣d̂⊤t Zf(xt)
∣∣∣ <∑

t∈K
∥Zf(xt)∥2. (23)

Since ϵ is a sufficiently small constant, we know

d̄αt := −αZf(xt) + d̄t ̸= 0, ∀α ∈ [0, 1],

and the ℓ2-norm is second-order continuously differentiable in an open set that contains the line.
Therefore, the mean value theorem implies that there exists α ∈ [0, 1] such that for each t ∈ K, it
holds

∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2 =
〈
d̂t,−Zf(xt)

〉
(24)

+
1

2
[−Zf(xt)]

⊤

(
I

∥d̄αt ∥2
−

d̄αt
(
d̄αt
)⊤

∥d̄αt ∥32

)
[−Zf(xt)] .

We can calculate that

[−Zf(xt)]
⊤

(
I

∥d̄αt ∥2
−

d̄αt
(
d̄αt
)⊤

∥d̄αt ∥32

)
[−Zf(xt)] (25)

=
∥Zf(xt)∥22
∥d̄αt ∥2

−
〈
d̄αt , Zf(xt)

〉2
∥d̄αt ∥32

≥ 0,

where the equality holds if and only if Zf(xt) is parallel with d̄αt . By the definition of d̄αt , the equality
holds if and only if Zf(xt) is parallel with d̄t, which is further equivalent to∣∣∣〈d̂t, Zf(xt)

〉∣∣∣ = ∥Zf(xt)∥2 .

Substituting equation 24 and equation 25 into equation 21, we have∑
t∈Kc

∥ − Zf(xt)∥2 +
∑
t∈K

(
∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2

)
≥
∑
t∈Kc

∥Zf(xt)∥2 −
∑
t∈K

〈
d̂t, Zf(xt)

〉
= 0,

where the equality holds if and only if∣∣∣〈d̂t, Zf(xt)
〉∣∣∣ = ∥Zf(xt)∥2 , ∀t ∈ K.

Considering the second condition in equation 23, the above equality condition is violated by some
t ∈ K. Therefore, we have proven that condition equation 21 holds strictly.

Combining the two cases, we complete the proof.
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Next, we prove that the condition in Lemma 1 is also necessary for the uniqueness.
Lemma 2 (Necessary condition for uniqueness). Suppose that condition equation 4 holds. If the
ground truth matrix Ā is the unique global solution to problem equation 3, then for every nonzero
Z ∈ Rn×m, we have∑

t∈K
d̂⊤t Zf(xt) <

∑
t∈Kc

∥Zf(xt)∥2 or
∑
t∈K

∣∣∣d̂⊤t Zf(xt)
∣∣∣ <∑

t∈K
∥Zf(xt)∥2. (26)

Proof. Assume conversely that there exists a nonzero Z ∈ Rn×m such that∑
t∈K

d̂⊤t Zf(xt) =
∑
t∈Kc

∥Zf(xt)∥2,
∑
t∈K

∣∣∣d̂⊤t Zf(xt)
∣∣∣ =∑

t∈K
∥Zf(xt)∥2. (27)

Without loss of generality, we assume that

0 < ∥Z∥2 ≤ ϵ

for a sufficiently small ϵ. In this case, the second condition in equation 27 implies that∣∣∣d̂⊤t Zf(xt)
∣∣∣ = ∥Zf(xt)∥2, and Zf(xt) is parallel with d̄t, ∀t ∈ K.

Therefore, when ϵ is sufficiently small, equations equation 25 and equation 23 lead to

∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2 = −
〈
d̂t, Zf(xt)

〉
, ∀t ∈ K.

We now show that condition equation 21 fails:∑
t∈Kc

∥ − Zf(xt)∥2 +
∑
t∈K

(
∥ − Zf(xt) + d̄t∥2 − ∥d̄t∥2

)
=
∑
t∈K

〈
d̂t, Zf(xt)

〉
−
∑
t∈K

〈
d̂t, Zf(xt)

〉
= 0.

This contradicts with the assumption that Ā is the unique solution to problem equation 3.

Combining Lemmas 1 and 2, we have the following necessary and sufficient condition for the
uniqueness of the ground truth solution Ā.

D.5 PROOF OF THEOREM 4

Proof of Theorem 4. Since both sides of inequality equation 8 are affine in Z, it suffices to prove that

P
[
d̂1(Z)− d̂2(Z) < 0, ∀Z ∈ SF

]
≥ 1− δ, (28)

where SF is the Frobenius-norm unit sphere in Rn×m and

d̂1(Z) :=
∑
t∈K

⟨Z⊤, f(xt)d̂
⊤
t ⟩, d̂2(Z) :=

∑
t∈Kc

∥Zf(xt)∥2.

The proof is divided into two steps.

Step 1. First, we fix the vector Z ∈ SF and prove that

P
[
d̂1(Z)− d̂2(Z) < −θ

]
≥ 1− δ,

holds for some constant θ > 0. Using Markov’s inequality, it is sufficient to prove that for some
ν > 0, it holds that

E
[
exp

(
ν
[
d̂1(Z)− d̂2(Z)

])]
≤ exp(−νθ)δ. (29)

We focus on the case when K is not empty, which happens with high probability. The proof of this
step is also divided into two sub-steps.
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Step 1-1. We first analyze the term d̂1(Z). Let T ′ be the last attack time instance, i.e.,

T ′ := max{t | t ∈ K}.

Then, we have

E
[
exp

[
νd̂1(Z)

]]
=E

exp
ν

∑
t∈K\{T ′}

〈
Z⊤, f(xt)d̂

⊤
t

〉× E
[
exp

[
ν
〈
Z⊤, f(xT ′)d̂⊤T ′

〉]
| FT ′

] .

(30)

According to Assumption 1, the direction d̂T ′ is a unit vector. Since∣∣∣[Zf(xT ′)]
⊤
d̂T ′

∣∣∣ ≤ ∥Zf(xT ′)∥2 ≤ ∥Z∥2∥f(xT ′)∥2

≤ ∥Z∥F
√
m∥f(xT ′)∥∞ ≤

√
mB,

the random variable [Zf(xT ′)]
⊤
d̂T ′ is sub-Gaussian with parameter mB2. Therefore, the property

of sub-Gaussian random variables implies that

E
[
exp

[
ν
〈
Z⊤, f(xT ′)d̂⊤T ′

〉]
| FT ′

]
≤ exp

(
ν2 ·mB2

2

)
.

Substituting into equation 30, we get

E
[
exp

[
νd̂1(Z)

]]
≤ E

[
exp

ν
∑

t∈K\{T ′}

〈
Z⊤, f(xt)d̂

⊤
t

〉] · exp(ν2 ·mB2

2

)
.

Continuing this process for all t ∈ K, it follows that

E
[
exp

[
νd̂1(Z)

]]
≤ exp

(
ν2 ·mB2|K|

2

)
. (31)

Step 1-2. Now, we consider the second term in equation 29, namely, −d̂2(Z). Define

K′ := {t | 1 ≤ t ≤ T, t ∈ Kc, t− 1 ∈ K}.

With probability at least 1− exp[−Θ[p(1− p)T ]], we have

|K′| = Θ[p(1− p)T ].

Therefore, K′ is non-empty with high-probability. Since ∥Zf(xt)∥2 ≥ 0 for all t ∈ Kc, we have

E
[
exp

[
−νd̂2(Z)

]]
≤ E

[
exp

(
−ν

∑
t∈K′

∥Zf(xt)∥2

)]
(32)

=E

exp
−ν

∑
t∈K′\{T ′}

∥Zf(xt)∥2

× E [exp (−ν∥Zf(xT ′)∥2) | FT ′ ]

 ,

where T ′ is the last time instance in K′, namely,

T ′ := max{t | t ∈ K′}.

By Bernstein’s inequality Wainwright (2019), we can estimate that

E [exp (−ν∥Zf(xT ′)∥2) | FT ′ ]

≤ exp

[
−νE (∥Zf(xT ′)∥2 | FT ′) +

ν2

2
E
(
∥Zf(xT ′)∥22 | FT ′

)]
≤ exp

[
− ν√

mB
E
(
∥Zf(xT ′)∥22 | FT ′

)
+

ν2

2
E
(
∥Zf(xT ′)∥22 | FT ′

)]
,
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where the last inequality is from
∥Zf(xT ′)∥2 ≤

√
mB.

Assumption 3 implies that

E
(
∥Zf(xT ′)∥22 | FT ′

)
=
〈
ZZ⊤,E

[
f(xT ′)f(xT ′)⊤ | FT ′

]〉
≥ λ2∥Z∥2F = λ2.

If we choose ν such that

0 < ν <
2√
mB

, (33)

we have

E [exp (−ν∥Zf(xT ′)∥2) | FT ′ ] ≤ exp

[(
ν2

2
− ν√

mB

)
λ2

]
.

Substituting into inequality equation 32, it follows that

E
[
exp

[
−νd̂2(Z)

]]
≤E

exp
−ν

∑
t∈K′\{T ′}

∥Zf(xt)∥2

× exp

[(
ν2

2
− ν√

mB

)
λ2

] .

Continuing this process for all t ∈ K′, we have

E
[
exp

[
−νd̂2(Z)

]]
≤ exp

[(
ν2

2
− ν√

mB

)
λ2|K′|

]
. (34)

Combining the inequalities equation 31 and equation 34, we have

E
[
exp

(
ν
[
d̂1(Z)− d̂2(Z)

])]
≤ exp

[
mν2B2

2
|K|+

(
ν2

2
− ν√

mB

)
λ2|K′|

]
.

We choose

θ :=
λ2p(1− p)T

4
√
mB

.

In order to satisfy condition equation 29, it is equivalent to have

mν2B2

2
|K|+

(
ν2

2
− ν√

mB

)
λ2|K′|+ λ2νp(1− p)T

4
√
mB

≤ log (δ) . (35)

Now, we consider the fact that K is generated by the probabilistic attack model. Using the Bernoulli
bound, it holds with probability at least 1− exp[−Θ[p(1− p)T ]] that

|K| ≤ 2pT, |K′| ≥ p(1− p)T

2
. (36)

Thus, with the same probability, we have the estimation

mν2B2

2
|K|+

(
ν2

2
− ν√

mB

)
λ2|K′|+ λ2νp(1− p)T

4
√
mB

≤mν2B2

2
· 2pT +

(
ν2

2
− ν

2
√
mB

)
λ2 · p(1− p)T

2
.

Choosing

ν :=
λ2(1− p)

2
√
mB[4mB2 + λ2(1− p)]

,

we get

mν2B2

2
|K|+

(
ν2

2
− ν√

mB

)
λ2|K′|+ λ2νp(1− p)T

4
√
mB

≤ − p(1− p)2

16mκ2(4mκ2 + 1− p)
· T,
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where we define κ := B/λ ≥ 1. Note that our choice of ν satisfies the condition equation 33.
Therefore, in order for inequality equation 35 to hold, the sample complexity should satisfy

T ≥ 16mκ2(4mκ2 + 1− p)

p(1− p)2
log

(
1

δ

)
.

By considering the Bernoulli bound equation 36, the sample complexity bound becomes

T ≥ Θ

[
max

{
mκ2(mκ2 + 1− p)

p(1− p)2
,

1

p(1− p)

}
log

(
1

δ

)]
(37)

= Θ

[
m2κ4

p(1− p)2
log

(
1

δ

)]
.

Step 2. Next, we establish the bound equation 28 by discretization techniques. More specifically,
suppose that ϵ > 0 is a constant and {Z1, . . . , ZN} ⊂ SF is an ϵ-net of the sphere SF under the
Frobenius norm, where we can bound

log(N) ≤ mn · log
(
1 +

2

ϵ

)
.

Then, for every Z ∈ SF , we can find a point in the ϵ-net, denoted as Z ′, such that
∥Z − Z ′∥F ≤ ϵ.

Now, we upper bound the difference f(Z)− f(Z ′), where we define the function

f(Z) := d̂1(Z)− d̂2(Z), ∀Z ∈ Rn×m.

We can calculate that
f(Z)− f(Z ′) =

∑
t∈K

d̂t(Z − Z ′)f(xt)−
∑
t∈Kc

(∥Zf(xt)∥2 − ∥Z ′f(xt)∥2)

≤
∑
t∈K

d̂t(Z − Z ′)f(xt) +
∑
t∈Kc

∥(Z − Z ′)f(xt)∥2

≤
∑
t∈K

∥Z − Z ′∥F ∥f(xt)d̂
⊤
t ∥F +

∑
t∈Kc

∥Z − Z ′∥2∥f(xt)∥2

≤
∑
t∈K

∥Z − Z ′∥F ∥f(xt)∥2 +
∑
t∈Kc

∥Z − Z ′∥F ∥f(xt)∥2

≤ T · ϵ
√
mB =

√
mTB · ϵ.

We choose

ϵ :=
θ√

mTB
= Θ

[
p(1− p)

mκ2

]
.

Therefore, under the event that
f(Zi) < −θ, ∀i = 1, . . . , N, (38)

we have
f(Z) < −θ +

√
mTB · ϵ = 0, ∀Z ∈ SF .

Hence, it suffices to estimate the probability that event equation 38 happens. To bound the failing
probability, we replace δ with δ/N in equation 37 and it follows that

P
[
f(Zi) < −θ

]
≥ 1− δ

N
, ∀i = 1, . . . , N.

Applying the union bound over all i ∈ {1, . . . , N}, the event equation 38 happens with probability at
least 1− δ, namely,

P
[
f(Zi) < −θ, ∀i = 1, . . . , N

]
≥ 1− δ.

With this choice of δ, the sample complexity should be at least

T ≥ Θ

[
m2κ4

p(1− p)2
log

(
N

δ

)]
= Θ

[
m2κ4

p(1− p)2

[
mn log

(
mκ

p(1− p)

)
+ log

(
1

δ

)]]
.

This completes the proof.
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D.6 PROOF OF THEOREM 5

Proof of Theorem 5. We only need to show that condition equation 7 fails with probability at least
1− exp(−m/3). We choose the matrix

Ā :=

[
1 01×(m−1)

0n−1 0(n−1)×(m−1)

]
∈ Rn×m.

As a result, the last n − 1 elements of Āf(x) are zero for every state x ∈ Rn. Moreover, we will
choose the basis function f such that its values will only depend on the first element of state x ∈ Rn.
With these definitions, the dynamics of xt reduces to the dynamics of its first element (xt)1. Hence,
we can assume without loss of generality that n = 1 in the remainder of the proof.

We define the basis function f : R 7→ Rm as

f̃(x) :=
[ x
max{|x|,1} sin(x) sin(2x) · · · sin[(m− 1)x]

]
, ∀x ∈ R.

Under the above definitions, it is straightforward to show that the following properties hold and we
omit the proof:

f(0) = 0m, f
[
Āf(x)

]
= f(x), ∀x ∈ R. (39)

Finally, the attack vector is defined as

d̄t|Ft ∼ Uniform {[−(|xt|+ 2π),−(|xt|+ π)] ∪ [|xt|+ π, |xt|+ 2π]} , ∀t ∈ K.

The remainder of the proof is divided into three steps.

Step 1. In the first step, we prove that Assumptions 1-3 hold. By the definition of f(x), we have

∥f(x)∥∞ = max

{
|x|

max {|x|, 1}
, | sin(x)|, . . . , | sin[(m− 1)x]|

}
≤ 1, ∀x ∈ R,

which implies that Assumption 2 holds with B = 1. Moreover, the stealthy condition (Assumption 1)
is a result of the symmetric distribution of d̄t|Ft.

Finally, we prove that Assumption 3 holds. For the notational simplicity, in this step, we omit the
subscript t, the conditioning on the filtration Ft and the event t ∈ K. The model of attack d implies
that

|x+ d| ≥ |d| − |x| ≥ π > 1.

Therefore, we have

f(x+ d) =
[

x+d
|x+d| sin[(x+ d)] · · · sin[(m− 1)(x+ d)]

]
.

For any vector ν ∈ Rm, we want to estimate

ν⊤E
[
f(x+ d)f(x+ d)⊤

]
ν = E

[
ν1

x+ d

|x+ d|
+

m−1∑
i=1

νi+1 sin[i(x+ d)]

]2
.

First, we can calculate that

E
(
ν1

x+ d

|x+ d|

)2

= ν21 , E [νi+1 sin[i(x+ d)]]
2
= ν2i+1 ·

1

2
, ∀i ∈ {1, . . . ,m− 1}. (40)

Then, for every i ∈ {1, . . . ,m− 1}, we have

E
[
ν1

x+ d

|x+ d|
· νi+1 sin[i(x+ d)]

]
(41)

=ν1νi+1

[∫ −|x|−π

−|x|−2π

x+ d

|x+ d|
sin[i(x+ d)] dd+

∫ |x|+2π

|x|+π

x+ d

|x+ d|
sin[i(x+ d)] dd

]

=ν1νi+1

[∫ −|x|−π

−|x|−2π

− sin[i(x+ d)] dd+

∫ |x|+2π

|x|+π

sin[i(x+ d)] dd

]
= 0.
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For every i, j ∈ {1, . . . ,m− 1} such that i ̸= j, it holds that

E [νi+1 sin[i(x+ d)] · νj+1 sin[j(x+ d)]] (42)

=νi+1νj+1

[∫ −|x|−π

−|x|−2π

sin[i(x+ d)] sin[j(x+ d)] dd

+

∫ |x|+2π

|x|+π

sin[i(x+ d)] sin[j(x+ d)] dd

]
= 0.

Combining equations equation 40-equation 42, it follows that

ν⊤E
[
f(x+ d)f(x+ d)⊤

]
ν = ν21 +

1

2

m−1∑
i=1

ν2i+1 ≥ 1

2
∥ν∥22,

which implies that Assumption 3 holds with λ2 = 1/2.

Step 2. In this step, we prove that the linear space spanned by the set of vectors

Fc := {f(xt) | t ∈ Kc}
has dimension at most m− 1 with probability at least 1− δ. By the second property in equation 39,
the subspace spanned by Fc is equivalent to that spanned by

F ′ := {f(xt) | t ∈ K′},
where we define

K′ := {t | t− 1 ∈ K, t ∈ Kc}.
Therefore, the dimension of the subspace is at most |K′|.
To estimate the cardinality of K′, we divide K′ into the following two disjoint sets:

K′
1 := {2t+ 1 | 2t ∈ K, 2t+ 1 ∈ Kc}, K′

2 := {2t | 2t− 1 ∈ K, 2t ∈ Kc}.
The size of K′

1 is the summation of ⌈T/2⌉ independent Bernoulli random variables with parameter
p(1− p). Therefore, the Chernoff bound implies

P
[
|K′

1| ≤ 2p(1− p) ·
⌈
T

2

⌉]
≥ 1− exp

[
−p(1− p)

3
·
⌈
T

2

⌉]
. (43)

Similarly, the size of K′
2 is the summation of ⌊T/2⌋ independent Bernoulli random variables with

parameter p(1− p). Therefore, the Chernoff bound implies

P
[
|K′

2| ≤ 2p(1− p) ·
⌊
T

2

⌋]
≥ 1− exp

[
−p(1− p)

3
·
⌊
T

2

⌋]
. (44)

Combining the bounds equation 43 and equation 44 and applying the union bound, it holds that

P [|K′| ≤ 2p(1− p)T ] ≥ 1− exp

[
−p(1− p)

3
·
⌈
T

2

⌉]
− exp

[
−p(1− p)

3
·
⌊
T

2

⌋]
≥ 1− 2 exp

[
−p(1− p)T

3

]
,

where the last inequality is because ⌊T/2⌋ ≤ ⌈T/2⌉ ≤ T . Since

T <
m

2p(1− p)
,

we know

P [|K′| < m] ≥ 1− 2 exp (−m/3) . (45)

In addition, when K is the empty set ∅ or the full set {0, . . . , T − 1}, the set K′ is an empty set, which
implies that |K′| is smaller than m. This event happens with probability

p⊤ + (1− p)⊤ ≥ 2[p(1− p)]T/2.

Combining with inequality equation 45, we get

P [|K′| < m] ≥ max
{
1− 2 exp (−m/3) , 2[p(1− p)]T/2

}
.
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Step 3. Finally, we prove that if the dimension of the subspace spanned by Fc is smaller than m,
the condition equation 7 cannot hold. Since the dimension of the subspace is at most m− 1, there
exists Z ∈ Rm such that

Zf(xt) = 0, ∀t ∈ Kc.

With this choice of Z, the condition on the left hand-side of equation 7 holds while the strict
inequality on the right hand-side fails. Therefore, we know that Ā is not the unique global solution to
equation 3.

D.7 PROOF OF THEOREM 6

Proof of Theorem 6. The proof is similar to that of Theorem 4. Since both sides of inequality
equation 8 are affine in Z, it suffices to prove that

P
[
d̂1(Z)− d̂2(Z) < 0, ∀Z ∈ SF

]
≥ 1− δ,

where SF is the Frobenius-norm unit sphere in Rn×m and

d̂1(Z) :=
∑
t∈K

〈
Z⊤, f(xt)d̂

⊤
t

〉
, d̂2(Z) :=

∑
t∈Kc

∥Zf(xt)∥2 .

The proof is divided into two steps.

Step 1. First, we fix the vector Z ∈ SF and prove that

P
[
d̂1(Z)− d̂2(Z) < −θ

]
≥ 1− δ,

holds for some constant θ > 0. The proof of this step is divided into two steps.

Step 1-1. We first analyze the term d̂1(Z). For each k ∈ K, we define the following attack vectors:

d̄kt :=

{
d̄t if t ≤ k,

0n otherwise,
∀t ∈ {0, . . . , T − 1}.

Then, we define the trajectory generated by the above attack vectors:

xk
0 = 0m, xk

t+1 = Āf(xk
t ) + d̄kt , ∀t ∈ {0, . . . , T − 1}.

Let
K = {k1, . . . , k|K|},

where the elements are sorted as k1 < k2 < · · · < k|K|. Under the above definition, we know

x
k|K|
t = xt for all t. We define

g
kj

t :=

{
f(x

kj

t )− f(x
kj−1

t ) if j > 1,

f(xk1
t ) if j = 1,

∀j ∈ {1, . . . , |K|}.

We note that gkj

t is measurable on Fkj
. Using these introduced notations, we can write d̂1(Z) as

d̂1(Z) =

|K|∑
j=1

〈
Z⊤, f(xkj )d̂

⊤
kj

〉
=

|K|∑
j=1

〈
Z⊤,

j−1∑
ℓ=1

gkℓ

kj
d̂⊤kj

〉
=

|K|∑
ℓ=1

|K|∑
j=ℓ+1

d̂⊤kj
Zgkℓ

kj
.

Then, Assumption 6 implies that d̄t is sub-Gaussian with parameter σ conditional on Ft. Now, we
estimate the expectation

E
[
exp

[
νd̂1(Z)

]]
,

where ν ∈ R is an arbitrary constant. First, for each ℓ ∈ {1, . . . , |K| − 1}, we estimate the following
probability:

P

∣∣∣∣∣∣
|K|∑

j=ℓ+1

d̂⊤kj
Zgkℓ

kj

∣∣∣∣∣∣ ≥ ϵ

∣∣∣∣∣ Fkℓ

 .
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Since d̂kj
is a unit vector and ∥Z∥F = 1, we know∥∥∥d̂⊤kj

Z
∥∥∥
2
≤ ∥d̂⊤kj

∥2∥Z∥2 ≤ ∥d̂⊤kj
∥2∥Z∥F = 1. (46)

Moreover, we can estimate that∥∥∥gkℓ

kj

∥∥∥
2
=
∥∥∥f(xkℓ

kj
)− f(x

kℓ−1

kj
)
∥∥∥
2
≤ L

∥∥∥xkℓ

kj
− x

kℓ−1

kj

∥∥∥
2

(47)

= L
∥∥∥Ā [f (xkℓ

kj−1

)
− f

(
x
kℓ−1

kj−1

)]∥∥∥
2
≤ ρL

∥∥∥f (xkℓ

kj−1

)
− f

(
x
kℓ−1

kj−1

)∥∥∥
2

≤ L(ρL)
∥∥∥xkℓ

kj−1 − x
kℓ−1

kj−1

∥∥∥
2
≤ · · · ≤ L(ρL)kj−kℓ−1

∥∥∥xkℓ

kℓ+1 − x
kℓ−1

kℓ+1

∥∥∥
2

= L(ρL)kj−kℓ−1∥d̄kℓ
∥2,

where the first inequality holds because f has Lipschitz constant L, the second inequality is from
∥Ā∥2 ≤ ρ and the last equality holds because

xkℓ

kℓ+1 = Āf
(
xkℓ

kℓ

)
+ d̄kℓ

, x
kℓ−1

kℓ+1 = Āf
(
x
kℓ−1

kℓ

)
= Āf

(
xkℓ

kℓ

)
.

By the sub-Gaussian assumption (Assumption 6), it holds that

P

(
∥d̄kℓ

∥2 ≥ η

∣∣∣∣∣ Fkℓ

)
≤ 2 exp

(
− η2

2σ2

)
, ∀η ≥ 0. (48)

Combining inequalities equation 46-equation 48, we get

P

∣∣∣∣∣∣
|K|∑

j=ℓ+1

d̂⊤kj
Z⊤gkℓ

kj

∣∣∣∣∣∣ ≥ ϵ

∣∣∣∣∣ Fkℓ

 ≤ P

 |K|∑
j=ℓ+1

∥∥∥gkℓ

kj

∥∥∥
2
≥ ϵ

∣∣∣∣∣ Fkℓ


≤ P

 |K|∑
j=ℓ+1

L(ρL)kj−kℓ−1∥d̄kℓ
∥2 ≥ ϵ

∣∣∣∣∣ Fkℓ


≤ P

(
L(ρL)∆j

1− ρL
∥d̄kℓ

∥2 ≥ ϵ

∣∣∣∣∣ Fkℓ

)
≤ 2 exp

[
− (1− ρL)2ϵ2

2σ2L2(ρL)2∆j

]
, (49)

where ∆j := kj − kj−1 − 1 and the second last inequality is from

|K|∑
j=ℓ+1

L(ρL)kj−kℓ−1 <

∞∑
i=∆j

L(ρL)i =
L(ρL)∆j

1− ρL
.

Since

E

 |K|∑
j=ℓ+1

d̂⊤kj
Zgkℓ

kj

∣∣∣∣∣ Fkℓ

 = 0,

inequality equation 49 implies that the random variable
∑|K|

j=ℓ+1 d̂
⊤
kj
Z⊤gkℓ

kj
is zero-mean and sub-

Gaussian with parameter σL/(1− ρL) conditional on Fkℓ
. By the property of sub-Gaussian random

variables, we have

E

exp
ν

|K|∑
j=ℓ+1

d̂⊤kj
Zgkℓ

kj

 ∣∣∣∣∣ Fkℓ

 ≤ exp

[
ν2σ2L2(ρL)2∆j

2(1− ρL)2

]
, ∀ν ≥ 0.
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Finally, utilizing the tower property of conditional expectation, we have

E
[
exp

[
νd̂1(Z)

]]
= E

[
exp

ν

|K|−2∑
ℓ=1

|K|∑
j=ℓ+1

d̂⊤kj
Zgkℓ

kj

 (50)

× E

exp
ν

|K|∑
j=|K|

d̂⊤kj
Zgkℓ

kj

 ∣∣∣∣∣ Fk|K|−1

]

≤ E

[
exp

ν

|K|−2∑
ℓ=1

|K|∑
j=ℓ+1

d̂⊤kj
Zgkℓ

kj

× exp

[
ν2σ2L2(ρL)2∆j

2(1− ρL)2

] ]

≤ · · · ≤ exp

 ν2σ2L2

2(1− ρL)2

∑
j∈K

(ρL)2∆j

 , ∀ν ≥ 0.

Since the random variable (ρL)∆j is bounded in [0, 1] and thus, it is sub-Gaussian with parameter
1/2. Therefore, with constant number of samples, the mean of (ρL)2∆j will concentrate around its
expectation, which is approximately

∞∑
∆=0

p(1− p)2∆(ρL)2∆ =
p

1− (1− p)2(ρL)2
≤ p

1− ρL
.

Then, the bound in equation 50 becomes

E
[
exp

[
νd̂1(Z)

]]
≲ exp

[
ν2σ2L2p|K|
2(1− ρL)3

]
, ∀ν ≥ 0. (51)

Applying Chernoff’s bound to equation 51, we get

P
[
d̂1(Z) ≤ ϵ

]
≥ 1− exp

[
− (1− ρL)3

2σ2L2p|K|
· ϵ2
]
, ∀ϵ ≥ 0. (52)

Step 1-2. Next, we analyze the term d̂2(Z). Define the set

K′ := {t | 1 ≤ t ≤ T, t ∈ Kc, t− 1 ∈ K}.
With probability at least 1− exp[−Θ[p(1− p)T ]], we have

|K′| = Θ[p(1− p)T ].

Therefore, K′ is non-empty with high-probability. Since ∥Zf(xt)∥2 ≥ 0 for all t ∈ Kc, we know

d̂2(Z) ≥
∑
k∈K′

∥Zf(xt)∥2.

To establish a high-probability lower bound of ∥Zf(xt)∥2, we prove the following lemma.

Lemma 3. For each t ∈ K′, it holds that

P
[
∥Zf(xt)∥2 ≥ λ

2

∣∣∣∣ Ft

]
≥ cλ4

σ4L4
,

where c := 1/1058 is an absolute constant.

For each t ∈ K′, let 1t be the indicator of the event that ∥Zf(xt)∥2 is larger than the cλ4

σ4L4 -quantile
conditional on Ft. Then, it holds that

P(1t = 1 | Ft) = 1− P(1t = 0 | Ft) =
cλ4

σ4L4
.

Therefore, we know {
1t −

cλ4

σ4L4
, t ∈ K′

}
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is a martingale with respect to filtration set {Ft, t ∈ K′}. Applying Azuma’s inequality, it holds with
probability at least 1− exp[−Θ(λ

4|K′|
σ4L4 )] that∑

t∈K′

1t ≥
cλ4|K′|
2σ4L4

,

which means that for at least cλ4|K′|
2σ4L4 elements in K′, the event that ∥Zf(xt)∥2 is larger than the

cλ4

σ4L4 -quantile conditional on Ft happens. Using the lower bound on the quantile in Lemma 3, we
know ∑

t∈K′

∥Zf(xt)∥2 ≥ cλ4|K′|
2σ4L4

· λ
2
+

(
|K′| − cλ4|K′|

2σ4L4

)
· 0 =

cλ5|K′|
4σ4L4

(53)

holds with the same probability.

Combining inequalities equation 52 and equation 53, we get

P
[
f(Z) ≤ ϵ− cλ5|K′|

4σ4L4

]
≥ 1− exp

[
− (1− ρL)3

2σ2L2p|K|
· ϵ2
]
− exp

[
−Θ

(
λ4|K′|
σ4L4

)]
,

where we define f(Z) := d̂1(Z)− d̂2(Z). Choosing

ϵ :=
cλ5|K′|
8σ4L4

,

it follows that

P
[
f(Z) ≤ −cλ5|K′|

8σ4L4

]
(54)

≥1− exp

[
−Θ

(
(1− ρL)3λ10|K′|2

σ10L10p|K|

)]
− exp

[
−Θ

(
λ4|K′|
σ4L4

)]
.

By the definition of the probabilistic attack model, it holds with probability at least 1−exp[−Θ[p(1−
p)T ]] that

|K| ≤ 2pT, |K′| ≥ p(1− p)T

2
. (55)

Therefore, the probability bound in equation 54 becomes

P
[
f(Z) ≤ −cλ5p(1− p)T

16σ4L4

]
≥1− exp

[
−Θ

(
(1− ρL)3λ10(1− p)2T

σ10L10

)]
− exp

[
−Θ

(
λ4p(1− p)T

σ4L4

)]
− exp[−Θ[p(1− p)T ]].

Now, if the sample complexity satisfies

T ≥ Θ

[
max

{
κ10

(1− ρL)3(1− p)2
,

κ4

p(1− p)

}
log

(
1

δ

)]
, (56)

we know

P [f(Z) ≤ −θ] ≥ 1− δ, (57)

where we define

κ :=
σL

λ
, θ :=

cλ5p(1− p)T

16σ4L4
.

Step 2. In the second step, we apply discretization techniques to prove that condition equation 57
holds for all Z ∈ SF . For a sufficiently small constant ϵ > 0, let

{Z1, . . . , ZN}
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be an ϵ-cover of the unit ball SF . Namely, for all Z ∈ SF , we can find r ∈ {1, 2, . . . , N} such that
∥Z − Zr∥F ≤ ϵ. It is proved in Wainwright (2019) that the number of points N can be bounded by

log(N) ≤ mn log

(
1 +

2

ϵ

)
.

Now, we estimate the Lipschitz constant of f(Z) and construct a high-probability upper bound for
the Lipschitz constant. For all Z,Z ′ ∈ Rn×m, we can calculate that

f(Z)− f(Z ′) =
∑
t∈K

〈
(Z − Z ′)⊤, f(xt)d̂

⊤
t

〉
−
∑
t∈Kc

(∥Zf(xt)∥2 − ∥Z ′f(xt)∥2)

≤ ∥Z − Z ′∥F
∑
t∈K

∥∥∥f(xt)d̂
⊤
t

∥∥∥
F
+ ∥Z − Z ′∥2

∑
t∈Kc

∥f(xt)∥2

≤ ∥Z − Z ′∥F
T−1∑
t=0

∥f(xt)∥2 . (58)

Using the decomposition in Step 1-1, we have

f(xt) =

j∑
ℓ=1

gkℓ
t ,

where kj is the maximal element in K such that kj < t. Therefore, we can calculate that

T−1∑
t=0

∥f(xt)∥2 ≤
|K|∑
j=1

T−1∑
t=kj+1

∥∥∥gkj

t

∥∥∥
2
. (59)

For each j ∈ {1, . . . , |K|}, we can prove in the same way as equation 47 that∥∥∥gkj

t

∥∥∥
2
≤ L(ρL)kj−t−1∥d̄kj∥2, ∀t > kj .

Substituting into inequality equation 59, it follows that

T−1∑
t=0

∥f(xt)∥2 ≤
|K|∑
j=1

T−1∑
t=kj+1

L(ρL)kj−t−1∥d̄kj∥2 ≤ L

1− ρL

|K|∑
j=1

∥d̄kj∥2.

Using Assumption 6 and the same technique as in equation 50, we know

P

 |K|∑
j=1

∥d̄kj
∥2 ≤ η

 ≥ 1− 2 exp

(
− η2

2σ2|K|

)
≥ 1− 2 exp

(
− η2

4σ2pT

)
,

where the second inequality is from the high probability bound in equation 55. Hence, it holds that

P

(
T−1∑
t=0

∥f(xt)∥2 ≤ η

)
≥ 1− 2 exp

(
−η2(1− ρL)2

4σ2L2pT

)
, (60)

Choosing

η :=
θ

2ϵ
,

the bound in equation 60 becomes

P

(
T−1∑
t=0

∥f(xt)∥2 ≤ θ

2ϵ

)
≥ 1− 2 exp

(
− (1− ρL)2

4σ2L2pTϵ2
· θ2
)

(61)

= 1− 2 exp

[
−Θ

[
(1− ρL)2

4σ2L2pTϵ2
·
(
λ5p(1− p)T

σ4L4

)2
]]

= 1− 2 exp

[
−Θ

[
(1− ρL)2κ10p(1− p)2T

ϵ2

]]
.
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We set

ϵ := Θ
[√

(1− ρL)2κ10p(1− p)2
]
.

Then, it follows that

exp

[
−Θ

[
(1− ρL)2κ10p(1− p)2T

ϵ2

]]
= exp [−Θ(T )] ≤ δ

4
,

where the last inequality is from the choice of T in equation 56. Substituting back into equation 61,
we get

P

(
T−1∑
t=0

∥f(xt)∥2 ≤ θ

2ϵ

)
≥ 1− δ

2
. (62)

Under the event in equation 62, for all Z ∈ SF , there exists an element Zr in the ϵ-net such that

f(Z) ≤ f(Zr) + ϵ ·
T−1∑
t=0

∥f(xt)∥2 ≤ f(Zr) +
θ

2
.

If we replace δ with δ/(2N) in equation 57 and choose Z = Zr for all r ∈ {1, . . . , N}, the union
bound implies that

P [f(Zr) ≤ −θ, r = 1, . . . , N ] ≥ 1− δ

2
. (63)

Under the above condition, we have

f(Z) ≤ f(Zr) +
θ

2
≤ −θ

2
< 0.

To satisfy condition equation 63, the sample complexity bound equation 56 becomes

T ≥ Θ

[
max

{
κ10

(1− ρL)3(1− p)2
,

κ4

p(1− p)

}
log

(
2N

δ

)]
= Θ

[
max

{
κ10

(1− ρL)3(1− p)2
,

κ4

p(1− p)

}

×
[
mn log

(
1

(1− ρL)κp(1− p)

)
+ log

(
1

δ

)]]
,

which is the desired sample complexity bound in the theorem.

Lower bound of κ. Before we close the proof, we provide a lower bound of κ = σL/λ. Equiva-
lently, we provide an upper bound on λ2, which is at most the minimal eigenvalue of

E
[
f(x+ d̄t)f(x+ d̄t)

⊤ | Ft, d̄t ̸= 0n
]
.

Let ν ∈ Rm be a vector satisfying

∥ν∥2 = 1, ν⊤f (x) = 0.

Then, we know

ν⊤f(x+ d̄t)f(x+ d̄t)
⊤ν = ν⊤

[
f(x+ d̄t)− f(x)

] [
f(x+ d̄t)− f(x)

]⊤
ν (64)

=
[[
f(x+ d̄t)− f(x)

]⊤
ν
]2

≤
∥∥f(x+ d̄t)− f(x)

∥∥2
2

≤ L2∥d̄t∥22,

where the last inequality is from the Lipschitz continuity of f . Using the sub-Gaussian assumption, it
follows that

E
[
∥d̄t∥22 | Ft, d̄t ̸= 0n

]
≤ σ2, (65)
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where we utilize the fact that the standard deviation of sub-Gaussian random variables with parameter
σ is at most σ. Combining inequalities equation 64 and equation 65, it follows that

ν⊤E
[
f(x+ d̄t)f(x+ d̄t)

⊤ | Ft, d̄t ̸= 0n
]
ν ≤ σ2L2.

Therefore, it holds that

λ2 ≤ λmin

[
E
[
f(x+ d̄t)f(x+ d̄t)

⊤ | Ft, d̄t ̸= 0n
]]

≤ σ2L2, ∀x ∈ Rn,

which further leads to

κ =
σL

λ
≥ 1.

This completes the proof.

D.8 PROOF OF LEMMA 3

Proof of Lemma 3. Let

δ :=
cλ4

σ4L4
, θt :=

∥∥Z⊤f
[
Āf(xt−1)

]∥∥
2
.

We finish the proof by discussing two cases.

Case 1. We first consider the case when

θt ≥
λ

2
+

√
2σ2L2 log

(
2

1− δ

)
.

Using the Lipschitz continuity of f , we have

∥Zf(xt)∥2 =
∥∥[Zf(xt)− Z⊤f

[
Āf(xt−1)

]]
+ Zf

[
Āf(xt−1)

]∥∥
2

(66)

≥
∥∥Zf

[
Āf(xt−1)

]∥∥
2
−
∥∥Zf(xt)− Zf

[
Āf(xt−1)

]∥∥
2

≥ θt − ∥Z∥2
∥∥f(xt)− f

[
Āf(xt−1)

]∥∥
2

≥ θt − ∥Z∥F · L
∥∥d̄t∥∥2 ≥ θt − L

∥∥d̄t∥∥2 .
By Assumption 6, we know

∥∥d̄t∥∥2 = |ℓt| and it follows that

P
(∥∥d̄t∥∥2 ≥ ϵ | Ft

)
≤ 2 exp

(
− ϵ2

2σ2

)
, ∀ϵ ≥ 0.

Therefore, we get the estimation

P
(
∥Zf(xt)∥2 ≤ λ

2

∣∣∣∣ Ft

)
≤ P

(
θt − L

∥∥d̄t∥∥2 ≤ λ

2

∣∣∣∣ Ft

)
= P

(∥∥d̄t∥∥2 ≥ θt − λ/2

L

∣∣∣∣ Ft

)
≤ P

(∥∥d̄t∥∥2 ≥

√
2σ2 log

(
2

1− δ

) ∣∣∣∣ Ft

)
≤ 1− δ.

Therefore, we have proved that

P
(
∥Zf(xt)∥2 ≥ λ

2

∣∣∣∣ Ft

)
≥ δ.

Case 2. Then, we focus on the case when

θt ≤
λ

2
+

√
2σ2L2 log

(
2

1− δ

)
. (67)
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Assume conversely that

P
(
∥Zf(xt)∥2 ≥ λ

2

∣∣∣∣ Ft

)
< δ. (68)

Similar to inequality equation 66, the Lipschitz continuity of f implies

∥Zf(xt)∥2 ≤ θt + L
∥∥d̄t∥∥2 .

Therefore, by applying Assumption 6, we get the tail bound

P (∥Zf(xt)∥2 ≥ θ | Ft) ≤ P
(
θt + L

∥∥d̄t∥∥2 ≥ θ | Ft

)
=P
(∥∥d̄t∥∥2 ≥ θ − θt

L

∣∣∣∣ Ft

)
≤ 2 exp

[
− (θ − θt)

2

2σ2L2

]
, ∀θ ≥ θt.

Define (x)+ := max{x, 0}. The above bound leads to

P (∥Zf(xt)∥2 ≥ θ | Ft) ≤ 2 exp

[
−
(θ − θt)

2
+

2σ2L2

]
, ∀θ ∈ R. (69)

Using the definition of expectation, we can calculate that

E
[
∥Zf(xt)∥22 | Ft

]
=

∫ ∞

0

2θ · P [∥Zf(xt)∥2 ≥ θ | Ft] dθ

≤ λ2

4
+

∫ ∞

λ/2

2θ · P [∥Zf(xt)∥2 ≥ θ | Ft] dθ.

By condition equation 68, we get

P [∥Zf(xt)∥2 ≥ θ | Ft] ≤ P
[
∥Zf(xt)∥2 ≥ λ

2

∣∣∣∣ Ft

]
≤ δ, ∀θ ≥ λ

2
.

Combining with inequality equation 69, it follows that

E
[
∥Zf(xt)∥22 | Ft

]
≤ λ2

4
+

∫ ∞

λ/2

2θ ·min

{
δ, 2 exp

[
−
(θ − θt)

2
+

2σ2L2

]}
dθ (70)

=
λ2

4
+ δ

(
θ21 −

λ2

4

)
+

∫ ∞

θ1

4θ exp

[
− (θ − θt)

2

2σ2L2

]
dθ,

where we define

θ1 := max

{
λ

2
, θt +

√
2σ2L2 log

(
2

δ

)}
≥ θt.

Using condition equation 67, we know

θ21 ≤

(
λ

2
+

√
2σ2L2 log

(
2

1− δ

)
+

√
2σ2L2 log

(
2

δ

))2

(71)

≤

(
λ

2
+ 2

√
2σ2L2 log

(
2

δ

))2

≤ λ2

2
+ 16σ2L2 log

(
2

δ

)
,

where the last inequality is from Cauchy’s inequality. Moreover, we can estimate that∫ ∞

θ1

4θ exp

[
− (θ − θt)

2

2σ2L2

]
dθ ≤

∫ ∞

θ2

4θ exp

[
− (θ − θt)

2

2σ2L2

]
dθ (72)

=

∫ ∞

θ2

4θt exp

[
− (θ − θt)

2

2σ2L2

]
dθ +

∫ ∞

θ2

4(θ − θt) exp

[
− (θ − θt)

2

2σ2L2

]
dθ

=

∫ ∞

θ2

4θt exp

[
− (θ − θt)

2

2σ2L2

]
dθ + 2δσ2L2,
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where we denote θ2 := θt+
√
2σ2L2 log

(
2
δ

)
≤ θ1. Utilizing the following bound on the cumulative

density function of the standard Gaussian distribution:∫ ∞

η

e−
x2

2 dx ≤ η−1e−
η2

2 , ∀η > 0,

we have ∫ ∞

θ2

4θt exp

[
− (θ − θt)

2

2σ2L2

]
dθ ≤ 4θtσL · 1√

2 log
(
2
δ

) · δ2 ≤
√
2θt · δσL.

Combining with equation 72, it follows that∫ ∞

θ1

4θ exp

[
− (θ − θt)

2

2σ2L2

]
dθ ≤

√
2θt · δσL+ 2δσ2L2 ≤ 4δθ2t + 4δσ2L2, (73)

where the last inequality is from Cauchy’s inequality. Substituting inequalities equation 71 and
equation 73 back into equation 70, we get

E
[
∥Zf(xt)∥22 | Ft

]
≤ λ2

4
+ δ

[
λ2

4
+ 16σ2L2 log

(
2

δ

)]
+ 4δθ2t + 4δσ2L2

≤ (1 + δ)λ2

4
+ 16σ2L2 · δ log

(
2

δ

)
+ δ

[
λ

2
+

√
2σ2L2 log

(
2

1− δ

)]2
+ 4δσ2L2

≤ (1 + δ)λ2

4
+ 16σ2L2 · δ log

(
2

δ

)
+

δλ2

2
+ 4σ2L2 · δ log

(
2

δ

)
+ 4δσ2L2

≤ (1 + 3δ)λ2

4
+ 24σ2L2 · δ log

(
2

δ

)
.

where the second inequality is from equation 67 and the last inequality is from Cauchy’s inequality
and δ < 1/2. On the other hand, Assumption 3 implies that

E
(
∥Zf(xt)∥22 | Ft

)
=
〈
ZZ⊤,E

[
f(xt)f(xt)

⊤ | Ft

]〉
≥ λ2∥Z∥2F = λ2.

Combining the last two inequalities, we get

λ2 ≤ (1 + 3δ)λ2

4
+ 24σ2L2 · δ log

(
2

δ

)
,

which is equivalent to

δ log

(
2

δ

)
≥ (3− 3δ)λ2

96σ2L2
≥ λ2

23σ2L2
.

For all x ∈ (0, 1), it holds that x log(2/x) <
√
2x. Hence, we have

√
2δ >

λ2

23σ2L2
,

which contradicts with our assumption equation 68.

D.9 PROOF OF THEOREM 7

Proof of Theorem 7. In this proof, we focus on the case when m = n and the counterexample can be
easily extended into more general cases. We construct the following system dynamics:

Ā := ρIn, f(x) := x, ∀x ∈ Rn,

where ρ ≥ 2 +
√
6 is a constant. One can verify Assumption 4 holds with Lipschitz constant L = 1.

Therefore, the stability condition (Assumption 5) is violated since ρ > 1/L. The system dynamics
can be written as

xt =
∑

k∈K,k<t

ρt−k−1dk, ∀t ∈ {0, . . . , T}. (74)
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Conditional on Ft and t ∈ K, the attack vector is generated as

dt ∼ Uniform(Sn−1),

where Sn−1 is the unit ball {d ∈ Rn | ∥d∥2 = 1}. The attack model satisfies Assumption 3 with
λ = 1/

√
n and Assumption 6 with σ = 1/

√
n. Define the event

E := {T − 1 ∈ K, |K| > 1} .

By the definition of the probabilistic attack model, we can calculate that

P(E) = p
[
1− (1− p)T−1

]
.

Our goal is to prove that

P
[
d̂1(Z)− d̂2(Z) > 0 | E

]
= 1,

where we define

d̂1(Z) :=
∑
t∈K

〈
Z⊤, f(xt)d̂

⊤
t

〉
, d̂2(Z) :=

∑
t∈Kc

∥Zf(xt)∥2 .

Then, by Theorem 1, we know that Ā is not a global solution to problem equation 3 with probability
at least

p
[
1− (1− p)T−1

]
.

Let t1 be the smallest element in K, namely, the first time instance when there is an attack. Under
event E , it holds that t1 < T − 1. We first prove that

xt ̸= 0n, ∀t ∈ {t1 + 1, . . . , T − 1}.

By the system dynamics equation 74 and the triangle inequality, we have

∥xt∥2 ≥ ρt−t1−1∥dt1∥2 −
∑

k∈K,t1<k<t

ρt−k−1∥dk∥2 = ρt−t1−1 −
∑

k∈K,t1<k<t

ρt−k−1

≥ ρt−t1−1 −
t−t1−2∑
i=0

ρi =
ρt−t1 − 2ρt−t1−1 + 1

ρ− 1
> 0,

where the last inequality holds because ρ ≥ 2. Then, we choose

Z := xT−1d̂
⊤
T−1 ̸= 0.

It follows that

d̂1(Z) =
∑
t∈K

〈
Z⊤, f(xt)d̂

⊤
t

〉
=
∥∥∥xT−1d̂

⊤
T−1

∥∥∥2
F
+

∑
t∈K,t<T−1

〈
xT−1d̂

⊤
T−1, f(xt)d̂

⊤
t

〉
≥ ∥xT−1∥22 −

∑
t∈K,t<T−1

∥xT−1∥2 ∥xt∥2 ,

d̂2(Z) =
∑
t∈Kc

∥Zf(xt)∥2 =
∑
t∈Kc

∥∥∥xT−1d̂
⊤
T−1xt

∥∥∥
2
≤
∑
t∈Kc

∥xT−1∥2 ∥xt∥2 .

Combining the above two inequalities, we get

d̂1(Z)− d̂2(Z) ≤ ∥xT−1∥2

(
∥xT−1∥2 −

T−2∑
t=0

∥xt∥2

)
= ∥xT−1∥2

(
∥xT−1∥2 −

T−2∑
t=t1+1

∥xt∥2

)
,

where the last equality holds because xt = 0n for all t ≤ t1. Since ∥xT−1∥2 > 0, it is sufficient to
prove that

∥xT−1∥2 >

T−2∑
t=t1+1

∥xt∥2 . (75)
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Considering the system dynamics equation 74 and the fact that ∥dk∥2 = 1 for all k ∈ K , we have
the estimation

ρt−t1−1 −
∑

k∈K,t1<k<t

ρt−k−1 ≤ ∥xt∥2 ≤
∑

k∈K,k<t

ρt−k−1.

The desired inequality equation 75 holds if we can show

ρT−1−t1−1 −
∑

k∈K,t1<k<T−1

ρT−1−k−1 >

T−2∑
t=t1+1

∑
k∈K,k<t

ρt−k−1,

which is further equivalent to

2ρT−t1−2 >

T−1∑
t=t1+1

∑
k∈K,k<t

ρt−k−1

⇐= 2ρT−t1−2 >

T−1∑
t=t1+1

t−1∑
k=t1

ρt−k−1 =

T−1∑
t=t1+1

ρt−t1 − 1

ρ− 1
=

ρT−t1 − ρ− (T − t1 − 1)(ρ− 1)

(ρ− 1)2

⇐= 2ρT−t1−2 ≥ ρT−t1

(ρ− 1)2
⇐⇒ ρ2 − 4ρ− 2 ≥ 0 ⇐= ρ ≥ 2 +

√
6.

By our choice of ρ, we know condition equation 75 holds and this completes our proof.

E NUMERICAL EXPERIMENTS FOR BOUNDED BASIS FUNCTION

In this section, we provide the descriptions of basis functions and analyze the performance of estimator
equation 2 in the case of bounded basis function. We show that the estimator equation 2 is able to
exactly recover the ground truth Ā with different attack probability p and problem dimension (n,m).
We utilize the same evaluation metrics as in Section 7 and define the system dynamics as follows.

Lipschitz basis function. Given the state space dimension n, we choose m = n and define the
basis function as

f(x) :=
1√
n


√
∥x− x1∥22 + 1−

√
∥x1∥22 + 1

...√
∥x− xn∥22 + 1−

√
∥xn∥22 + 1

 , ∀x ∈ Rn,

where x1, . . . , xn ∈ Rn are instances of i.i.d. standard Gaussian random vectors. We can verify
that the basis function is Lipschitz continuous with Lipschitz constant L = 1 and thus, it satisfies
Assumption 4. For each time instance t ∈ K, the noise d̄t is generated by

d̄t := ℓtd̂t, where ℓt ∼ N (0, σ2
t ), d̂t ∼ uniform(Sn−1), ℓt and d̂t are independent.

Here, we define σ2
t := min{∥xt∥22, 1/n}. We can verify that the random variable ℓt is zero-mean

and sub-Gaussian with parameter σ = 1. In addition, the random vector d̂t follows the uniform
distribution and therefore, Assumption 6 is satisfied. Note that d̄0, . . . , d̄T−1 are correlated and they
violate the i.i.d. assumption in the literature. Our attack model implies that the intensity of an attack
(namely, ℓt) depends on the current state, which is a function of previous attacks. Since the points
x1, . . . , xn are randomly generated, the multiquadric radial basis functions are linearly independent1
with probability 1 and therefore, the non-degenerate assumption (Assumption 3) is satisfied. Finally,
the ground truth matrix Ā is constructed as UΣV ⊤, where U, V ∈ Rn×n are random orthogonal
matrices and Σ = diag(σ1, . . . , σn) is a diagonal matrix. The singular values are generated as
follows:

σi
i.i.d.∼ uniform(0, ρ), ∀i ∈ {1, . . . , n},

where ρ > 0 is the upper bound on the spectral norm of Ā.
1Functions g1(y), . . . , gk(y) are said to be linearly independent if there do not exist constants c1, . . . , ck

such that
∑k

i=1 cigi(y) = 0 for all y.
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Figure 4: Loss gap, solution gap and optimality certificate of the bounded basis function case with
attack probability p = 0.7, 0.8 and 0.85.

Bounded basis function. Given the state space dimension n, we choose m = 5n and define the
basis function as

f(x) :=

f̃(x1)
...

f̃(xn)

 , where f̃(y) :=

 sin(y)
...

sin(5y)

 , ∀x ∈ Rn, y ∈ R.

The basis function satisfies Assumption 2 with B = 1. For each time instance t ∈ K and for each
i ∈ {1, . . . , n}, the noise d̄t,i is independently generated by

d̄t,i ∼ Uniform (−ct,iπ, ct,iπ) , where ci,t := min{max{|xt,i|, 0.1}, 0.5}.

Note that d̄t,i and xt,i is the i-th component of d̄t and xt, respectively. Since the attack is symmetric
with respect to the origin, it satisfies Assumption 1. Since the sine functions sin(y), . . . , sin(5y) are
linearly independent, the non-degenerate assumption (Assumption 3) is satisfied. Finally, the ground
truth matrix Ā is constructed such that

Āf(x) =


∑5

k=1 ā1,k sin(kx1)
...∑5

k=1 ān,k sin(kxn)

 ,

where
āi,k

i.i.d.∼ Uniform(−100, 100), ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , 5}.
We note that we choose the upper bound of coefficients āi,k to be larger than 1 to show that the
stability condition (Assumption 5) is not required in the bounded basis function case.

Results. We first compare the performance of estimator equation 2 with different attack probability
p. We choose T = 900, n = 1 and p ∈ {0.7, 0.8, 0.85}. The results are plotted in Figure 4. We
can observe behaviors similar to the Lipschitz basis function case. More specifically, the optimality
certificate accurately measures the exact recovery of the estimator equation 2, and the required sample
complexity increases with the probability of attack p.

Next, we show the performance of the estimator equation 2 with different dimensions (n,m). We
choose T = 500, p = 0.7 and n ∈ {1, 2, 4}. The results are plotted in Figure 5. We can see that
the exact recovery occurs with more samples when (n,m) is larger, which still verifies the results in
Theorem 4.

F NUMERICAL EXPERIMENTS WITH LOW ATTACK FREQUENCY

In this section, we repeat the experiments in Figure 1 with p ∈ {0.001, 0.1, 0.3} and n = 5. The
results are plotted in Figure 6. We can see that the predictor fails to find the ground truth within 500
steps when p = 0.01, while it converges when p = 0.1 and 0.3. Note that the loss gap and optimality
certificate are both equal to 0 in the case when p = 0.001. This is because there exist multiple global
solutions and the estimator fails to recover the ground truth solution within 500 iterations. Note that
the algorithm will eventually converge to the ground truth solution when more samples are available.
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Figure 5: Loss gap, solution gap and optimality certificate of the bounded basis function case with
dimension (n,m) = (1, 5), (2, 10) and (4, 20).

Figure 6: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
attack probability p = 0.001, 0.1 and 0.3. Note that the loss gap and the optimality certificate for the
case when p = 0.001 is always equal to 0.

With that said, the main focus of this paper is the regime when p is larger than 0.5. Note that when
p is very small or even zero, learning the system is a classic problem in control theory, where it is
known that one should add an artificial noise to the system (named excitation signal) to be able to
learn the system. There is a rich literature on why an excitation signal is necessary when the system
is (almost) deterministic. As an example, assume that we have the system xt+1 = Axt, where our
aim is to learn A from measuring xt. If x0 is zero, xt always remains zero and we cannot find A. To
avoid this, we should excite the system as xt+1 = Axt + wt where wt is, for example, Gaussian
noise. When p is away from zero, the adversarial attack does us a favor and acts as an excitation
signal.

G NUMERICAL EXPERIMENTS WITH SPARSE Ā

In this section, we repeat the experiments shown in Figure 1 using the sparse ground truth matrix
Ā. Specifically, we generate a sparse matrix Ā where Āi,j is set to 0 whenever |i − j| > 1. In
other words, Ā is a tridiagonal matrix. We repeat the experiments for Lipschitz basis functions
with p ∈ 0.7, 0.8, 0.85 and n = 10. Additionally, we extend the simulation period to T = 1000,
compared to T = 500 in the previous experiments. To save computational time, we solve the problem
in equation 2 every 10 time periods. Consequently, the plots exhibit discrete jumps corresponding
to time periods that are multiples of ten. We excluded the loss gap from the figures because the
estimator is computed only for a subset of the time periods. Figure 7 suggests that we achieve exact
recovery despite the sparse structure of the ground truth matrix Ā. This result is not surprising, as
the theoretical results do not depend on the sparsity structure of Ā. In addition to demonstrating
robustness, the non-smooth objective function in equation 2 serves as a regularization term for the
specific matrix structure.

H NUMERICAL EXPERIMENTS WITH LARGER ORDER SYSTEMS

In this section, we repeat the experiments shown in Figure 2 with significantly higher-order dynamical
systems and a larger number of basis functions, specifically (n,m) ∈ (10, 20), (25, 50), (50, 100).
We set the probability of an attack occurring to p = 0.6. Additionally, we extend the simulation
period to T = 1100, compared to T = 500 in the previous experiments. To save computational time,
we solve the problem in equation 2 every 100 time periods. Consequently, the plots exhibit discrete
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Figure 7: Solution gap and optimality certificate of the Lipschitz basis function case with p ∈
{0.7, 0.8, 0.85} and n = m = 10.

jumps corresponding to time periods that are multiples of 100. We excluded the loss gap from the
figures because the estimator is computed only for a subset of the time periods.

In Figure 8, we observe that exact recovery is achieved even when the system’s dimension and the
number of basis functions are significantly large within the context of system identification problems.
Achieving exact recovery requires the system to run for a sufficiently long time, with the required
time horizon specified in our theoretical results.

Figure 8: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
dimension (n,m) = (10, 20), (25, 50) and (50, 100).
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