648 A LITERATURE OVERVIEW

649 650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 The literature on the system identification problem focused until recently on the asymptotic properties of the least squares estimator (LSE) Chen & Guo (2012); Ljung et al. (1999); Ljung & Wahlberg (1992); Bauer et al. (1999). With the growing popularity of statistical learning theory Vershynin (2018); Wainwright (2019), understanding the number of samples required for a certain error threshold for the system identification problem has gained significant importance. For an overview of the results and proof techniques, the reader is referred to the survey paper Tsiamis et al. (2023). The literature on the non-asymptotic analysis mainly focused on the linear-time invariant (LTI) system identification problem with i.i.d. noise. The earlier research used mixing arguments that are highly dependent on system stability Kuznetsov & Mohri (2017); Rostamizadeh & Mohri (2007). The most recent studies used martingale and small-ball techniques to provide sample complexity guarantees for least-squares estimators applied to LTI systems Simchowitz et al. (2018); Faradonbeh et al. (2018); Tsiamis & Pappas (2019). These works showed that the LSE converges to the true system parameters with the rate $T^{-1/2}$, where T is the number of samples. This result was applied to the linear-quadratic regulator problem using adaptive control to obtain optimal regret bounds Dean et al. (2020); Abbasi-Yadkori & Szepesvári (2011); Dean et al. (2019).

665 666 667 668 669 670 671 672 673 674 The nonlinear system identification problem is vastly studied Noël & Kerschen (2017); Nowak (2002). Yet, the research on the non-asymptotic analysis of the nonlinear system identification is in its infancy and is mostly focused on parameterized nonlinear systems. Recursive and gradient algorithms designed for the least-squares loss function converge to the true system parameters with the rate $T^{-1/2}$ for nonlinear systems with a known link function ϕ of the form $\phi(\bar{A}x_t)$ using martingale techniques Foster et al. (2020) and mixing time arguments Sattar & Oymak (2022). Most recently, Ziemann et al. (2022) provided sample complexity guarantees for non-parametric learning of nonlinear system dynamics, which scales with $T^{-1/(2+q)}$. Here, q scales with the size of the function class in which we search for the true dynamics. Existing studies on both linear and nonlinear system identification analyzed the problem under i.i.d. (sub)-Gaussian noise structures.

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 Despite the growing interest on non-asymptotic system identification, the literature on the system identification problem with nonsmooth estimators that can handle dependent and adversarial noise vectors is limited to linear systems. The studies Feng & Lavaei (2021) and Feng et al. (2023) considered a nonsmooth convex estimator in the form of the least absolute deviation estimator and analyzed the required conditions for the exact recovery of the system dynamics using the KKT conditions and the Null Space Property from the LASSO literature. Later, Yalcin et al. (2023) showed that exact recovery of system parameters is achievable with high probability even when more than half of the data is corrupted. This provides a further avenue of research for the adversarially robust system identification problem. Yalcin et al. (2023) was the first paper that employed a nonsmooth estimator for nonlinear system identification. Compared with Yalcin et al. (2023), the presence of nonlinear basis functions makes it impossible to directly analyze the optimization problem by writing the explicit expression of x_t ; see the proof of Theorem 2 in Yalcin et al. (2023). Note that when the system is in the form of $x_{t+1} = Ax_t$, then x_t can be written directly as A^tx_0 and we only need to analyze the eigenvalues of A. For a nonlinear system in the form of $x_{t+1} = f(x_t)$, writing x_t in terms of x_0 needs the composition of t functions, and this cannot be done analytically. There does not exist counterpart of linear-system eigenvalue analysis for nonlinear systems. This challenge is repeatedly acknowledged in many textbooks of nonlinear systems in the area of control theory, and for that reason several results known for linear systems do not have a counterpart in the nonlinear setting. Therefore, we took a different approach to estimate the terms that appear in the uniqueness condition equation 7 in Section 3 In addition, we do not need the stability assumption (Assumption 5) in the case of a bounded basis function (note that the stability assumption was the key in the linear case since it was directly related to the eigenvalues of A and the behavior of A^t when t goes to infinity). As a result, the proof for the bounded case is novel and different from those in Yalcin et al. (2023). Finally, by utilizing the generalized Farkas' lemma, the necessary and sufficient conditions in Sections 2-3 are novel and stronger than the sufficient conditions in Yalcin et al. (2023).

698 699 700 701 On the other hand, robust regression techniques have been developed using regularizers in the objective function Xu et al. (2009); Bertsimas & Copenhaver (2018); Huang et al. (2016). In addition, the robust estimation literature provided multiple nonsmooth estimators, such as M-estimators, least absolute deviation, convex estimators, least median squares, and least trimmed squares Seber & Lee (2012). The convex estimator equation 2 was proposed in Bako & Ohlsson (2016); Bako (2017) in

702 703 704 705 the context of robust regression. They showed that the estimator can achieve the exact recovery when we have infinitely many samples. However, the study lacks a non-asymptotic analysis on the sample complexity. Additionally, the analysis techniques cannot be applied to the analysis of dynamical systems due to the autocorrelation among the samples.

706 707 708 709 710 711 712 713 714 715 716 717 718 The two recent papers Wu et al. (2022); Kumar et al. (2022) focused on the reinforcement learning (RL) problem, whose goal is to maximize the reward function. In contrast, in the system identification problem, the goal is to recover the underlying system dynamics and the application may not incur a naturally defined reward function. The two referenced papers assumed the perturbation to be bounded, which is a strict assumption and may not hold in practice. More importantly, controlling a system without learning its dynamics (e.g., by model-free RL techniques) is a dangerous approach since the policy during exploration could shift the state move out of safe regions and trigger instability; see the survey paper Moerland et al. (2023). Hence, for safety-critical systems, it is usually essential to first learn the system and then apply a control method, which could be classic optimal control or RL algorithms. Our paper is concerned with learning the model of the system where there is an attack to its dynamics. The existing RL methods, including Wu et al. (2022); Kumar et al. (2022), are concerned with a different problem. In addition, we note that although the area of robust model-based RL techniques is rich, our setting of unknown systems requires model-free RL techniques.

719 720

B COMPARING RESULTS TO EXISTING WORK

Example 1 (First-order systems). In the special case when $n = m = 1$ and the basis function is $f(x) = x$ *, condition equation* 6 *reduces to*

$$
\left|\sum_{t\in\mathcal{K}}\hat{d}_t x_t\right| \leq \sum_{t\in\mathcal{K}^c} |x_t|,
$$

which is the same as Theorem 1 in Feng & Lavaei (2021).

Then, we can calculate that

 $\hat d^\top Z \bar A^{\Delta-1} \bar d_{t_1} \leq \sum^{\Delta-2}$

Example 2 (Linear systems). We consider the case when $m = n$ and the basis function is $f(x) = x$. *We also assume the* ∆*-spaced attack model; see the definition in Yalcin et al. (2023). By considering the attack period starting at the time step* $t₁$ *, a sufficient condition to guarantee condition equation* 4 *is given by*

732 733

734 735

751 752 753

 $t=0$ where we denote $\hat{d} := \hat{d}_{t_1}$ for simplicity. Let $\hat{D} \in \mathbb{R}^{n \times (n-1)}$ be the matrix of orthonormal bases of *the orthogonal complementary space of f, namely,* $\hat{D}^\top \hat{d} = 0$, $\hat{D}^\top \hat{D} = I_{n-1}$, and $\hat{D}\hat{D}^\top = I_n - \hat{d}\hat{d}^\top$.

> $\left\|Z\bar{A}^{t}\bar{d}_{t_{1}}\right\|$ 2 $\begin{aligned} \mathbf{Z}_2^2 \geq \left(Z \bar{A}^t \bar{d}_{t_1}\right)^\top \hat{d} \hat{d}^\top \left(Z \bar{A}^t \bar{d}_{t_1}\right), \end{aligned}$

where the equality holds when $\hat{D}^\top Z \bar{A}^t \bar{d}_{t_1} = 0$, i.e., $Z\bar{A}^t \bar{d}_{t_1}$ is parallel with \hat{d} *. Therefore, for condition equation* [12](#page-1-0) *to hold, it is equivalent to consider* Z *with the form* $Z = d\overline{z}^\top$ *for some vector* $z \in \mathbb{R}^n$. In this case, condition equation [12](#page-1-0) reduces to

$$
z^{\top} \bar{A}^{\Delta - 1} \bar{d}_{t_1} \le \sum_{t=0}^{\Delta - 2} \left| z^{\top} \bar{A}^t \bar{d}_{t_1} \right|, \quad \forall z \in \mathbb{R}^n.
$$
 (13)

 $||Z\bar{A}^t \bar{d}_{t_1}||_2, \quad \forall Z \in \mathbb{R}^{n \times n}$

 (12)

747 748 749 750 *Condition equation [13](#page-1-1) leads to a better sufficient condition than that in Yalcin et al. (2023). To illustrate the improvement, we consider the special case when the ground truth matrix is* $A = \lambda I_n$ *for some* $\lambda \in \mathbb{R}$ *. Then, condition equation [13](#page-1-1) becomes*

$$
|\lambda|^{\Delta-1}\leq \sum_{t=0}^{\Delta-2}|\lambda|^t=\frac{1-|\lambda|^{\Delta-1}}{1-|\lambda|}\quad,\text{ which is further equivalent to }|\lambda|+|\lambda|^{1-\Delta}\leq 2,
$$

754 755 *which is a stronger condition than that in Yalcin et al. (2023). When the attack period* ∆ *is large, we* a pproximately have $|\lambda| \leq 2 - 2^{1-\Delta}$, which is a better condition than that in Figure 1 of Yalcin et al. *(2023).*

756 757 758 Example 3 (First-order linear systems). In the case when $m = n = 1$ and $f(x) = x$, our results *state that the uniqueness of global solutions is equivalent to*

$$
\left| \sum_{t \in \mathcal{K}} \hat{d}_t x_t \right| < \sum_{t \in \mathcal{K}^c} |x_t|.
$$
\n(14)

As a comparison, the sufficient condition in Theorem 1 in Feng & Lavaei (2021) is

$$
\sum_{t \in \mathcal{K}} |x_t| < \sum_{t \in \mathcal{K}^c} |x_t|.
$$

 $Sinee |\hat{d}_t| = 1$ *for all* $t \in K$ *, our results equation [14,](#page-2-0) as well as Theorem 2, are more general and stronger than that in Feng & Lavaei (2021).*

C FUTURE WORKS

772 773 774 775 776 777 One potential future direction is to study the case when there exists dense but small noises in the observations of x_t . Our analysis can be naturally extended to this case if an upper bound on the noise scale is assumed. In this work, we mainly focus on large but sparse attacks to exhibit the relation between the sample complexity and the attacks. To provide an intuitive explanation, first assume that the small and dense noise ξ_t is zero. The Lasso-type estimator equation 2 can be written as a constrained optimization problem, where each equation

$$
\begin{array}{c} 778 \\ 779 \end{array}
$$

794 795

 $x_{t+1} - Af(x_t) - d_t = 0$

780 781 782 783 784 785 786 787 appears as a constraint. We have derived conditions under which the optimal solution is the correct parameters of the system. Adding ξ_t is essentially equivalent to a perturbation to the constraints of an optimization problem. It is easy to measure how much the optimal solution changes when there is a right-hand side uncertainty. The bound is easy to derive and depends on a given upper bound on the magnitude of ξ_t . This relies on classic results in optimization. Moreover, it is possible to improve the sample complexity by injecting small noise into the system dynamics. Intuitively, the injected noise accelerates the "exploration" of $f(x_t)$ in the basis space. This claim can be rigorously proved by utilizing the same techniques as in the paper; see Section V of Yalcin et al. (2023) for an example of the linear system identification problem.

788 789 790 791 792 793 The extension to more general parameterized dynamical systems is another important future direction. The theoretical challenge of the generalization lies in the fact that more complex models, such as generative language models, do not use linear parameterization equation 2 The optimality conditions for deep neural networks are still vague without additional assumptions. This work serves as a first step towards understanding non-linearly parameterized dynamical systems.

D PROOFS

796 797 D.1 PROOF OF THEOREM 1

> *Proof of Theorem 1.* Since problem equation 3 is convex in A, the ground truth matrix \overline{A} is a global optimum if and only if

$$
0 \in \sum_{t \in \mathcal{K}^c} f(x_t) \otimes \partial \|\mathbf{0}_n\|_2 + \sum_{t \in \mathcal{K}} f(x_t) \otimes \hat{d}_t.
$$
 (15)

Using the form of the subgradient of the ℓ_2 -norm, condition equation [15](#page-2-1) holds if and only if there exist vectors

$$
g_t \in \mathbb{R}^n, \quad \forall t \in \mathcal{K}^c
$$

such that

$$
\sum_{t \in \mathcal{K}^c} f(x_t) g_t^\top + \sum_{t \in \mathcal{K}} f(x_t) \hat{d}_t^\top = \mathbf{0}_{n \times n}, \quad \|g_t\|_2 \le 1, \quad \forall t \in \mathcal{K}^c.
$$
 (16)

810 811 Define the matrices

812 813

$$
B := [f(x_t) \quad \forall t \in \mathcal{K}^c] \in \mathbb{R}^{m \times (T - |\mathcal{K}|)}, \quad V := [f(x_t) \quad \forall t \in \mathcal{K}] \in \mathbb{R}^{m \times |\mathcal{K}|},
$$

$$
G := [g_t \quad \forall t \in \mathcal{K}^c] \in \mathbb{R}^{n \times (T - |\mathcal{K}|)}, \quad F := [\hat{d}_t \quad \forall t \in \mathcal{K}] \in \mathbb{R}^{n \times |\mathcal{K}|}.
$$

Condition equation [16](#page-2-2) can be written as a combination of second-order cone constraints and linear constraints:

$$
\exists G \in \mathbb{R}^{n \times (T - |\mathcal{K}|)}, s, r \in \mathbb{R} \quad \text{s.t.} \quad BG^{\top} + VF^{\top} = \mathbf{0}_{m \times n}, \quad ||G_{:,t}||_2 \le s, \ \forall t,
$$

$$
s + r = 1, \quad s, r \ge 0,
$$
(17)

where $G_{t,t}$ is the t-th column of G for all $t \in \{1, \ldots, T - |\mathcal{K}|\}$. We define the closed convex cone

$$
S := \left\{ z \in \mathbb{R}^{(T-|\mathcal{K}|)n+2} \middle| \sqrt{\sum_{i=1}^{n} z_{(T-|\mathcal{K}|)i+i}^{2}} \leq z_{(T-|\mathcal{K}|)n+1}, \ \forall t \in \{0, \dots, T-|\mathcal{K}|-1\}, \ z_{(T-|\mathcal{K}|)n+1}, z_{(T-|\mathcal{K}|)n+2} \geq 0 \right\},
$$

826 827

and we define the matrix and vector

$$
\mathcal{A}:=\begin{bmatrix}I_n\otimes B & 0 & 0 \\ 0 & 1 & 1\end{bmatrix}\in\mathbb{R}^{(mn+1)\times[(T-|\mathcal{K}|)n+2]},\quad b:=\begin{bmatrix}-(VF^\top)_{:,1}\\-(VF^\top)_{:,2}\\ \vdots\\-(VF^\top)_{:,n}\end{bmatrix}\in\mathbb{R}^{mn+1},
$$

where $(VF^{\top})_{:,i}$ is the *i*-th column of VF^{\top} . Then, condition equation [17](#page-3-0) can be equivalently written as

$$
\exists z \in \mathbb{R}^{(T-|\mathcal{K}|)n+2} \quad \text{s.t. } \mathcal{A}z = b, \quad z \in \mathcal{S}.
$$
 (18)

Since the cone S is closed and convex, we can apply the *generalized Farka's lemma* to conclude that condition equation [18](#page-3-1) is equivalent to

$$
\forall y \in \mathbb{R}^{mn+1}, \quad \left(\mathcal{A}^{\top} y \in \mathcal{S}^* \implies b^{\top} y \ge 0\right), \tag{19}
$$

where S^* is the dual cone of S. It can be verified that the dual cone is

$$
S^* = \left\{ z \in \mathbb{R}^{(T-|K|)n+2} \middle| \sum_{t=0}^{T-|K|-1} \sqrt{\sum_{i=1}^n z_{(T-|K|)i+t}^2} \le z_{(T-|K|)n+1}, \ z_{(T-|K|)n+1}, z_{(T-|K|)n+2} \ge 0 \right\}.
$$

We can equivalently write condition equation [19](#page-3-2) as

$$
\forall Z \in \mathbb{R}^{n \times m}, \ p \in \mathbb{R}, \quad \left(\|ZB\|_{2,1} \leq p, \quad p \geq 0 \implies \langle VF^{\top}, Z^{\top} \rangle \leq p \right),
$$

By eliminating variable p , we get

 $\langle V F^{\top}, Z^{\top} \rangle \leq ||ZB||_{2,1}, \quad \forall Z \in \mathbb{R}^{n \times m},$

where the $\ell_{2,1}$ -norm is defined as

$$
||M||_{2,1}:=\sum_{j=1}^n\sqrt{\sum_{i=1}^mM_{ij}^2},\quad \forall M\in\mathbb{R}^{n\times m}.
$$

The above condition is equivalent to condition equation 4, and this completes the proof.

 \Box

864 865 D.2 PROOF OF COROLLARY 1

Proof of Corollary 1. The sufficient condition follows from the fact that $\|\hat{d}_t\|_2 = 1$ and

$$
\hat{d}_t^{\top} Z f(x_t) \leq \|Z f(x_t)\|_2, \quad \forall t \in \mathcal{K}.
$$

This completes the proof.

D.3 PROOF OF COROLLARY 2

Proof of Corollary 2. We choose

$$
Z := \frac{\sum_{t \in \mathcal{K}} \hat{d}_t f(x_t)^\top}{\left\| \sum_{t \in \mathcal{K}} \hat{d}_t f(x_t)^\top \right\|_F}.
$$

Then, condition equation 4 implies

$$
\left\| \sum_{t \in \mathcal{K}} f(x_t) \hat{d}_t^\top \right\|_F = \sum_{t \in \mathcal{K}} \hat{d}_t^\top Z f(x_t) \le \sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2 \le \sum_{t \in \mathcal{K}^c} \|f(x_t)\|_2,
$$

where the last step is because $||Z||_2 \le ||Z||_F = 1$. Now, suppose that the basis dimension is $m = 1$. In this case, we have

$$
\sum_{t \in \mathcal{K}} \hat{d}_t^{\top} Z f(x_t) = \left(\sum_{t \in \mathcal{K}} f(x_t) \hat{d}_t \right)^{\top} Z^{\top} \le \left\| \sum_{t \in \mathcal{K}} f(x_t) \hat{d}_t \right\|_F \|Z\|_2,
$$

$$
\sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2 = \sum_{t \in \mathcal{K}^c} |f(x_t)| \|Z\|_2 = \sum_{t \in \mathcal{K}^c} \|f(x_t)\|_2 \|Z\|_2.
$$

Combining the above two inequalities shows that condition equation 6 is also a sufficient condition. \Box

D.4 PROOF OF THEOREM 2

893 894 895 896 We establish the sufficient and the necessary parts of Theorem 2 by the following two lemmas. Lemma 1 (Sufficient condition for uniqueness). *Suppose that condition equation 4 holds. If for* ϵ *every nonzero* $Z \in \mathbb{R}^{n \times m}$ such that

$$
\sum_{t \in \mathcal{K}} \hat{d}_t^{\top} Z f(x_t) = \sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2,
$$

it holds that

911 912

$$
\sum_{t \in \mathcal{K}} \left| \hat{d}_t^{\top} Z f(x_t) \right| < \sum_{t \in \mathcal{K}} \| Z f(x_t) \|_2.
$$

Then, the ground truth matrix \overline{A} *is the unique global solution to problem equation* 3.

Proof. The ground truth \overline{A} is the unique solution if and only if for every matrix $A \in \mathbb{R}^{n \times m}$ such that $A \neq A$, the loss function of A is larger than that of A, namely,

$$
\sum_{t \in \mathcal{K}} \|\bar{d}_t\|_2 < \sum_{t \in \mathcal{K}^c} \|(\bar{A} - A)f(x_t)\|_2 + \sum_{t \in \mathcal{K}} \|(\bar{A} - A)f(x_t) + \bar{d}_t\|_2. \tag{20}
$$

Denote

$$
Z := A - \bar{A} \in \mathbb{R}^{n \times m}.
$$

910 The inequality equation [20](#page-4-0) becomes

$$
\sum_{t \in \mathcal{K}^c} \| - Zf(x_t) \|_2 + \sum_{t \in \mathcal{K}} \left(\| - Zf(x_t) + \bar{d}_t \|_2 - \|\bar{d}_t \|_2 \right) > 0. \tag{21}
$$

913 914 915 Since problem equation 3 is convex in A , it is sufficient to guarantee that A is a strict local minimum. Therefore, the uniqueness of global solutions can be formulated as

- **916** condition equation [21](#page-4-1) holds, $\forall Z \in \mathbb{R}^{n \times m}$ s.t. $0 < ||Z||_F \le \epsilon$, (22)
- **917** where $\epsilon > 0$ is a sufficiently small constant. In the following, we fix the direction Z and discuss two different cases.

 \Box

918 919 Case I. We first consider the case when condition equation 4 holds strictly, namely,

$$
\sum_{t \in \mathcal{K}^c} \|Zf(x_t)\|_2 - \sum_{t \in \mathcal{K}} \hat{d}_t^\top Zf(x_t) > 0.
$$

Since the ℓ_2 -norm is a convex function, it holds that

$$
\| - Zf(x_t) + \overline{d}_t \|_2 - \|\overline{d}_t \|_2 \ge \langle \partial \| \overline{d}_t \|_2, -Zf(x_t) \rangle = -\widehat{d}_t^\top Zf(x_t).
$$

Therefore, we get

$$
\sum_{t \in \mathcal{K}^c} \| - Zf(x_t) \|_2 + \sum_{t \in \mathcal{K}} \left(\| - Zf(x_t) + \bar{d}_t \|_2 - \| \bar{d}_t \|_2 \right)
$$

\n
$$
\geq \sum_{t \in \mathcal{K}^c} \| - Zf(x_t) \|_2 + \sum_{t \in \mathcal{K}} - \tilde{d}_t^{\top} Zf(x_t) > 0,
$$

which exactly leads to inequality equation [21.](#page-4-1)

Case II. Next, we consider the case when

$$
\sum_{t \in \mathcal{K}} \hat{d}_t^{\top} Z f(x_t) = \sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2, \quad \sum_{t \in \mathcal{K}} \left| \hat{d}_t^{\top} Z f(x_t) \right| < \sum_{t \in \mathcal{K}} \|Z f(x_t)\|_2. \tag{23}
$$

Since ϵ is a sufficiently small constant, we know

 $\bar{d}_{t}^{\alpha} := -\alpha Z f(x_{t}) + \bar{d}_{t} \neq 0, \quad \forall \alpha \in [0, 1],$

and the ℓ_2 -norm is second-order continuously differentiable in an open set that contains the line. Therefore, the *mean value theorem* implies that there exists $\alpha \in [0,1]$ such that for each $t \in \mathcal{K}$, it holds

$$
|| - Zf(x_t) + \bar{d}_t ||_2 - ||\bar{d}_t ||_2 = \left\langle \hat{d}_t, -Zf(x_t) \right\rangle
$$

+
$$
\frac{1}{2} \left[-Zf(x_t) \right]^\top \left(\frac{I}{||\bar{d}_t^{\alpha}||_2} - \frac{\bar{d}_t^{\alpha} (\bar{d}_t^{\alpha})^\top}{||\bar{d}_t^{\alpha}||_2^3} \right) \left[-Zf(x_t) \right].
$$
 (24)

We can calculate that

$$
\begin{split} \left[-Zf(x_t)\right]^\top \left(\frac{I}{\|\bar{d}_t^\alpha\|_2} - \frac{\bar{d}_t^\alpha \left(\bar{d}_t^\alpha\right)^\top}{\|\bar{d}_t^\alpha\|_2^3}\right) \left[-Zf(x_t)\right] \\ \frac{\left\|Zf(x_t)\right\|_2^2}{\|\bar{d}_t^\alpha\|_2} - \frac{\left\langle\bar{d}_t^\alpha, Zf(x_t)\right\rangle^2}{\|\bar{d}_t^\alpha\|_2^3} \ge 0, \end{split} \tag{25}
$$

where the equality holds if and only if
$$
Zf(x_t)
$$
 is parallel with \bar{d}_t^{α} . By the definition of \bar{d}_t^{α} , the equality holds if and only if $Zf(x_t)$ is parallel with \bar{d}_t , which is further equivalent to

$$
\left| \left\langle \hat{d}_t, Zf(x_t) \right\rangle \right| = \|Zf(x_t)\|_2.
$$

Substituting equation [24](#page-5-0) and equation [25](#page-5-1) into equation [21,](#page-4-1) we have

=

$$
\sum_{t \in \mathcal{K}^c} \| - Zf(x_t) \|_2 + \sum_{t \in \mathcal{K}} \left(\| - Zf(x_t) + \bar{d}_t \|_2 - \| \bar{d}_t \|_2 \right)
$$
\n
$$
\geq \sum_{t \in \mathcal{K}^c} \| Zf(x_t) \|_2 - \sum_{t \in \mathcal{K}} \left\langle \hat{d}_t, Zf(x_t) \right\rangle = 0,
$$

966 where the equality holds if and only if

$$
\left| \left\langle \hat{d}_t, Zf(x_t) \right\rangle \right| = \|Zf(x_t)\|_2, \quad \forall t \in \mathcal{K}.
$$

969 970 971 Considering the second condition in equation [23,](#page-5-2) the above equality condition is violated by some $t \in \mathcal{K}$. Therefore, we have proven that condition equation [21](#page-4-1) holds strictly.

Combining the two cases, we complete the proof.

 \Box

957 958 959

967 968 **972 973** Next, we prove that the condition in Lemma [1](#page-4-2) is also necessary for the uniqueness.

974 975 976 Lemma 2 (Necessary condition for uniqueness). *Suppose that condition equation 4 holds. If the ground truth matrix* A¯ *is the unique global solution to problem equation 3, then for every nonzero* $Z \in \mathbb{R}^{n \times m}$, we have

$$
\sum_{t \in \mathcal{K}} \hat{d}_t^{\top} Z f(x_t) < \sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2 \quad \text{or} \quad \sum_{t \in \mathcal{K}} \left| \hat{d}_t^{\top} Z f(x_t) \right| < \sum_{t \in \mathcal{K}} \|Z f(x_t)\|_2. \tag{26}
$$

Proof. Assume conversely that there exists a nonzero $Z \in \mathbb{R}^{n \times m}$ such that

$$
\sum_{t \in \mathcal{K}} \hat{d}_t^\top Z f(x_t) = \sum_{t \in \mathcal{K}^c} \|Z f(x_t)\|_2, \quad \sum_{t \in \mathcal{K}} \left| \hat{d}_t^\top Z f(x_t) \right| = \sum_{t \in \mathcal{K}} \|Z f(x_t)\|_2. \tag{27}
$$

Without loss of generality, we assume that

$$
0<\|Z\|_2\leq\epsilon
$$

for a sufficiently small ϵ . In this case, the second condition in equation [27](#page-6-0) implies that

$$
\left|\tilde{d}_t^{\top} Z f(x_t)\right| = \|Z f(x_t)\|_2
$$
, and $Z f(x_t)$ is parallel with \bar{d}_t , $\forall t \in \mathcal{K}$.

Therefore, when ϵ is sufficiently small, equations equation [25](#page-5-1) and equation [23](#page-5-2) lead to

$$
\| - Zf(x_t) + \bar{d}_t \|_2 - \|\bar{d}_t \|_2 = -\langle \hat{d}_t, Zf(x_t) \rangle, \quad \forall t \in \mathcal{K}.
$$

We now show that condition equation [21](#page-4-1) fails:

$$
\sum_{t \in \mathcal{K}^c} || - Zf(x_t) ||_2 + \sum_{t \in \mathcal{K}} (|| - Zf(x_t) + \bar{d}_t ||_2 - ||\bar{d}_t ||_2)
$$

=
$$
\sum_{t \in \mathcal{K}} \left\langle \hat{d}_t, Zf(x_t) \right\rangle - \sum_{t \in \mathcal{K}} \left\langle \hat{d}_t, Zf(x_t) \right\rangle = 0.
$$

This contradicts with the assumption that A is the unique solution to problem equation 3. \Box

1003 1004 Combining Lemmas [1](#page-4-2) and [2,](#page-6-1) we have the following necessary and sufficient condition for the uniqueness of the ground truth solution A .

1006 D.5 PROOF OF THEOREM 4

Proof of Theorem 4. Since both sides of inequality equation 8 are affine in Z, it suffices to prove that

1008 1009 1010

1012 1013 1014

1016

1018 1019

1023 1024

1005

1007

$$
\mathbb{P}\left[\hat{d}_1(Z) - \hat{d}_2(Z) < 0, \,\forall Z \in \mathbb{S}_F\right] \ge 1 - \delta,\tag{28}
$$

1011 where \mathbb{S}_F is the Frobenius-norm unit sphere in $\mathbb{R}^{n \times m}$ and

$$
\hat{d}_1(Z) := \sum_{t \in \mathcal{K}} \langle Z^\top, f(x_t) \hat{d}_t^\top \rangle, \quad \hat{d}_2(Z) := \sum_{t \in \mathcal{K}^c} \|Zf(x_t)\|_2.
$$

1015 The proof is divided into two steps.

1017 Step 1. First, we fix the vector $Z \in \mathbb{S}_F$ and prove that

$$
\mathbb{P}\left[\hat{d}_1(Z) - \hat{d}_2(Z) < -\theta\right] \ge 1 - \delta,
$$

1020 1021 1022 holds for some constant $\theta > 0$. Using Markov's inequality, it is sufficient to prove that for some $\nu > 0$, it holds that

$$
\mathbb{E}\left[\exp\left(\nu\left[\hat{d}_1(Z) - \hat{d}_2(Z)\right]\right)\right] \le \exp(-\nu\theta)\delta. \tag{29}
$$

1025 We focus on the case when K is not empty, which happens with high probability. The proof of this step is also divided into two sub-steps.

1026 1027 Step 1-1. We first analyze the term $\hat{d}_1(Z)$. Let T' be the last attack time instance, i.e.,

$$
T' := \max\{t \mid t \in \mathcal{K}\}.
$$

Then, we have

1028 1029 1030

1043 1044 1045

1057 1058

1060 1061

$$
\begin{array}{ll}\n\text{1031} \\
\text{1032} & \mathbb{E}\left[\exp\left[\nu\hat{d}_1(Z)\right]\right] = \mathbb{E}\left[\exp\left(\nu \sum_{t \in \mathcal{K}\backslash\{T'\}} \left\langle Z^\top, f(x_t) \hat{d}_t^\top \right\rangle\right) \times \mathbb{E}\left[\exp\left(\nu \left\langle Z^\top, f(x_{T'}) \hat{d}_{T'}^\top \right\rangle\right) \mid \mathcal{F}_{T'}\right]\right]. \\
\text{1034}\n\end{array} \tag{30}
$$

1035 1036 According to Assumption 1, the direction $\hat{d}_{T'}$ is a unit vector. Since

$$
\left| [Zf(x_{T'})]^{\top} \hat{d}_{T'} \right| \leq \|Zf(x_{T'})\|_2 \leq \|Z\|_2 \|f(x_{T'})\|_2
$$

$$
\leq \|Z\|_F \sqrt{m} \|f(x_{T'})\|_{\infty} \leq \sqrt{m} B,
$$

1041 1042 the random variable $[Zf(x_{T'})]^{\top} \hat{d}_{T'}$ is sub-Gaussian with parameter mB^2 . Therefore, the property of sub-Gaussian random variables implies that

$$
\mathbb{E}\left[\exp\left[\nu\left\langle Z^{\top},f(x_{T'})\hat{d}_{T'}^{\top}\right\rangle\right] | \mathcal{F}_{T'}\right] \leq \exp\left(\frac{\nu^2 \cdot mB^2}{2}\right).
$$

1046 Substituting into equation [30,](#page-7-0) we get

$$
\mathbb{E}\left[\exp\left[\nu\hat{d}_1(Z)\right]\right] \leq \mathbb{E}\left[\exp\left(\nu \sum_{t \in \mathcal{K}\setminus\{T'\}} \left\langle Z^{\top}, f(x_t)\hat{d}_t^{\top}\right\rangle\right)\right] \cdot \exp\left(\frac{\nu^2 \cdot mB^2}{2}\right).
$$

1051 Continuing this process for all $t \in \mathcal{K}$, it follows that

$$
\mathbb{E}\left[\exp\left[\nu\hat{d}_1(Z)\right]\right] \le \exp\left(\frac{\nu^2 \cdot mB^2|\mathcal{K}|}{2}\right). \tag{31}
$$

(32)

1056 Step 1-2. Now, we consider the second term in equation [29,](#page-6-2) namely, $-\hat{d}_2(Z)$. Define

$$
\mathcal{K}' := \{ t \mid 1 \le t \le T, \ t \in \mathcal{K}^c, \ t - 1 \in \mathcal{K} \}.
$$

1059 With probability at least $1 - \exp[-\Theta[p(1 - p)T]]$, we have

$$
|\mathcal{K}'| = \Theta[p(1-p)T].
$$

1062 Therefore, K' is non-empty with high-probability. Since $||Zf(x_t)||_2 \geq 0$ for all $t \in \mathcal{K}^c$, we have

1063 1064

$$
\mathbb{E}\left[\exp\left[-\nu\hat{d}_2(Z)\right]\right] \leq \mathbb{E}\left[\exp\left(-\nu\sum_{t\in\mathcal{K}'}\|Zf(x_t)\|_2\right)\right]
$$

1069

1071 1072

$$
= \mathbb{E}\left[\exp\left(-\nu \sum_{t \in \mathcal{K}' \setminus \{T'\}} \|Zf(x_t)\|_2\right) \times \mathbb{E}\left[\exp\left(-\nu \|Zf(x_{T'})\|_2\right) \mid \mathcal{F}_{T'}\right]\right],
$$

1070 where T' is the last time instance in K' , namely,

$$
T':=\max\{t\mid t\in\mathcal{K}'\}.
$$

1073 By Bernstein's inequality Wainwright (2019), we can estimate that

1074
1075
$$
\mathbb{E} [\exp(-\nu ||Zf(x_{T'})||_2) | \mathcal{F}_{T'}]
$$

1076
1077
$$
\leq \exp \left[-\nu \mathbb{E} \left(\|Zf(x_{T'})\|_2 \, \|\, \mathcal{F}_{T'} \right) + \frac{\nu^2}{2} \mathbb{E} \left(\|Zf(x_{T'})\|_2^2 \, \|\, \mathcal{F}_{T'} \right) \right]
$$

$$
\begin{array}{ccc}\n1078 & \nu & \sqrt{2} & \sqrt{2} & \sqrt{2} \\
\hline\n\end{array}
$$

1079
$$
\leq \exp \left[-\frac{\nu}{\sqrt{m}B} \mathbb{E} \left(\|Zf(x_{T'})\|_2^2 | \mathcal{F}_{T'} \right) + \frac{\nu^2}{2} \mathbb{E} \left(\|Zf(x_{T'})\|_2^2 | \mathcal{F}_{T'} \right) \right],
$$

1080 1081 where the last inequality is from

$$
||Zf(x_{T'})||_2 \le \sqrt{m}B.
$$

1082 1083 Assumption 3 implies that

$$
\mathbb{E}(|Zf(x_{T'})||_2^2 | \mathcal{F}_{T'}) = \langle ZZ^{\top}, \mathbb{E}[f(x_{T'})f(x_{T'})^{\top} | \mathcal{F}_{T'}]\rangle \geq \lambda^2 ||Z||_F^2 = \lambda^2.
$$

1086 If we choose ν such that

> $0 < \nu < \frac{2}{\sqrt{m}B}$, (33)

1089 1090 we have

1084 1085

1087 1088

1091 1092

1102 1103

1106 1107 1108

1110 1111

1113 1114 1115

1119 1120

$$
\mathbb{E}\left[\exp\left(-\nu\|Zf(x_{T'})\|_2\right) \,|\, \mathcal{F}_{T'}\right] \leq \exp\left[\left(\frac{\nu^2}{2} - \frac{\nu}{\sqrt{m}B}\right)\lambda^2\right].
$$

1093 1094 Substituting into inequality equation [32,](#page-7-1) it follows that

$$
\mathbb{E}\left[\exp\left[-\nu\hat{d}_2(Z)\right]\right]
$$

$$
\leq \mathbb{E}\left[\exp\left(-\nu\sum_{t\in\mathcal{K}'\backslash\{T'\}}\|Zf(x_t)\|_2\right)\times\exp\left[\left(\frac{\nu^2}{2}-\frac{\nu}{\sqrt{m}B}\right)\lambda^2\right]\right].
$$

1100 1101 Continuing this process for all $t \in \mathcal{K}'$, we have

$$
\mathbb{E}\left[\exp\left[-\nu\hat{d}_2(Z)\right]\right] \leq \exp\left[\left(\frac{\nu^2}{2} - \frac{\nu}{\sqrt{m}B}\right)\lambda^2|\mathcal{K}'|\right].\tag{34}
$$

1104 1105 Combining the inequalities equation [31](#page-7-2) and equation [34,](#page-8-0) we have

$$
\mathbb{E}\left[\exp\left(\nu\left[\hat{d}_1(Z)-\hat{d}_2(Z)\right]\right)\right] \leq \exp\left[\frac{m\nu^2B^2}{2}|\mathcal{K}|+\left(\frac{\nu^2}{2}-\frac{\nu}{\sqrt{m}B}\right)\lambda^2|\mathcal{K}'|\right].
$$

1109 We choose

$$
\theta := \frac{\lambda^2 p (1 - p) T}{4 \sqrt{m} B}.
$$

1112 In order to satisfy condition equation [29,](#page-6-2) it is equivalent to have

$$
\frac{mv^2B^2}{2}|\mathcal{K}| + \left(\frac{\nu^2}{2} - \frac{\nu}{\sqrt{m}B}\right)\lambda^2|\mathcal{K}'| + \frac{\lambda^2\nu p(1-p)T}{4\sqrt{m}B} \le \log\left(\delta\right). \tag{35}
$$

1116 1117 1118 Now, we consider the fact that K is generated by the probabilistic attack model. Using the Bernoulli bound, it holds with probability at least $1 - \exp[-\Theta[p(1 - p)T]]$ that

$$
|\mathcal{K}| \le 2pT, \quad |\mathcal{K}'| \ge \frac{p(1-p)T}{2}.\tag{36}
$$

1121 Thus, with the same probability, we have the estimation

1122
\n1123
\n1124
\n1125
\n1126
\n
$$
\frac{mv^2B^2}{2}|\mathcal{K}| + \left(\frac{\nu^2}{2} - \frac{\nu}{\sqrt{m}B}\right)\lambda^2|\mathcal{K}'| + \frac{\lambda^2\nu p(1-p)T}{4\sqrt{m}B}
$$
\n1125
\n1126
\n
$$
\leq \frac{mv^2B^2}{2} \cdot 2pT + \left(\frac{\nu^2}{2} - \frac{\nu}{2\sqrt{m}B}\right)\lambda^2 \cdot \frac{p(1-p)T}{2}.
$$

1127 1128 Choosing

$$
\nu := \frac{\lambda^2(1-p)}{2\sqrt{m}B[4mB^2 + \lambda^2(1-p)]},
$$

1131 we get

1129 1130

$$
\frac{m\nu^2 B^2}{2} |\mathcal{K}| + \left(\frac{\nu^2}{2} - \frac{\nu}{\sqrt{m}B}\right) \lambda^2 |\mathcal{K}'| + \frac{\lambda^2 \nu p (1-p) T}{4\sqrt{m}B} \leq - \frac{p(1-p)^2}{16 m \kappa^2 (4m \kappa^2 + 1 - p)} \cdot T,
$$

1134 1135 1136 where we define $\kappa := B/\lambda \ge 1$. Note that our choice of ν satisfies the condition equation [33.](#page-8-1) Therefore, in order for inequality equation [35](#page-8-2) to hold, the sample complexity should satisfy

$$
T \ge \frac{16m\kappa^2(4m\kappa^2 + 1 - p)}{p(1-p)^2} \log\left(\frac{1}{\delta}\right)
$$

1139 By considering the Bernoulli bound equation [36,](#page-8-3) the sample complexity bound becomes

$$
T \geq \Theta \left[\max \left\{ \frac{m\kappa^2 (m\kappa^2 + 1 - p)}{p(1 - p)^2}, \frac{1}{p(1 - p)} \right\} \log \left(\frac{1}{\delta} \right) \right]
$$

=
$$
\Theta \left[\frac{m^2 \kappa^4}{p(1 - p)^2} \log \left(\frac{1}{\delta} \right) \right].
$$
 (37)

.

1143 1144

1149

1152

1154

1177

1181

1137 1138

1140 1141 1142

1145 1146 1147 1148 Step 2. Next, we establish the bound equation [28](#page-6-3) by discretization techniques. More specifically, suppose that $\epsilon > 0$ is a constant and $\{Z^1, \ldots, Z^N\} \subset \mathbb{S}_F$ is an ϵ -net of the sphere \mathbb{S}_F under the Frobenius norm, where we can bound

$$
\log(N) \le mn \cdot \log\left(1 + \frac{2}{\epsilon}\right).
$$

1150 1151 Then, for every $Z \in \mathbb{S}_F$, we can find a point in the ϵ -net, denoted as Z' , such that

$$
||Z - Z'||_F \le \epsilon.
$$

1153 Now, we upper bound the difference $f(Z) - f(Z')$, where we define the function

$$
f(Z) := \hat{d}_1(Z) - \hat{d}_2(Z), \quad \forall Z \in \mathbb{R}^{n \times m}.
$$

1155 1156 We can calculate that

$$
f(Z) - f(Z') = \sum_{t \in \mathcal{K}} \hat{d}_t (Z - Z') f(x_t) - \sum_{t \in \mathcal{K}^c} (\|Z f(x_t)\|_2 - \|Z' f(x_t)\|_2)
$$

\n1158
\n
$$
\leq \sum_{t \in \mathcal{K}} \hat{d}_t (Z - Z') f(x_t) + \sum_{t \in \mathcal{K}^c} \|(Z - Z') f(x_t)\|_2
$$

\n1160
\n1161
\n1162
\n
$$
\leq \sum_{t \in \mathcal{K}} \|Z - Z'\|_F \|f(x_t)\tilde{d}_t^{\top}\|_F + \sum_{t \in \mathcal{K}^c} \|Z - Z'\|_2 \|f(x_t)\|_2
$$

\n1163
\n1164
\n
$$
\leq \sum_{t \in \mathcal{K}} \|Z - Z'\|_F \|f(x_t)\|_2 + \sum_{t \in \mathcal{K}^c} \|Z - Z'\|_F \|f(x_t)\|_2
$$

\n1165
\n1166
\n1167
\n1168
\n1169
\n1170 Therefore, under the event that
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\n1179
\n1170
\n1171
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\n1179
\n1170
\n1171
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\n1179
\n1170
\n1171
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\n1179
\n1170
\n1171
\n1171
\n1172
\n1173
\n1174
\n1175
\n1176
\n1177
\n1178
\

$$
\mathbb{P}\left[f(Z^i) < -\theta\right] \ge 1 - \frac{\delta}{N}, \quad \forall i = 1, \dots, N.
$$

1178 1179 1180 Applying the union bound over all $i \in \{1, \ldots, N\}$, the event equation [38](#page-9-0) happens with probability at least $1 - \delta$, namely,

$$
\mathbb{P}\left[f(Z^i) < -\theta, \ \forall i = 1, \dots, N\right] \ge 1 - \delta.
$$

1182 With this choice of δ , the sample complexity should be at least

$$
T \ge \Theta \left[\frac{m^2 \kappa^4}{n(1-n)^2} \log \left(\frac{N}{\delta} \right) \right]
$$

1184
$$
1 \leq \sum_{r=1}^{\infty} \left[p(1-p)^2 \right]^{186} \left(\delta \right)
$$

$$
1186 = \Theta \left[\frac{m^2 \kappa^4}{p(1-p)^2} \left[mn \log \left(\frac{m \kappa}{p(1-p)} \right) + \log \left(\frac{1}{\delta} \right) \right] \right].
$$

This completes the proof.

1188 1189 D.6 PROOF OF THEOREM 5

1192 1193 1194

1200 1201

1204 1205

1207 1208

1210

1212 1213 1214

1220

1222 1223

1190 1191 *Proof of Theorem 5.* We only need to show that condition equation 7 fails with probability at least $1 - \exp(-m/3)$. We choose the matrix

$$
\bar{A} := \begin{bmatrix} 1 & 0_{1 \times (m-1)} \\ 0_{n-1} & 0_{(n-1) \times (m-1)} \end{bmatrix} \in \mathbb{R}^{n \times m}.
$$

1195 1196 1197 1198 As a result, the last $n-1$ elements of $\overline{A}f(x)$ are zero for every state $x \in \mathbb{R}^n$. Moreover, we will choose the basis function f such that its values will only depend on the first element of state $x \in \mathbb{R}^n$. With these definitions, the dynamics of x_t reduces to the dynamics of its first element $(x_t)_1$. Hence, we can assume without loss of generality that $n = 1$ in the remainder of the proof.

1199 We define the basis function $f : \mathbb{R} \mapsto \mathbb{R}^m$ as

$$
\tilde{f}(x) := \begin{bmatrix} \frac{x}{\max\{|x|, 1\}} & \sin(x) & \sin(2x) & \cdots & \sin[(m-1)x] \end{bmatrix}, \quad \forall x \in \mathbb{R}.
$$

1202 1203 Under the above definitions, it is straightforward to show that the following properties hold and we omit the proof:

$$
f(0) = 0_m, \quad f\left[\bar{A}f(x)\right] = f(x), \quad \forall x \in \mathbb{R}.\tag{39}
$$

1206 Finally, the attack vector is defined as

$$
\bar{d}_t|\mathcal{F}_t \sim \text{Uniform}\left\{ \left[-(|x_t| + 2\pi), -(|x_t| + \pi) \right] \cup \left[|x_t| + \pi, |x_t| + 2\pi \right] \right\}, \quad \forall t \in \mathcal{K}.
$$

1209 The remainder of the proof is divided into three steps.

1211 Step 1. In the first step, we prove that Assumptions 1-3 hold. By the definition of $f(x)$, we have

$$
||f(x)||_{\infty} = \max \left\{ \frac{|x|}{\max\{|x|, 1\}}, |\sin(x)|, \dots, |\sin[(m-1)x]| \right\} \le 1, \quad \forall x \in \mathbb{R},
$$

1215 1216 which implies that Assumption 2 holds with $B = 1$. Moreover, the stealthy condition (Assumption 1) is a result of the symmetric distribution of $d_t|\mathcal{F}_t$.

1217 1218 1219 Finally, we prove that Assumption 3 holds. For the notational simplicity, in this step, we omit the subscript t, the conditioning on the filtration \mathcal{F}_t and the event $t \in \mathcal{K}$. The model of attack d implies that

$$
|x+d| \ge |d| - |x| \ge \pi > 1.
$$

1221 Therefore, we have

$$
f(x+d) = \begin{bmatrix} \frac{x+d}{|x+d|} & \sin[(x+d)] & \cdots & \sin[(m-1)(x+d)] \end{bmatrix}.
$$

1224 1225 For any vector $\nu \in \mathbb{R}^m$, we want to estimate

$$
\nu^{\top} \mathbb{E} \left[f(x+d)f(x+d)^{\top} \right] \nu = \mathbb{E} \left[\nu_1 \frac{x+d}{|x+d|} + \sum_{i=1}^{m-1} \nu_{i+1} \sin[i(x+d)] \right]^2.
$$

First, we can calculate that

$$
\mathbb{E}\left(\nu_1 \frac{x+d}{|x+d|}\right)^2 = \nu_1^2, \ \mathbb{E}\left[\nu_{i+1}\sin[i(x+d)]\right]^2 = \nu_{i+1}^2 \cdot \frac{1}{2}, \quad \forall i \in \{1, \dots, m-1\}.
$$
 (40)

1233 Then, for every $i \in \{1, \ldots, m-1\}$, we have

$$
\mathbb{E}\left[\nu_1 \frac{x+d}{|x+d|} \cdot \nu_{i+1} \sin[i(x+d)]\right]
$$
\n
$$
\left[\int_{0}^{-|x|-\pi} x+d \dots \left[\nu_{i+1} \cos[i(x+d)]\right] \right]
$$
\n(41)

 $|x|+\pi$

 $\frac{x+a}{|x+d|} \sin[i(x+d)] \, \mathrm{d}d$

$$
\begin{array}{c} 1236 \\ 1237 \\ 1238 \end{array}
$$

1234 1235

> $= \nu_1 \nu_{i+1} \left[\int_{-|x|-2\pi}^{-|x|-\pi}$ $x + d$ $\frac{x+d}{|x+d|} \sin[i(x+d)] \,dd + \int_{|x|+\pi}^{|x|+2\pi}$

$$
1239\n1240
$$

1240 =
$$
\nu_1 \nu_{i+1} \left[\int_{-|x|-2\pi}^{-|x|-\pi} -\sin[i(x+d)] dt + \int_{|x|+\pi}^{|x|+2\pi} \sin[i(x+d)] dt \right] = 0.
$$

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 For every $i, j \in \{1, \ldots, m-1\}$ such that $i \neq j$, it holds that $\mathbb{E} \left[\nu_{i+1} \sin[i(x+d)] \cdot \nu_{j+1} \sin[j(x+d)] \right]$ (42) $= \nu_{i+1} \nu_{j+1} \left[\int_{-|x|-2\pi}^{-|x|-\pi}$ $\sin[i(x+d)]\sin[j(x+d)]$ dd $+ \int |x|+2\pi$ $|x|+\pi$ $\sin[i(x+d)]\sin[j(x+d)]$ dd 1 $= 0.$ Combining equations equation [40-](#page-10-0)equation [42,](#page-11-0) it follows that $\nu^{\top} \mathbb{E} [f(x+d) f(x+d)^{\top}] \nu = \nu_1^2 + \frac{1}{2}$ 2 \sum^{m-1} $i=1$ $\nu_{i+1}^2 \geq \frac{1}{2}$ $\frac{1}{2}||\nu||_2^2,$ which implies that Assumption 3 holds with $\lambda^2 = 1/2$. Step 2. In this step, we prove that the linear space spanned by the set of vectors $\mathcal{F}^c := \{ f(x_t) \mid t \in \mathcal{K}^c \}$ has dimension at most $m - 1$ with probability at least $1 - \delta$. By the second property in equation [39,](#page-10-1) the subspace spanned by \mathcal{F}^c is equivalent to that spanned by $\mathcal{F}' := \{f(x_t) \mid t \in \mathcal{K}'\},\$ where we define $\mathcal{K}' := \{ t \mid t - 1 \in \mathcal{K}, t \in \mathcal{K}^c \}.$ Therefore, the dimension of the subspace is at most $|K'|$. To estimate the cardinality of K' , we divide K' into the following two disjoint sets: $\mathcal{K}'_1 := \{ 2t + 1 \mid 2t \in \mathcal{K}, \ 2t + 1 \in \mathcal{K}^c \}, \quad \mathcal{K}'_2 := \{ 2t \mid 2t - 1 \in \mathcal{K}, \ 2t \in \mathcal{K}^c \}.$ The size of K'_1 is the summation of $T/2$ independent Bernoulli random variables with parameter $p(1-p)$. Therefore, the Chernoff bound implies $\mathbb{P}\left[|\mathcal{K}_1'|\leq 2p(1-p)\cdot \left\lceil\frac{T}{2}\right\rceil\right]$ $\left\lfloor \frac{p}{2} \right\rfloor$ = 1 – exp $\left\lfloor -\frac{p(1-p)}{3} \right\rfloor$ $\frac{-p}{3} \cdot \left\lceil \frac{T}{2} \right\rceil$ $\left[\frac{T}{2}\right]$. (43) Similarly, the size of K'_2 is the summation of $[T/2]$ independent Bernoulli random variables with parameter $p(1 - p)$. Therefore, the Chernoff bound implies $\mathbb{P}\left[|\mathcal{K}_2'|\leq 2p(1-p)\cdot\Big|\frac{T}{2}\right]$ $\left\lfloor \frac{T}{2} \right\rfloor$ $\geq 1 - \exp \left\lceil - \frac{p(1-p)}{3} \right\rceil$ $\frac{-p}{3} \cdot \left| \frac{T}{2} \right|$ $\left[\frac{T}{2}\right]$. (44) Combining the bounds equation [43](#page-11-1) and equation [44](#page-11-2) and applying the union bound, it holds that $\mathbb{P}\left[|\mathcal{K}'|\leq 2p(1-p)T\right]\geq 1-\exp\left[-\frac{p(1-p)}{2}\right]$ $\frac{-p}{3} \cdot \left\lceil \frac{7}{2} \right\rceil$ $\left[\frac{T}{2}\right]\right]-\exp\left[-\frac{p(1-p)}{3}\right]$ $\left|\frac{-p}{3}\right| \cdot \left|\frac{T}{2}\right|$ 2 $\vert \, \vert$ $\geq 1-2\exp\left[-\frac{p(1-p)T}{2}\right]$ 3 , where the last inequality is because $|T/2| \leq |T/2| \leq T$. Since $T < \frac{m}{2p(1-p)},$

1288 we know

1289

1293

1295

$$
\mathbb{P}\left[|\mathcal{K}'| < m\right] \ge 1 - 2\exp\left(-m/3\right). \tag{45}
$$

1290 1291 1292 In addition, when K is the empty set \emptyset or the full set $\{0, \ldots, T-1\}$, the set K' is an empty set, which implies that $|K'|$ is smaller than m. This event happens with probability

$$
p^{\top} + (1-p)^{\top} \ge 2[p(1-p)]^{T/2}.
$$

1294 Combining with inequality equation [45,](#page-11-3) we get

$$
\mathbb{P}\left[|\mathcal{K}'| < m\right] \ge \max\left\{1 - 2\exp\left(-m/3\right), 2[p(1-p)]^{T/2}\right\}.
$$

1296 1297 1298 Step 3. Finally, we prove that if the dimension of the subspace spanned by \mathcal{F}^c is smaller than m, the condition equation 7 cannot hold. Since the dimension of the subspace is at most $m - 1$, there exists $Z \in \mathbb{R}^m$ such that

$$
Zf(x_t) = 0, \quad \forall t \in \mathcal{K}^c.
$$

1300 With this choice of Z, the condition on the left hand-side of equation 7 holds while the strict **1301** inequality on the right hand-side fails. Therefore, we know that A is not the unique global solution to **1302** equation 3. \Box **1303**

1304 D.7 PROOF OF THEOREM 6

1306 1307 *Proof of Theorem 6.* The proof is similar to that of Theorem 4. Since both sides of inequality equation 8 are affine in Z , it suffices to prove that

$$
\mathbb{P}\left[\hat{d}_1(Z) - \hat{d}_2(Z) < 0, \,\forall Z \in \mathbb{S}_F\right] \ge 1 - \delta,
$$

1310 where \mathbb{S}_F is the Frobenius-norm unit sphere in $\mathbb{R}^{n \times m}$ and

$$
\hat{d}_1(Z) := \sum_{t \in \mathcal{K}} \left\langle Z^\top, f(x_t) \hat{d}_t^\top \right\rangle, \quad \hat{d}_2(Z) := \sum_{t \in \mathcal{K}^c} \|Zf(x_t)\|_2.
$$

1314 The proof is divided into two steps.

1316 Step 1. First, we fix the vector $Z \in \mathbb{S}_F$ and prove that

$$
\mathbb{P}\left[\hat{d}_1(Z) - \hat{d}_2(Z) < -\theta\right] \ge 1 - \delta,
$$

1319 holds for some constant $\theta > 0$. The proof of this step is divided into two steps.

1321 1322 Step 1-1. We first analyze the term $\hat{d}_1(Z)$. For each $k \in \mathcal{K}$, we define the following attack vectors:

$$
\bar{d}_t^k := \begin{cases} \bar{d}_t & \text{if } t \leq k, \\ 0_n & \text{otherwise,} \end{cases} \forall t \in \{0, \dots, T-1\}.
$$

1325 1326 Then, we define the trajectory generated by the above attack vectors:

$$
x_0^k = 0_m, \quad x_{t+1}^k = \bar{A}f(x_t^k) + \bar{d}_t^k, \quad \forall t \in \{0, \dots, T-1\}.
$$

1328 Let

1299

1305

1308 1309

1311 1312 1313

1315

1317 1318

1320

1323 1324

1327

1343 1344

 $\mathcal{K} = \{k_1, \ldots, k_{|\mathcal{K}|}\},\$

where the elements are sorted as $k_1 < k_2 < \cdots < k_{|\mathcal{K}|}$. Under the above definition, we know $x_t^{k_{|\mathcal{K}|}} = x_t$ for all t. We define

$$
g_t^{k_j} := \begin{cases} f(x_t^{k_j}) - f(x_t^{k_{j-1}}) & \text{if } j > 1, \\ f(x_t^{k_1}) & \text{if } j = 1, \end{cases} \quad \forall j \in \{1, \dots, |\mathcal{K}|\}.
$$

1335 1336 We note that $g_t^{k_j}$ is measurable on \mathcal{F}_{k_j} . Using these introduced notations, we can write $\hat{d}_1(Z)$ as

$$
\hat{d}_1(Z) = \sum_{j=1}^{|\mathcal{K}|} \left\langle Z^{\top}, f(x_{k_j}) \hat{d}_{k_j}^{\top} \right\rangle = \sum_{j=1}^{|\mathcal{K}|} \left\langle Z^{\top}, \sum_{\ell=1}^{j-1} g_{k_j}^{k_\ell} \hat{d}_{k_j}^{\top} \right\rangle = \sum_{\ell=1}^{|\mathcal{K}|} \sum_{j=\ell+1}^{|\mathcal{K}|} \hat{d}_{k_j}^{\top} Z g_{k_j}^{k_\ell}
$$

.

1341 1342 Then, Assumption 6 implies that \bar{d}_t is sub-Gaussian with parameter σ conditional on \mathcal{F}_t . Now, we estimate the expectation

$$
\mathbb{E}\left[\exp\left[\nu\hat{d}_1(Z)\right]\right],
$$

1345 1346 1347 where $\nu \in \mathbb{R}$ is an arbitrary constant. First, for each $\ell \in \{1, \ldots, |\mathcal{K}| - 1\}$, we estimate the following probability:

1348
1349
$$
\mathbb{P}\left(\left|\sum_{j=\ell+1}^{|\mathcal{K}|} \hat{d}_{k_j}^{\top} Z g_{k_j}^{k_{\ell}}\right| \geq \epsilon \mid \mathcal{F}_{k_{\ell}}\right).
$$

1350 1351 Since \hat{d}_{k_j} is a unit vector and $||Z||_F = 1$, we know

1352 1353

1354 1355

$$
\left\| \hat{d}_{k_j}^\top Z \right\|_2 \leq \| \hat{d}_{k_j}^\top \|_2 \| Z \|_2 \leq \| \hat{d}_{k_j}^\top \|_2 \| Z \|_F = 1. \tag{46}
$$

Moreover, we can estimate that

$$
\frac{1356}{1357}
$$

$$
\begin{array}{c} 1359 \\ 1360 \\ 1361 \end{array}
$$

1362 1363

1371 1372 1373

 $\left\|g_{k_j}^{k_\ell}\right\|_2 = \left\|f(x_{k_j}^{k_\ell})-f(x_{k_j}^{k_{\ell-1}}\right\|_2$ $\left\| \frac{k_{\ell-1}}{k_j} \right\|_2 \leq L \left\| x_{k_j}^{k_{\ell}} - x_{k_j}^{k_{\ell-1}} \right\|_2$ $\left\| \frac{k_{\ell-1}}{k_j} \right\|_2$ (47) $= L \left\| \bar{A} \left[f \left(x_{k_j-1}^{k_\ell} \right) - f \left(x_{k_j-1}^{k_{\ell-1}} \right) \right] \right\|$ $\begin{aligned} \begin{bmatrix} k_{\ell-1} \\ k_j-1 \end{bmatrix} \end{aligned}$ $\Big\|_2 \leq \rho L \left\| f \left(x_{k_j-1}^{k_\ell} \right) - f \left(x_{k_j-1}^{k_{\ell-1}} \right) \Big\|_2$ $\left\| \frac{k_{\ell-1}}{k_j-1} \right\|_2$ $\leq L(\rho L) \left\| x_{k_j-1}^{k_\ell} - x_{k_j-1}^{k_{\ell-1}} \right\|$ $\left\| \frac{k_{\ell-1}}{k_j-1} \right\|_2 \leq \cdots \leq L(\rho L)^{k_j-k_{\ell}-1} \left\| x_{k_{\ell}+1}^{k_{\ell}} - x_{k_{\ell}+1}^{k_{\ell-1}} \right\|_2$ $\left.\begin{matrix} k_{\ell-1} \\ k_{\ell}+1 \end{matrix}\right|_2$ $= L(\rho L)^{k_j - k_{\ell} - 1} || \bar{d}_{k_{\ell}} ||_2,$

where the first inequality holds because f has Lipschitz constant L , the second inequality is from $\|\overline{A}\|_2 \leq \rho$ and the last equality holds because

$$
x_{k_{\ell}+1}^{k_{\ell}} = \bar{A}f\left(x_{k_{\ell}}^{k_{\ell}}\right) + \bar{d}_{k_{\ell}}, \quad x_{k_{\ell}+1}^{k_{\ell-1}} = \bar{A}f\left(x_{k_{\ell}}^{k_{\ell-1}}\right) = \bar{A}f\left(x_{k_{\ell}}^{k_{\ell}}\right).
$$

1369 1370 By the sub-Gaussian assumption (Assumption 6), it holds that

$$
\mathbb{P}\left(\|\bar{d}_{k_{\ell}}\|_{2} \geq \eta \mid \mathcal{F}_{k_{\ell}}\right) \leq 2\exp\left(-\frac{\eta^{2}}{2\sigma^{2}}\right), \quad \forall \eta \geq 0. \tag{48}
$$

1374 1375 Combining inequalities equation [46-](#page-13-0)equation [48,](#page-13-1) we get

$$
\mathbb{P}\left(\left|\sum_{j=\ell+1}^{|\mathcal{K}|} \hat{d}_{k_{j}}^{\top} Z^{\top} g_{k_{j}}^{k_{\ell}}\right| \geq \epsilon \mid \mathcal{F}_{k_{\ell}}\right) \leq \mathbb{P}\left(\sum_{j=\ell+1}^{|\mathcal{K}|} \left\|g_{k_{j}}^{k_{\ell}}\right\|_{2} \geq \epsilon \mid \mathcal{F}_{k_{\ell}}\right)
$$
\n
$$
\leq \mathbb{P}\left(\sum_{j=\ell+1}^{|\mathcal{K}|} L(\rho L)^{k_{j}-k_{\ell}-1} \|\bar{d}_{k_{\ell}}\|_{2} \geq \epsilon \mid \mathcal{F}_{k_{\ell}}\right)
$$
\n
$$
\leq \mathbb{P}\left(\frac{L(\rho L)^{\Delta_{j}}}{1-\rho L} \|\bar{d}_{k_{\ell}}\|_{2} \geq \epsilon \mid \mathcal{F}_{k_{\ell}}\right) \leq 2 \exp\left[-\frac{(1-\rho L)^{2}\epsilon^{2}}{2\sigma^{2} L^{2}(\rho L)^{2\Delta_{j}}}\right],
$$
\n(49)

1384 1385 1386

where $\Delta_j := k_j - k_{j-1} - 1$ and the second last inequality is from

$$
\sum_{j=\ell+1}^{|\mathcal{K}|} L(\rho L)^{k_j-k_{\ell}-1} < \sum_{i=\Delta_j}^{\infty} L(\rho L)^i = \frac{L(\rho L)^{\Delta_j}}{1 - \rho L}.
$$

Since

$$
\mathbb{E}\left(\sum_{j=\ell+1}^{|\mathcal{K}|}\hat{d}_{k_{j}}^{\top}Zg_{k_{j}}^{k_{\ell}}\,\Bigg|\,\mathcal{F}_{k_{\ell}}\right)=0,
$$

1397 1398 1399 1400 inequality equation [49](#page-13-2) implies that the random variable $\sum_{j=\ell+1}^{|K|} \hat{d}_{k_j}^{\top} Z^{\top} g_{k_j}^{k_\ell}$ is zero-mean and sub-Gaussian with parameter $\sigma L/(1 - \rho L)$ conditional on \mathcal{F}_{k_ℓ} . By the property of sub-Gaussian random variables, we have

1401

$$
\mathbb{E}\left[\exp\left(\nu \sum_{j=\ell+1}^{|\mathcal{K}|} \hat{d}_{k_j}^\top Z g_{k_j}^{k_\ell}\right)\ \middle|\ \mathcal{F}_{k_\ell}\right] \leq \exp\left[\frac{\nu^2 \sigma^2 L^2 (\rho L)^{2\Delta_j}}{2(1-\rho L)^2}\right], \quad \forall \nu \geq 0.
$$

1404 1405 Finally, utilizing the tower property of conditional expectation, we have

 $\leq \mathbb{E} \Big[$

exp $\sqrt{ }$ $\vert \nu \vert$

$$
\mathbb{E}\left[\exp\left[\nu\hat{d}_{1}(Z)\right]\right] = \mathbb{E}\left[\exp\left(\nu\sum_{\ell=1}^{|\mathcal{K}|-2}\sum_{j=\ell+1}^{|\mathcal{K}|}\hat{d}_{k_{j}}^{\top}Zg_{k_{j}}^{k_{\ell}}\right)\right] \times \mathbb{E}\left[\exp\left(\nu\sum_{j=|\mathcal{K}|}^{|\mathcal{K}|}\hat{d}_{k_{j}}^{\top}Zg_{k_{j}}^{k_{\ell}}\right)\Big|\mathcal{F}_{k_{|\mathcal{K}|-1}}\right]\right]
$$
\n(50)

 $j=|\mathcal{K}|$

 $\hat{d}_{k_{j}}^{\top}Zg_{k_{j}}^{k_{\ell}}$

 \sum $|\mathcal{K}|$

 $j=\ell+1$

 $\left|\mathcal{F}_{k_{|\mathcal{K}|-1}}\right|$

 $\left.\left.\right\}\right.\times \exp\left[\frac{\nu^2\sigma^2L^2(\rho L)^{2\Delta_j}}{2(1-\rho L)^2}\right]$

 $2(1-\rho L)^2$

 11

1408 1409 1410

1406 1407

$$
1411\\
$$

1412

$$
\begin{array}{c} 1413 \\ 1414 \end{array}
$$

1418

1423 1424

1427 1428

1431 1432 1433

1436

1438 1439

1441 1442 1443

1447 1448

1450

1454 1455

1457

$$
f_{\rm{max}}
$$

$$
1415
$$
\n
$$
1416
$$
\n
$$
1417
$$
\n
$$
\leq \cdots
$$

$$
\leq \cdots \leq \exp \left[\frac{\nu^2 \sigma^2 L^2}{2(1-\rho L)^2} \sum_{j \in \mathcal{K}} (\rho L)^{2\Delta_j}\right], \quad \forall \nu \geq 0.
$$

 $|\mathcal{K}| \sum$ 2

 $\ell = 1$

1419 1420 1421 1422 Since the random variable $(\rho L)^{\Delta_j}$ is bounded in [0, 1] and thus, it is sub-Gaussian with parameter 1/2. Therefore, with constant number of samples, the mean of $(\rho L)^{2\Delta_j}$ will concentrate around its expectation, which is approximately

$$
\sum_{\Delta=0}^{\infty} p(1-p)^{2\Delta} (\rho L)^{2\Delta} = \frac{p}{1 - (1-p)^2 (\rho L)^2} \le \frac{p}{1 - \rho L}.
$$

1425 1426 Then, the bound in equation [50](#page-14-0) becomes

$$
\mathbb{E}\left[\exp\left[\nu\hat{d}_1(Z)\right]\right] \lesssim \exp\left[\frac{\nu^2 \sigma^2 L^2 p|\mathcal{K}|}{2(1-\rho L)^3}\right], \quad \forall \nu \ge 0. \tag{51}
$$

1429 1430 Applying Chernoff's bound to equation [51,](#page-14-1) we get

$$
\mathbb{P}\left[\hat{d}_1(Z) \le \epsilon\right] \ge 1 - \exp\left[-\frac{(1-\rho L)^3}{2\sigma^2 L^2 p|\mathcal{K}|} \cdot \epsilon^2\right], \quad \forall \epsilon \ge 0.
$$
 (52)

,

1434 1435 Step 1-2. Next, we analyze the term $\hat{d}_2(Z)$. Define the set

 $\mathcal{K}' := \{t \mid 1 \leq t \leq T, t \in \mathcal{K}^c, t - 1 \in \mathcal{K}\}.$

1437 With probability at least $1 - \exp[-\Theta[p(1 - p)T]]$, we have

$$
|\mathcal{K}'| = \Theta[p(1-p)T].
$$

1440 Therefore, K' is non-empty with high-probability. Since $||Zf(x_t)||_2 \geq 0$ for all $t \in \mathcal{K}^c$, we know

$$
\hat{d}_2(Z) \ge \sum_{k \in \mathcal{K}'} \|Zf(x_t)\|_2.
$$

1444 To establish a high-probability lower bound of $||Zf(x_t)||_2$, we prove the following lemma.

1445 1446 Lemma 3. For each $t \in \mathcal{K}'$, it holds that

$$
\mathbb{P}\left[\|Zf(x_t)\|_2 \ge \frac{\lambda}{2} \mid \mathcal{F}_t\right] \ge \frac{c\lambda^4}{\sigma^4 L^4}
$$

1449 *where* $c := 1/1058$ *is an absolute constant.*

1451 1452 1453 For each $t \in \mathcal{K}'$, let $\mathbf{1}_t$ be the indicator of the event that $||Zf(x_t)||_2$ is larger than the $\frac{c\lambda^4}{\sigma^4 L^4}$ -quantile conditional on \mathcal{F}_t . Then, it holds that

$$
\mathbb{P}(\mathbf{1}_t = 1 \mid \mathcal{F}_t) = 1 - \mathbb{P}(\mathbf{1}_t = 0 \mid \mathcal{F}_t) = \frac{c\lambda^4}{\sigma^4 L^4}.
$$

1456 Therefore, we know

$$
\left\{ \mathbf{1}_t - \frac{c\lambda^4}{\sigma^4 L^4}, \ t \in \mathcal{K}' \right\}
$$

1458 1459 1460 is a martingale with respect to filtration set $\{\mathcal{F}_t, t \in \mathcal{K}'\}$. Applying Azuma's inequality, it holds with probability at least $1 - \exp[-\Theta(\frac{\lambda^4 |\mathcal{K}'|}{\sigma^4 L^4})]$ that

$$
\sum_{t\in\mathcal{K}'}\mathbf{1}_t\geq \frac{c\lambda^4|\mathcal{K}'|}{2\sigma^4L^4},
$$

1464 1465 1466 1467 which means that for at least $\frac{c\lambda^4|\mathcal{K}'|}{2\sigma^4L^4}$ elements in K', the event that $||Zf(x_t)||_2$ is larger than the $\frac{c\lambda^4}{\sigma^4 L^4}$ -quantile conditional on \mathcal{F}_t happens. Using the lower bound on the quantile in Lemma [3,](#page-14-2) we know

$$
\sum_{t \in \mathcal{K}'} \|Zf(x_t)\|_2 \ge \frac{c\lambda^4 |\mathcal{K}'|}{2\sigma^4 L^4} \cdot \frac{\lambda}{2} + \left(|\mathcal{K}'| - \frac{c\lambda^4 |\mathcal{K}'|}{2\sigma^4 L^4}\right) \cdot 0 = \frac{c\lambda^5 |\mathcal{K}'|}{4\sigma^4 L^4} \tag{53}
$$

|

,

1471 holds with the same probability.

1472 1473 Combining inequalities equation [52](#page-14-3) and equation [53,](#page-15-0) we get

$$
\mathbb{P}\left[f(Z) \leq \epsilon - \frac{c\lambda^5|\mathcal{K}'|}{4\sigma^4L^4}\right] \geq 1 - \exp\left[-\frac{(1-\rho L)^3}{2\sigma^2L^2p|\mathcal{K}|} \cdot \epsilon^2\right] - \exp\left[-\Theta\left(\frac{\lambda^4|\mathcal{K}'|}{\sigma^4L^4}\right)\right],
$$

1477 where we define $f(Z) := \hat{d}_1(Z) - \hat{d}_2(Z)$. Choosing

$$
\epsilon := \frac{c\lambda^5|\mathcal{K}'}{8\sigma^4L^4}
$$

1480 1481 it follows that

$$
1482\\
$$

1461 1462 1463

1468 1469 1470

1474 1475 1476

1478 1479

$$
\begin{array}{c} 1483 \\ 1484 \\ 1485 \end{array}
$$

1486 1487

1489 1490 1491

1504

 $\mathbb{P}\left[f(Z)\leq -\frac{c\lambda^5|\mathcal{K}'|}{2\lambda^4L^4}\right]$ $8\sigma^4L^4$ 1 $\geq 1 - \exp \left[-\Theta \left(\frac{(1-\rho L)^3 \lambda^{10} |\mathcal{K}'|^2}{10 L^{10} |\mathcal{K}'|} \right) \right]$ $\left[\frac{-\rho L)^3 \lambda^{10} |\mathcal{K}'|^2}{\sigma^{10} L^{10} p |\mathcal{K}|} \right] \bigg] - \exp\left[-\Theta\left(\frac{\lambda^4 |\mathcal{K}'|}{\sigma^4 L^4} \right) \right]$ $\frac{\lambda^4 |\mathcal{K}'|}{\sigma^4 L^4} \bigg) \bigg] \,.$

1488 By the definition of the probabilistic attack model, it holds with probability at least $1-\exp[-\Theta(p(1-\Theta))]$ $[p]T$] that

$$
|\mathcal{K}| \le 2pT, \quad |\mathcal{K}'| \ge \frac{p(1-p)T}{2}.\tag{55}
$$

(54)

1492 Therefore, the probability bound in equation [54](#page-15-1) becomes

$$
\mathbb{P}\left[f(Z) \le -\frac{c\lambda^5 p(1-p)T}{16\sigma^4 L^4}\right] \ge 1 - \exp\left[-\Theta\left(\frac{(1-\rho L)^3 \lambda^{10} (1-p)^2 T}{\sigma^{10} L^{10}}\right)\right] - \exp\left[-\Theta\left(\frac{\lambda^4 p(1-p)T}{\sigma^4 L^4}\right)\right] - \exp[-\Theta[p(1-p)T]].
$$

Now, if the sample complexity satisfies

$$
T \ge \Theta \left[\max \left\{ \frac{\kappa^{10}}{(1 - \rho L)^3 (1 - p)^2}, \frac{\kappa^4}{p(1 - p)} \right\} \log \left(\frac{1}{\delta} \right) \right],\tag{56}
$$

1502 1503 we know

$$
\mathbb{P}\left[f(Z)\leq-\theta\right]\geq1-\delta,\tag{57}
$$

.

1505 where we define

1509 1510 1511 Step 2. In the second step, we apply discretization techniques to prove that condition equation [57](#page-15-2) holds for all $Z \in \mathbb{S}_F$. For a sufficiently small constant $\epsilon > 0$, let

$$
\{Z^1,\ldots,Z^N\}
$$

1512 1513 1514 be an ϵ -cover of the unit ball \mathbb{S}_F . Namely, for all $Z \in \mathbb{S}_F$, we can find $r \in \{1, 2, ..., N\}$ such that $||Z - Z^r||_F \leq \epsilon$. It is proved in Wainwright (2019) that the number of points N can be bounded by

$$
\log(N) \le mn \log\left(1 + \frac{2}{\epsilon}\right).
$$

1517 1518 1519 Now, we estimate the Lipschitz constant of $f(Z)$ and construct a high-probability upper bound for the Lipschitz constant. For all $Z, Z' \in \mathbb{R}^{n \times m}$, we can calculate that

$$
f(Z) - f(Z') = \sum_{t \in \mathcal{K}} \left\langle (Z - Z')^{\top}, f(x_t) \hat{d}_t^{\top} \right\rangle - \sum_{t \in \mathcal{K}^c} (\|Zf(x_t)\|_2 - \|Z'f(x_t)\|_2)
$$

\n
$$
\leq \|Z - Z'\|_F \sum_{t \in \mathcal{K}} \left\|f(x_t) \hat{d}_t^{\top}\right\|_F + \|Z - Z'\|_2 \sum_{t \in \mathcal{K}^c} \|f(x_t)\|_2
$$

\n
$$
\leq \|Z - Z'\|_F \sum_{t=0}^{T-1} \|f(x_t)\|_2.
$$
\n(58)

1527 1528 Using the decomposition in Step 1-1, we have

$$
f(x_t) = \sum_{\ell=1}^j g_t^{k_\ell}
$$

1532 where k_j is the maximal element in K such that $k_j < t$. Therefore, we can calculate that

$$
\sum_{t=0}^{T-1} \|f(x_t)\|_2 \le \sum_{j=1}^{|\mathcal{K}|} \sum_{t=k_j+1}^{T-1} \|g_t^{k_j}\|_2.
$$
 (59)

,

1537 For each $j \in \{1, \ldots, |\mathcal{K}|\}$, we can prove in the same way as equation [47](#page-13-3) that

$$
\left\|g_t^{k_j}\right\|_2 \le L(\rho L)^{k_j-t-1} \|\bar{d}_{k_j}\|_2, \quad \forall t > k_j.
$$

1540 1541 Substituting into inequality equation [59,](#page-16-0) it follows that

$$
\sum_{t=0}^{T-1} \|f(x_t)\|_2 \le \sum_{j=1}^{|\mathcal{K}|} \sum_{t=k_j+1}^{T-1} L(\rho L)^{k_j-t-1} \|\bar{d}_{k_j}\|_2 \le \frac{L}{1-\rho L} \sum_{j=1}^{|\mathcal{K}|} \|\bar{d}_{k_j}\|_2.
$$

1545 Using Assumption 6 and the same technique as in equation [50,](#page-14-0) we know

$$
\mathbb{P}\left(\sum_{j=1}^{|\mathcal{K}|} \|\bar{d}_{k_j}\|_2 \leq \eta\right) \geq 1 - 2\exp\left(-\frac{\eta^2}{2\sigma^2|\mathcal{K}|}\right) \geq 1 - 2\exp\left(-\frac{\eta^2}{4\sigma^2 pT}\right),
$$

where the second inequality is from the high probability bound in equation [55.](#page-15-3) Hence, it holds that

$$
\mathbb{P}\left(\sum_{t=0}^{T-1} \|f(x_t)\|_2 \le \eta\right) \ge 1 - 2\exp\left(-\frac{\eta^2(1-\rho L)^2}{4\sigma^2 L^2 p^T}\right),\tag{60}
$$

1554 1555 Choosing

1515 1516

1529 1530 1531

1538 1539

1542 1543 1544

1556

$$
\eta:=\frac{\theta}{2\epsilon},
$$

1557 the bound in equation [60](#page-16-1) becomes

$$
\mathbb{P}\left(\sum_{t=0}^{T-1} \|f(x_t)\|_2 \le \frac{\theta}{2\epsilon}\right) \ge 1 - 2\exp\left(-\frac{(1-\rho L)^2}{4\sigma^2 L^2 p T \epsilon^2} \cdot \theta^2\right)
$$
(61)

$$
= 1 - 2\exp\left[-\Theta\left[\frac{(1-\rho L)^2}{4\sigma^2 L^2 p T \epsilon^2} \cdot \left(\frac{\lambda^5 p (1-p) T}{\sigma^4 L^4}\right)^2\right]\right]
$$

$$
= 1 - 2\exp\left[-\Theta\left[\frac{(1-\rho L)^2 \kappa^{10} p (1-p)^2 T}{\epsilon^2}\right]\right].
$$

1566 1567 We set

1568

1571 1572

1576 1577 1578

1580 1581 1582

1586 1587

1590 1591

1609

$$
\epsilon := \Theta \left[\sqrt{(1 - \rho L)^2 \kappa^{10} p (1 - p)^2} \right].
$$

1569 1570 Then, it follows that

$$
\exp\left[-\Theta\left[\frac{(1-\rho L)^2\kappa^{10}p(1-p)^2T}{\epsilon^2}\right]\right] = \exp\left[-\Theta(T)\right] \le \frac{\delta}{4},
$$

1573 1574 1575 where the last inequality is from the choice of T in equation [56.](#page-15-4) Substituting back into equation [61,](#page-16-2) we get

$$
\mathbb{P}\left(\sum_{t=0}^{T-1} \|f(x_t)\|_2 \le \frac{\theta}{2\epsilon}\right) \ge 1 - \frac{\delta}{2}.\tag{62}
$$

1579 Under the event in equation [62,](#page-17-0) for all $Z \in \mathbb{S}_F$, there exists an element Z^r in the ϵ -net such that

$$
f(Z) \le f(Z^r) + \epsilon \cdot \sum_{t=0}^{T-1} ||f(x_t)||_2 \le f(Z^r) + \frac{\theta}{2}.
$$

1583 1584 1585 If we replace δ with $\delta/(2N)$ in equation [57](#page-15-2) and choose $Z = Z^r$ for all $r \in \{1, ..., N\}$, the union bound implies that

$$
\mathbb{P}\left[f(Z^r)\leq -\theta,\ r=1,\ldots,N\right]\geq 1-\frac{\delta}{2}.\tag{63}
$$

,

1588 1589 Under the above condition, we have

$$
f(Z) \le f(Z^r) + \frac{\theta}{2} \le -\frac{\theta}{2} < 0.
$$

1592 To satisfy condition equation [63,](#page-17-1) the sample complexity bound equation [56](#page-15-4) becomes

$$
T \ge \Theta \left[\max \left\{ \frac{\kappa^{10}}{(1 - \rho L)^3 (1 - p)^2}, \frac{\kappa^4}{p(1 - p)} \right\} \log \left(\frac{2N}{\delta} \right) \right]
$$

$$
= \Theta \left[\max \left\{ \frac{\kappa^{10}}{(1 - \rho L)^3 (1 - p)^2}, \frac{\kappa^4}{p(1 - p)} \right\}
$$

$$
\times \left[m n \log \left(\frac{1}{(1 - \rho L) \kappa p(1 - p)} \right) + \log \left(\frac{1}{\delta} \right) \right] \right]
$$

which is the desired sample complexity bound in the theorem.

Lower bound of κ . Before we close the proof, we provide a lower bound of $\kappa = \frac{\sigma L}{\lambda}$. Equivalently, we provide an upper bound on λ^2 , which is at most the minimal eigenvalue of

$$
\mathbb{E}\left[f(x+\bar{d}_t)f(x+\bar{d}_t)^\top\mid \mathcal{F}_t,\bar{d}_t\neq 0_n\right].
$$

1607 1608 Let $\nu \in \mathbb{R}^m$ be a vector satisfying

$$
\|\nu\|_2 = 1, \quad \nu^{\top} f(x) = 0.
$$

1610 1611 Then, we know

$$
\nu^{\top} f(x + \bar{d}_t) f(x + \bar{d}_t)^{\top} \nu = \nu^{\top} \left[f(x + \bar{d}_t) - f(x) \right] \left[f(x + \bar{d}_t) - f(x) \right]^{\top} \nu \tag{64}
$$
\n
$$
= \left[\left[f(x + \bar{d}_t) - f(x) \right]^{\top} \nu \right]^2 \leq \left\| f(x + \bar{d}_t) - f(x) \right\|_2^2
$$
\n
$$
\leq L^2 \| \bar{d}_t \|_2^2,
$$

1616 1617

1618 1619 where the last inequality is from the Lipschitz continuity of f . Using the sub-Gaussian assumption, it follows that

$$
\mathbb{E}\left[\|\bar{d}_t\|_2^2 \mid \mathcal{F}_t, \ \bar{d}_t \neq 0_n\right] \leq \sigma^2,\tag{65}
$$

1620 1621 1622 where we utilize the fact that the standard deviation of sub-Gaussian random variables with parameter σ is at most σ. Combining inequalities equation [64](#page-17-2) and equation [65,](#page-17-3) it follows that

$$
\nu^{\top} \mathbb{E} \left[f(x + \bar{d}_t) f(x + \bar{d}_t)^{\top} \mid \mathcal{F}_t, \bar{d}_t \neq 0_n \right] \nu \leq \sigma^2 L^2.
$$

1624 1625 Therefore, it holds that

$$
\lambda^2 \leq \lambda_{\min} \left[\mathbb{E} \left[f(x + \bar{d}_t) f(x + \bar{d}_t)^\top \mid \mathcal{F}_t, \bar{d}_t \neq 0_n \right] \right] \leq \sigma^2 L^2, \quad \forall x \in \mathbb{R}^n,
$$

1627 1628 which further leads to

 $\kappa = \frac{\sigma L}{\Delta}$ $\frac{1}{\lambda} \geq 1.$

1630 1631 This completes the proof.

1632 1633 D.8 PROOF OF LEMMA [3](#page-14-2)

1634 *Proof of Lemma [3.](#page-14-2)* Let

$$
:= \frac{c\lambda^4}{\sigma^4 L^4}, \quad \theta_t := \|Z^\top f\left[\bar{A}f(x_{t-1})\right]\|_2.
$$

1638

1623

1626

1629

1635 1636 1637

1639

1641 1642 1643

1654 1655

We finish the proof by discussing two cases.

 δ

1640 Case 1. We first consider the case when

$$
\theta_t \ge \frac{\lambda}{2} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{1-\delta}\right)}.
$$

1644 1645 Using the Lipschitz continuity of f , we have

$$
||Zf(x_t)||_2 = ||[Zf(x_t) - Z^\top f [\bar{A}f(x_{t-1})]] + Zf [\bar{A}f(x_{t-1})]||_2
$$
\n
$$
\ge ||Zf [\bar{A}f(x_{t-1})]||_2 - ||Zf(x_t) - Zf [\bar{A}f(x_{t-1})]||_2
$$
\n
$$
\ge \theta_t - ||Z||_2 ||f(x_t) - f [\bar{A}f(x_{t-1})]||_2
$$
\n
$$
\ge \theta_t - ||Z||_F \cdot L ||\bar{d}_t||_2 \ge \theta_t - L ||\bar{d}_t||_2.
$$
\n(66)

1652 1653 By Assumption 6, we know $\left\|\bar{d}_t\right\|_2 = |\ell_t|$ and it follows that

$$
\mathbb{P}\left(\left\|\bar{d}_t\right\|_2 \geq \epsilon \mid \mathcal{F}_t\right) \leq 2 \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right), \quad \forall \epsilon \geq 0.
$$

1656 1657 Therefore, we get the estimation

$$
\mathbb{P}\left(\|Zf(x_t)\|_2 \leq \frac{\lambda}{2} \left|\mathcal{F}_t\right.\right) \leq \mathbb{P}\left(\theta_t - L \left\|\bar{d}_t\right\|_2 \leq \frac{\lambda}{2} \left|\mathcal{F}_t\right.\right)
$$

\n
$$
= \mathbb{P}\left(\left\|\bar{d}_t\right\|_2 \geq \frac{\theta_t - \lambda/2}{L} \left|\mathcal{F}_t\right.\right)
$$

\n
$$
\leq \mathbb{P}\left(\left\|\bar{d}_t\right\|_2 \geq \sqrt{2\sigma^2 \log\left(\frac{2}{1-\delta}\right)} \left|\mathcal{F}_t\right.\right) \leq 1-\delta.
$$

Therefore, we have proved that

$$
\mathbb{P}\left(\|Zf(x_t)\|_2\geq \frac{\lambda}{2}\,\bigg|\,\mathcal{F}_t\right)\geq \delta.
$$

1670 Case 2. Then, we focus on the case when

1671
\n1672
\n1673
\n
$$
\theta_t \le \frac{\lambda}{2} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{1-\delta}\right)}.
$$
\n(67)

 \Box

1674 1675 Assume conversely that

$$
\mathbb{P}\left(\|Zf(x_t)\|_2 \ge \frac{\lambda}{2} \mid \mathcal{F}_t\right) < \delta. \tag{68}
$$

.

1678 1679 Similar to inequality equation [66,](#page-18-0) the Lipschitz continuity of f implies

$$
||Zf(x_t)||_2 \leq \theta_t + L ||\bar{d}_t||_2
$$

1681 1682 Therefore, by applying Assumption 6, we get the tail bound

$$
\mathbb{P}\left(\|Zf(x_t)\|_2 \geq \theta \mid \mathcal{F}_t\right) \leq \mathbb{P}\left(\theta_t + L\left\|\bar{d}_t\right\|_2 \geq \theta \mid \mathcal{F}_t\right)
$$

$$
= \mathbb{P}\left(\left\|\bar{d}_t\right\|_2 \geq \frac{\theta - \theta_t}{L} \mid \mathcal{F}_t\right) \leq 2 \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right], \quad \forall \theta \geq \theta_t.
$$

1687 Define $(x)_+ := \max\{x, 0\}$. The above bound leads to

$$
\mathbb{P}\left(\|Zf(x_t)\|_2 \ge \theta \mid \mathcal{F}_t\right) \le 2\exp\left[-\frac{(\theta - \theta_t)_+^2}{2\sigma^2 L^2}\right], \quad \forall \theta \in \mathbb{R}.\tag{69}
$$

1691 Using the definition of expectation, we can calculate that

$$
\mathbb{E}\left[\|Zf(x_t)\|_2^2 \mid \mathcal{F}_t\right] = \int_0^\infty 2\theta \cdot \mathbb{P}\left[\|Zf(x_t)\|_2 \ge \theta \mid \mathcal{F}_t\right] d\theta
$$

$$
< \frac{\lambda^2}{\lambda} + \int_0^\infty 2\theta \cdot \mathbb{P}\left[\|Zf(x_t)\|_2 > \theta \mid \mathcal{F}_t\right] d\theta
$$

$$
\leq \frac{\lambda^2}{4} + \int_{\lambda/2}^{\infty} 2\theta \cdot \mathbb{P} \left[\|Zf(x_t)\|_2 \geq \theta \mid \mathcal{F}_t \right] \, d\theta.
$$

By condition equation [68,](#page-19-0) we get

$$
\mathbb{P}\left[\|Zf(x_t)\|_2 \geq \theta \mid \mathcal{F}_t\right] \leq \mathbb{P}\left[\|Zf(x_t)\|_2 \geq \frac{\lambda}{2} \mid \mathcal{F}_t\right] \leq \delta, \quad \forall \theta \geq \frac{\lambda}{2}.
$$

Combining with inequality equation [69,](#page-19-1) it follows that

$$
\mathbb{E}\left[\|Zf(x_t)\|_2^2 \mid \mathcal{F}_t\right] \le \frac{\lambda^2}{4} + \int_{\lambda/2}^{\infty} 2\theta \cdot \min\left\{\delta, 2\exp\left[-\frac{(\theta - \theta_t)_+^2}{2\sigma^2 L^2}\right]\right\} d\theta \tag{70}
$$
\n
$$
= \frac{\lambda^2}{4} + \delta\left(\theta_1^2 - \frac{\lambda^2}{4}\right) + \int_{\theta_1}^{\infty} 4\theta \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta,
$$

1708 1709 where we define

$$
\theta_1 := \max\left\{\frac{\lambda}{2}, \theta_t + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)}\right\} \ge \theta_t.
$$

1712 Using condition equation [67,](#page-18-1) we know

$$
\theta_1^2 \le \left(\frac{\lambda}{2} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{1-\delta}\right)} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)}\right)^2\tag{71}
$$

1716
\n1717
\n1718
\n1719
\n
$$
\leq \left(\frac{\lambda}{2} + 2\sqrt{2\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)}\right)^2 \leq \frac{\lambda^2}{2} + 16\sigma^2 L^2 \log\left(\frac{2}{\delta}\right),
$$

1720 where the last inequality is from Cauchy's inequality. Moreover, we can estimate that

$$
\int_{\theta_1}^{\infty} 4\theta \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta \le \int_{\theta_2}^{\infty} 4\theta \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta \tag{72}
$$

$$
{}_{1724}^{1724} = \int_{\theta_2}^{\infty} 4\theta_t \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta + \int_{\theta_2}^{\infty} 4(\theta - \theta_t) \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta
$$

$$
\begin{array}{ccc}\n1726 \\
1726 \\
\hline\n\end{array}\n\qquad \qquad\n\begin{array}{ccc}\n1726 \\
\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n1726 \\
\hline\n\end{array}
$$

$$
1727 \qquad \qquad = \int_{\theta_2}^{\infty} 4\theta_t \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] \, d\theta + 2\delta\sigma^2 L^2,
$$

1697 1698 1699

1676 1677

1680

1688 1689 1690

1700 1701 1702

1710 1711

1713 1714 1715 **1728 1729 1730** where we denote $\theta_2 := \theta_t + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)} \leq \theta_1$. Utilizing the following bound on the cumulative density function of the standard Gaussian distribution:

$$
\int_{\eta}^{\infty} e^{-\frac{x^2}{2}} dx \le \eta^{-1} e^{-\frac{\eta^2}{2}}, \quad \forall \eta > 0,
$$

1733 1734 we have

1731 1732

1735 1736

1739 1740

$$
\int_{\theta_2}^{\infty} 4\theta_t \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta \le 4\theta_t \sigma L \cdot \frac{1}{\sqrt{2\log\left(\frac{2}{\delta}\right)}} \cdot \frac{\delta}{2} \le \sqrt{2}\theta_t \cdot \delta \sigma L.
$$

1737 1738 Combining with equation [72,](#page-19-2) it follows that

$$
\int_{\theta_1}^{\infty} 4\theta \exp\left[-\frac{(\theta - \theta_t)^2}{2\sigma^2 L^2}\right] d\theta \le \sqrt{2}\theta_t \cdot \delta \sigma L + 2\delta \sigma^2 L^2 \le 4\delta \theta_t^2 + 4\delta \sigma^2 L^2,\tag{73}
$$

1741 1742 1743 where the last inequality is from Cauchy's inequality. Substituting inequalities equation [71](#page-19-3) and equation [73](#page-20-0) back into equation [70,](#page-19-4) we get

$$
\mathbb{E}\left[\|Zf(x_t)\|_2^2 \mid \mathcal{F}_t\right] \le \frac{\lambda^2}{4} + \delta \left[\frac{\lambda^2}{4} + 16\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)\right] + 4\delta\theta_t^2 + 4\delta\sigma^2 L^2
$$

$$
\le \frac{(1+\delta)\lambda^2}{4} + 16\sigma^2 L^2 \cdot \delta \log\left(\frac{2}{\delta}\right) + \delta \left[\frac{\lambda}{2} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{\delta}\right)}\right]^2 + 4\delta\sigma^2 L^2
$$

1745 1746 1747

1748 1749

1744

$$
\leq \frac{(1+\delta)\lambda^2}{4} + 16\sigma^2 L^2 \cdot \delta \log\left(\frac{2}{\delta}\right) + \delta \left[\frac{\lambda}{2} + \sqrt{2\sigma^2 L^2 \log\left(\frac{2}{1-\delta}\right)}\right]
$$
\n
$$
(1+\delta)\lambda^2 \qquad (2)
$$

$$
\leq \frac{(1+\delta)\lambda^2}{4} + 16\sigma^2L^2 \cdot \delta \log\left(\frac{2}{\delta}\right) + \frac{\delta \lambda^2}{2} + 4\sigma^2L^2 \cdot \delta \log\left(\frac{2}{\delta}\right) + 4\delta \sigma^2L^2
$$

1750 1751 1752

1753

1756

1759 1760

1762 1763 1764

1766 1767

$$
\leq \!\frac{(1+3\delta)\lambda^2}{4}+24\sigma^2L^2\cdot\delta\log\left(\frac{2}{\delta}\right)
$$

1754 1755 where the second inequality is from equation [67](#page-18-1) and the last inequality is from Cauchy's inequality and δ < 1/2. On the other hand, Assumption 3 implies that

.

$$
\mathbb{E} \left(\|Zf(x_t)\|_2^2 \mid \mathcal{F}_t \right) = \langle ZZ^{\top}, \mathbb{E} \left[f(x_t)f(x_t)^{\top} \mid \mathcal{F}_t \right] \rangle \geq \lambda^2 \|Z\|_F^2 = \lambda^2.
$$

1757 1758 Combining the last two inequalities, we get

$$
\lambda^2 \le \frac{(1+3\delta)\lambda^2}{4} + 24\sigma^2 L^2 \cdot \delta \log\left(\frac{2}{\delta}\right),\,
$$

1761 which is equivalent to

$$
\delta \log \left(\frac{2}{\delta}\right) \ge \frac{(3-3\delta)\lambda^2}{96\sigma^2 L^2} \ge \frac{\lambda^2}{23\sigma^2 L^2}
$$

.

1765 For all $x \in (0,1)$, it holds that $x \log(2/x) <$ 2x. Hence, we have

$$
\sqrt{2\delta} > \frac{\lambda^2}{23\sigma^2L^2},
$$

1768 1769 which contradicts with our assumption equation [68.](#page-19-0)

1770 1771

1776

 \Box

1772 D.9 PROOF OF THEOREM 7

1773 1774 1775 *Proof of Theorem* 7. In this proof, we focus on the case when $m = n$ and the counterexample can be easily extended into more general cases. We construct the following system dynamics:

$$
\bar{A} := \rho I_n, \quad f(x) := x, \quad \forall x \in \mathbb{R}^n,
$$

1777 1778 1779 where $\rho \geq 2 + \sqrt{6}$ is a constant. One can verify Assumption 4 holds with Lipschitz constant $L = 1$. Therefore, the stability condition (Assumption 5) is violated since $\rho > 1/L$. The system dynamics can be written as

$$
x_t = \sum_{k \in \mathcal{K}, k < t} \rho^{t-k-1} d_k, \quad \forall t \in \{0, \dots, T\}. \tag{74}
$$

1782 1783 Conditional on \mathcal{F}_t and $t \in \mathcal{K}$, the attack vector is generated as

$$
d_t \sim \text{Uniform}(\mathbb{S}^{n-1}),
$$

1785 1786 1787 where \mathbb{S}^{n-1} is the unit ball $\{d \in \mathbb{R}^n \mid ||d||_2 = 1\}$. The attack model satisfies Assumption 3 with $\lambda = 1/\sqrt{n}$ and Assumption 6 with $\sigma = 1/\sqrt{n}$. Define the event

$$
\mathcal{E}:=\left\{T-1\in\mathcal{K},\left|\mathcal{K}\right|>1\right\}.
$$

1789 1790 By the definition of the probabilistic attack model, we can calculate that

$$
\mathbb{P}(\mathcal{E}) = p \left[1 - (1 - p)^{T-1} \right].
$$

1792 1793 Our goal is to prove that

$$
\mathbb{P}\left[\hat{d}_1(Z) - \hat{d}_2(Z) > 0 \mid \mathcal{E}\right] = 1,
$$

1796 where we define

$$
\hat{d}_1(Z) := \sum_{t \in \mathcal{K}} \left\langle Z^\top, f(x_t) \hat{d}_t^\top \right\rangle, \quad \hat{d}_2(Z) := \sum_{t \in \mathcal{K}^c} \|Zf(x_t)\|_2.
$$

1800 1801 Then, by Theorem 1, we know that \overline{A} is not a global solution to problem equation 3 with probability at least

$$
p\left[1-(1-p)^{T-1}\right].
$$

1803 1804 1805 Let t_1 be the smallest element in K , namely, the first time instance when there is an attack. Under event \mathcal{E} , it holds that $t_1 < T - 1$. We first prove that

 $x_t \neq 0_n, \quad \forall t \in \{t_1 + 1, \ldots, T - 1\}.$

1807 By the system dynamics equation [74](#page-20-1) and the triangle inequality, we have

$$
||x_t||_2 \ge \rho^{t-t_1-1} ||d_{t_1}||_2 - \sum_{k \in \mathcal{K}, t_1 < k < t} \rho^{t-k-1} ||d_k||_2 = \rho^{t-t_1-1} - \sum_{k \in \mathcal{K}, t_1 < k < t} \rho^{t-k-1}
$$

$$
\begin{array}{c}\n1810 \\
1811 \\
1812 \\
1813\n\end{array}
$$

1784

1788

1791

1794 1795

1797 1798 1799

1802

1806

1808 1809

$$
\geq \rho^{t-t_1-1}-\sum_{i=0}^{t-t_1-2}\rho^i=\frac{\rho^{t-t_1}-2\rho^{t-t_1-1}+1}{\rho-1}>0,
$$

1814 1815 where the last inequality holds because $\rho \geq 2$. Then, we choose

$$
Z := x_{T-1} \hat{d}_{T-1}^{\top} \neq 0.
$$

It follows that

$$
\hat{d}_1(Z) = \sum_{t \in \mathcal{K}} \left\langle Z^{\top}, f(x_t) \hat{d}_t^{\top} \right\rangle = \left\| x_{T-1} \hat{d}_{T-1}^{\top} \right\|_F^2 + \sum_{t \in \mathcal{K}, t < T-1} \left\langle x_{T-1} \hat{d}_{T-1}^{\top}, f(x_t) \hat{d}_t^{\top} \right\rangle
$$
\n
$$
\geq \left\| x_{T-1} \right\|_2^2 - \sum_{t \in \mathcal{K}, t < T-1} \left\| x_{T-1} \right\|_2 \left\| x_t \right\|_2,
$$

$$
\begin{array}{c} 1822 \\ 1823 \end{array}
$$

$$
\hat{d}_2(Z) = \sum_{t \in \mathcal{K}^c} \|Zf(x_t)\|_2 = \sum_{t \in \mathcal{K}^c} \left\|x_{T-1}\hat{d}_{T-1}^\top x_t\right\|_2 \le \sum_{t \in \mathcal{K}^c} \|x_{T-1}\|_2 \left\|x_t\right\|_2.
$$

Combining the above two inequalities, we get

$$
\hat{d}_1(Z) - \hat{d}_2(Z) \le ||x_{T-1}||_2 \left(||x_{T-1}||_2 - \sum_{t=0}^{T-2} ||x_t||_2 \right) = ||x_{T-1}||_2 \left(||x_{T-1}||_2 - \sum_{t=t_1+1}^{T-2} ||x_t||_2 \right),
$$

1831 1832 where the last equality holds because $x_t = 0_n$ for all $t \le t_1$. Since $||x_{T-1}||_2 > 0$, it is sufficient to prove that

$$
||x_{T-1}||_2 > \sum_{t=t_1+1}^{T-2} ||x_t||_2.
$$
 (75)

1836 1837 1838 Considering the system dynamics equation [74](#page-20-1) and the fact that $||d_k||_2 = 1$ for all $k \in \mathcal{K}$, we have the estimation

$$
\begin{array}{c}\n 1839 \\
 \end{array}
$$

$$
\rho^{t-t_1-1} - \sum_{k \in \mathcal{K}, t_1 < k < t} \rho^{t-k-1} \leq \|x_t\|_2 \leq \sum_{k \in \mathcal{K}, k < t} \rho^{t-k-1}.
$$

1841 The desired inequality equation [75](#page-21-0) holds if we can show

$$
\rho^{T-1-t_1-1}-\sum_{k\in\mathcal{K},t_1\sum_{t=t_1+1}^{T-2}\sum_{k\in\mathcal{K},k
$$

1845 1846 which is further equivalent to

$$
\begin{array}{c} 1847 \\ 1848 \\ 1849 \end{array}
$$

 \leftarrow

1840

1842 1843 1844

$$
2\rho^{T-t_1-2} > \sum_{t=t_1+1}^{T-1} \sum_{k \in \mathcal{K}, k < t} \rho^{t-k-1}
$$
\n
$$
= 2\rho^{T-t_1-2} > \sum_{t=t_1+1}^{T-1} \sum_{k=t_1}^{t-1} \rho^{t-k-1} = \sum_{t=t_1+1}^{T-1} \frac{\rho^{t-t_1} - 1}{\rho - 1} = \frac{\rho^{T-t_1} - \rho - (T-t_1 - 1)(\rho - 1)}{(\rho - 1)^2}
$$

$$
\iff 2\rho^{T-t_1-2} \ge \frac{\rho^{T-t_1}}{(\rho-1)^2} \iff \rho^2 - 4\rho - 2 \ge 0 \iff \rho \ge 2 + \sqrt{6}.
$$

By our choice of ρ , we know condition equation [75](#page-21-0) holds and this completes our proof.

 \Box

1859 E NUMERICAL EXPERIMENTS FOR BOUNDED BASIS FUNCTION

1861 1862 1863 1864 In this section, we provide the descriptions of basis functions and analyze the performance of estimator equation 2 in the case of bounded basis function. We show that the estimator equation 2 is able to exactly recover the ground truth A with different attack probability p and problem dimension (n, m) . We utilize the same evaluation metrics as in Section 7 and define the system dynamics as follows.

1866 1867 Lipschitz basis function. Given the state space dimension n, we choose $m = n$ and define the basis function as

$$
\frac{1868}{1869}
$$

1871

1875 1876

1886

1888 1889

1865

1860

$$
f(x) := \frac{1}{\sqrt{n}} \left[\frac{\sqrt{\|x - x_1\|_2^2 + 1} - \sqrt{\|x_1\|_2^2 + 1}}{\vdots} \right], \quad \forall x \in \mathbb{R}^n,
$$

1872 1873 1874 where $x_1, \ldots, x_n \in \mathbb{R}^n$ are instances of i.i.d. standard Gaussian random vectors. We can verify that the basis function is Lipschitz continuous with Lipschitz constant $L = 1$ and thus, it satisfies Assumption 4. For each time instance $t \in \mathcal{K}$, the noise d_t is generated by

$$
\bar{d}_t := \ell_t \hat{d}_t, \quad \text{where } \ell_t \sim \mathcal{N}(0, \sigma_t^2), \ \hat{d}_t \sim \text{uniform}(\mathbb{S}^{n-1}), \ \ell_t \text{ and } \hat{d}_t \text{ are independent.}
$$

1877 1878 1879 1880 1881 1882 1883 1884 1885 Here, we define $\sigma_t^2 := \min\{\|x_t\|_2^2, 1/n\}$. We can verify that the random variable ℓ_t is zero-mean and sub-Gaussian with parameter $\sigma = 1$. In addition, the random vector \tilde{d}_t follows the uniform distribution and therefore, Assumption 6 is satisfied. Note that $\bar{d}_0, \ldots, \bar{d}_{T-1}$ are correlated and they violate the i.i.d. assumption in the literature. Our attack model implies that the intensity of an attack (namely, ℓ_t) depends on the current state, which is a function of previous attacks. Since the points x_1, \ldots, x_n x_1, \ldots, x_n x_1, \ldots, x_n are randomly generated, the multiquadric radial basis functions are linearly independent¹ with probability 1 and therefore, the non-degenerate assumption (Assumption 3) is satisfied. Finally, the ground truth matrix \bar{A} is constructed as $U\Sigma V^{\top}$, where $U, V \in \mathbb{R}^{n \times n}$ are random orthogonal matrices and $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ is a diagonal matrix. The singular values are generated as follows:

$$
\sigma_i \stackrel{\text{i.i.d.}}{\sim} \text{uniform}(0, \rho), \quad \forall i \in \{1, \ldots, n\},
$$

1887 where $\rho > 0$ is the upper bound on the spectral norm of A.

¹ Functions $g_1(y), \ldots, g_k(y)$ are said to be linearly independent if there do not exist constants c_1, \ldots, c_k such that $\sum_{i=1}^{k} c_i g_i(y) = 0$ for all y.

Figure 4: Loss gap, solution gap and optimality certificate of the bounded basis function case with attack probability $p = 0.7, 0.8$ and 0.85.

1903 Bounded basis function. Given the state space dimension n, we choose $m = 5n$ and define the basis function as

$$
f(x) := \begin{bmatrix} \tilde{f}(x_1) \\ \vdots \\ \tilde{f}(x_n) \end{bmatrix}, \quad \text{where } \tilde{f}(y) := \begin{bmatrix} \sin(y) \\ \vdots \\ \sin(5y) \end{bmatrix}, \quad \forall x \in \mathbb{R}^n, y \in \mathbb{R}.
$$

1909 1910 1911 The basis function satisfies Assumption 2 with $B = 1$. For each time instance $t \in \mathcal{K}$ and for each $i \in \{1, \ldots, n\}$, the noise $\bar{d}_{t,i}$ is independently generated by

$$
\bar{d}_{t,i} \sim \text{Uniform}(-c_{t,i}\pi, c_{t,i}\pi), \quad \text{where } c_{i,t} := \min\{\max\{|x_{t,i}|, 0.1\}, 0.5\}.
$$

1913 1914 1915 1916 Note that $d_{t,i}$ and $x_{t,i}$ is the *i*-th component of d_t and x_t , respectively. Since the attack is symmetric with respect to the origin, it satisfies Assumption 1. Since the sine functions $sin(y)$, ..., $sin(5y)$ are linearly independent, the non-degenerate assumption (Assumption 3) is satisfied. Finally, the ground truth matrix \vec{A} is constructed such that

$$
\bar{A}f(x) = \begin{bmatrix} \sum_{k=1}^{5} \bar{a}_{1,k} \sin(kx_1) \\ \vdots \\ \sum_{k=1}^{5} \bar{a}_{n,k} \sin(kx_n) \end{bmatrix},
$$

1921

where

1922 1923

1926

1912

$$
\bar{a}_{i,k} \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(-100, 100), \quad \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, 5\}.
$$

1924 1925 We note that we choose the upper bound of coefficients $\bar{a}_{i,k}$ to be larger than 1 to show that the stability condition (Assumption 5) is not required in the bounded basis function case.

1927 1928 1929 1930 1931 Results. We first compare the performance of estimator equation 2 with different attack probability p. We choose $T = 900$, $n = 1$ and $p \in \{0.7, 0.8, 0.85\}$. The results are plotted in Figure [4.](#page-23-0) We can observe behaviors similar to the Lipschitz basis function case. More specifically, the optimality certificate accurately measures the exact recovery of the estimator equation 2, and the required sample complexity increases with the probability of attack p.

1932 1933 1934 1935 Next, we show the performance of the estimator equation 2 with different dimensions (n, m) . We choose $T = 500$, $p = 0.7$ and $n \in \{1, 2, 4\}$. The results are plotted in Figure [5.](#page-24-0) We can see that the exact recovery occurs with more samples when (n, m) is larger, which still verifies the results in Theorem 4.

1936 1937

1938

F NUMERICAL EXPERIMENTS WITH LOW ATTACK FREQUENCY

1939 1940 1941 1942 1943 In this section, we repeat the experiments in Figure 1 with $p \in \{0.001, 0.1, 0.3\}$ and $n = 5$. The results are plotted in Figure [6.](#page-24-1) We can see that the predictor fails to find the ground truth within 500 steps when $p = 0.01$, while it converges when $p = 0.1$ and 0.3. Note that the loss gap and optimality certificate are both equal to 0 in the case when $p = 0.001$. This is because there exist multiple global solutions and the estimator fails to recover the ground truth solution within 500 iterations. Note that the algorithm will eventually converge to the ground truth solution when more samples are available.

Figure 5: Loss gap, solution gap and optimality certificate of the bounded basis function case with dimension $(n, m) = (1, 5), (2, 10)$ and $(4, 20)$.

 Figure 6: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with attack probability $p = 0.001, 0.1$ and 0.3. Note that the loss gap and the optimality certificate for the case when $p = 0.001$ is always equal to 0.

 With that said, the main focus of this paper is the regime when p is larger than 0.5. Note that when p is very small or even zero, learning the system is a classic problem in control theory, where it is known that one should add an artificial noise to the system (named excitation signal) to be able to learn the system. There is a rich literature on why an excitation signal is necessary when the system is (almost) deterministic. As an example, assume that we have the system $x_{t+1} = Ax_t$, where our aim is to learn A from measuring x_t . If x_0 is zero, x_t always remains zero and we cannot find A. To avoid this, we should excite the system as $x_{t+1} = Ax_t + w_t$ where w_t is, for example, Gaussian noise. When p is away from zero, the adversarial attack does us a favor and acts as an excitation signal.

G NUMERICAL EXPERIMENTS WITH SPARSE A

 In this section, we repeat the experiments shown in Figure 1 using the sparse ground truth matrix \bar{A} . Specifically, we generate a sparse matrix \bar{A} where $\bar{A}_{i,j}$ is set to 0 whenever $|i-j| > 1$. In other words, \vec{A} is a tridiagonal matrix. We repeat the experiments for Lipschitz basis functions with $p \in [0.7, 0.8, 0.85]$ and $n = 10$. Additionally, we extend the simulation period to $T = 1000$, compared to $T = 500$ in the previous experiments. To save computational time, we solve the problem in equation 2 every 10 time periods. Consequently, the plots exhibit discrete jumps corresponding to time periods that are multiples of ten. We excluded the loss gap from the figures because the estimator is computed only for a subset of the time periods. Figure [7](#page-25-0) suggests that we achieve exact recovery despite the sparse structure of the ground truth matrix A . This result is not surprising, as the theoretical results do not depend on the sparsity structure of A . In addition to demonstrating robustness, the non-smooth objective function in equation 2 serves as a regularization term for the specific matrix structure.

H NUMERICAL EXPERIMENTS WITH LARGER ORDER SYSTEMS

 In this section, we repeat the experiments shown in Figure 2 with significantly higher-order dynamical systems and a larger number of basis functions, specifically $(n, m) \in (10, 20), (25, 50), (50, 100)$. We set the probability of an attack occurring to $p = 0.6$. Additionally, we extend the simulation period to $T = 1100$, compared to $T = 500$ in the previous experiments. To save computational time, we solve the problem in equation 2 every 100 time periods. Consequently, the plots exhibit discrete

