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A LITERATURE OVERVIEW

The literature on the system identification problem focused until recently on the asymptotic properties
of the least squares estimator (LSE) |Chen & Guo| (2012); |Ljung et al.| (1999); Ljung & Wahlberg
(1992); | Bauer et al.| (1999). With the growing popularity of statistical learning theory |Vershynin
(2018)); [Wainwright| (2019), understanding the number of samples required for a certain error threshold
for the system identification problem has gained significant importance. For an overview of the
results and proof techniques, the reader is referred to the survey paper |Tsiamis et al.|(2023). The
literature on the non-asymptotic analysis mainly focused on the linear-time invariant (LTI) system
identification problem with i.i.d. noise. The earlier research used mixing arguments that are highly
dependent on system stability |Kuznetsov & Mohri| (2017); Rostamizadeh & Mohri| (2007)). The most
recent studies used martingale and small-ball techniques to provide sample complexity guarantees
for least-squares estimators applied to LTI systems [Simchowitz et al.| (2018); [Faradonbeh et al.
(2018); Tsiamis & Pappas|(2019). These works showed that the LSE converges to the true system
parameters with the rate 7-1/2, where T is the number of samples. This result was applied to the
linear-quadratic regulator problem using adaptive control to obtain optimal regret bounds |Dean et al.
(2020); |Abbasi-Yadkori & Szepesvari| (2011);|[Dean et al.| (2019).

The nonlinear system identification problem is vastly studied Noél & Kerschen| (2017); Nowak’
(2002)). Yet, the research on the non-asymptotic analysis of the nonlinear system identification is in its
infancy and is mostly focused on parameterized nonlinear systems. Recursive and gradient algorithms
designed for the least-squares loss function converge to the true system parameters with the rate 7'~ 1/2
for nonlinear systems with a known link function ¢ of the form ¢(Ax;) using martingale techniques
Foster et al.|(2020) and mixing time arguments |Sattar & Oymak] (2022). Most recently, [Ziemann
et al.[(2022) provided sample complexity guarantees for non-parametric learning of nonlinear system
dynamics, which scales with T-1/2+q), Here, ¢ scales with the size of the function class in which
we search for the true dynamics. Existing studies on both linear and nonlinear system identification
analyzed the problem under i.i.d. (sub)-Gaussian noise structures.

Despite the growing interest on non-asymptotic system identification, the literature on the system
identification problem with nonsmooth estimators that can handle dependent and adversarial noise
vectors is limited to linear systems. The studies [Feng & Lavaei| (2021) and [Feng et al.| (2023)
considered a nonsmooth convex estimator in the form of the least absolute deviation estimator and
analyzed the required conditions for the exact recovery of the system dynamics using the KKT
conditions and the Null Space Property from the LASSO literature. Later, Yalcin et al.|(2023)) showed
that exact recovery of system parameters is achievable with high probability even when more than
half of the data is corrupted. This provides a further avenue of research for the adversarially robust
system identification problem. [Yalcin et al.| (2023)) was the first paper that employed a nonsmooth
estimator for nonlinear system identification. Compared with |Yalcin et al.|(2023)), the presence of
nonlinear basis functions makes it impossible to directly analyze the optimization problem by writing
the explicit expression of x;; see the proof of Theorem 2 in|Yalcin et al.|(2023)). Note that when the
system is in the form of x;,1 = Ax, then x4 can be written directly as Alxy and we only need to
analyze the eigenvalues of A. For a nonlinear system in the form of z;41 = f(z), writing z; in
terms of xy needs the composition of ¢ functions, and this cannot be done analytically. There does
not exist counterpart of linear-system eigenvalue analysis for nonlinear systems. This challenge is
repeatedly acknowledged in many textbooks of nonlinear systems in the area of control theory, and
for that reason several results known for linear systems do not have a counterpart in the nonlinear
setting. Therefore, we took a different approach to estimate the terms that appear in the uniqueness
condition equation [7]in Section [3|In addition, we do not need the stability assumption (Assumption [5)
in the case of a bounded basis function (note that the stability assumption was the key in the linear
case since it was directly related to the eigenvalues of A and the behavior of A* when ¢ goes to
infinity). As a result, the proof for the bounded case is novel and different from those in|Yalcin et al.
(2023). Finally, by utilizing the generalized Farkas’ lemma, the necessary and sufficient conditions in
Sections[Z]-E]are novel and stronger than the sufficient conditions in|Yalcin et al.| (2023)).

On the other hand, robust regression techniques have been developed using regularizers in the
objective function Xu et al.|(2009); Bertsimas & Copenhaver|(2018);|Huang et al. (2016). In addition,
the robust estimation literature provided multiple nonsmooth estimators, such as M-estimators, least
absolute deviation, convex estimators, least median squares, and least trimmed squares [Seber & Lee
(2012). The convex estimator equationwas proposed in Bako & Ohlsson|(2016); Bako|(2017) in
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the context of robust regression. They showed that the estimator can achieve the exact recovery when
we have infinitely many samples. However, the study lacks a non-asymptotic analysis on the sample
complexity. Additionally, the analysis techniques cannot be applied to the analysis of dynamical
systems due to the autocorrelation among the samples.

The two recent papers Wu et al.| (2022); [Kumar et al.| (2022)) focused on the reinforcement learning
(RL) problem, whose goal is to maximize the reward function. In contrast, in the system identification
problem, the goal is to recover the underlying system dynamics and the application may not incur a
naturally defined reward function. The two referenced papers assumed the perturbation to be bounded,
which is a strict assumption and may not hold in practice. More importantly, controlling a system
without learning its dynamics (e.g., by model-free RL techniques) is a dangerous approach since the
policy during exploration could shift the state move out of safe regions and trigger instability; see
the survey paper [Moerland et al.| (2023)). Hence, for safety-critical systems, it is usually essential
to first learn the system and then apply a control method, which could be classic optimal control
or RL algorithms. Our paper is concerned with learning the model of the system where there is an
attack to its dynamics. The existing RL methods, including Wu et al.| (2022)); Kumar et al.[(2022), are
concerned with a different problem. In addition, we note that although the area of robust model-based
RL techniques is rich, our setting of unknown systems requires model-free RL techniques.

B COMPARING RESULTS TO EXISTING WORK

Example 1 (First-order systems). In the special case when n = m = 1 and the basis function is
f(x) = , condition equation|6| reduces to

Z dAtl't

tex
which is the same as Theorem 1 in|Feng & Lavaei| (2021).

Example 2 (Linear systems). We consider the case when m = n and the basis function is f(z) = x.
We also assume the A-spaced attack model; see the definition in|Yalcin et al.|(2023). By considering
the attack period starting at the time step t1, a sufficient condition to guarantee condition equationf]
is given by

S Z |xt|7

texe

l,, VZeR™", (12)

A-2
d"ZAM Yy, <Y ||Z2AY,,
t=0
where we denote d ;= dAtl for simplicity. Let D e R™(=1) be the matrix of orthonormal bases of
the orthogonal complementary space of f, namely, D'd =0, DD =1I,,_1,and DD = I,, —dd".
Then, we can calculate that

|ZAtd,, |5 > (ZAdy,) ' ddT (zAdy,),

where the equality holds when ﬁTZAtJtl = 0, i.e, ZAdy, is parallel with d. Therefore, for
condition equationto hold, it is equivalent to consider Z with the form Z = dz " for some vector
z € R™. In this case, condition equation[I2| reduces to
2T AR, < Y |2T Ay, |, VzeR™ (13)
t=0
Condition equation [I3]leads to a better sufficient condition than that in [Yalcin et al](2023). To

illustrate the improvement, we consider the special case when the ground truth matrix is A = X\,
for some \ € R. Then, condition equation[I3]becomes

A-1 -~ A e O e o - 1-A
|| < Z A" = T which is further equivalent to || + || <2,
t=0

which is a stronger condition than that in|Yalcin et al.|(2023). When the attack period A is large, we
approximately have |\| < 2 — 21=2 which is a better condition than that in Figure 1 of|\Yalcin et al.
(2023).
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Example 3 (First-order linear systems). In the case when m = n = 1 and f(x) = x, our results
state that the uniqueness of global solutions is equivalent to

Zdtl't < Z |fl7t| (14)

tekl texe

As a comparison, the sufficient condition in Theorem I in|Feng & Lavaei|(2021) is

Z|9~"t| < Z |24

tekl teke

Since \cit| = 1forallt € K, our results equation as well as Theorem are more general and
stronger than that in|\Feng & Lavaei| (2021)).

C FUTURE WORKS

One potential future direction is to study the case when there exists dense but small noises in the
observations of x;. Our analysis can be naturally extended to this case if an upper bound on the noise
scale is assumed. In this work, we mainly focus on large but sparse attacks to exhibit the relation
between the sample complexity and the attacks. To provide an intuitive explanation, first assume
that the small and dense noise &; is zero. The Lasso-type estimator equation [2]can be written as a
constrained optimization problem, where each equation

Ti41 — Af(l't) — dt =0

appears as a constraint. We have derived conditions under which the optimal solution is the correct
parameters of the system. Adding &; is essentially equivalent to a perturbation to the constraints of an
optimization problem. It is easy to measure how much the optimal solution changes when there is a
right-hand side uncertainty. The bound is easy to derive and depends on a given upper bound on the
magnitude of &;. This relies on classic results in optimization. Moreover, it is possible to improve
the sample complexity by injecting small noise into the system dynamics. Intuitively, the injected
noise accelerates the “exploration” of f(z;) in the basis space. This claim can be rigorously proved
by utilizing the same techniques as in the paper; see Section V of|Yalcin et al.|(2023) for an example
of the linear system identification problem.

The extension to more general parameterized dynamical systems is another important future direction.
The theoretical challenge of the generalization lies in the fact that more complex models, such as
generative language models, do not use linear parameterization equation 2] The optimality conditions
for deep neural networks are still vague without additional assumptions. This work serves as a first
step towards understanding non-linearly parameterized dynamical systems.

D PROOFS

D.1 PROOF OF THEOREMII]

Proof of Theorem|I} Since problem equation is convex in A, the ground truth matrix A is a global
optimum if and only if

0€ Y fla) @0N0nll2 + > flay) ® de. (15)
tekce tek

Using the form of the subgradient of the £>-norm, condition equation [I5|holds if and only if there
exist vectors

gi € Rn, vt e K¢
such that

S Fa)gl +) 0 fa)d] =0, gl <1, Ve KE (16)

teke tekl
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Define the matrices
B:=[f(z:) ¥teK]eR™ TN V.=[f(z,) VteK]eR™I,
G:=[g VteKJeR*T D pi=[d, wtek]erR™F.

Condition equation [I6]can be written as a combination of second-order cone constraints and linear

constraints:

3G e RT=KD s r € R 5.t. BGT + VF' = 0pxn, ||Goill2 < s, ¥,
s+r=1, sr >0,

7)

where G. ; is the ¢-th column of G forall ¢ € {1,...,T — |K|}. We define the closed convex cone

5e { € RT-IKDm2

i=1

2(T—|K|)n+1 Z(T—|K)n+2 = O}’

and we define the matrix and vector

—(VFT).
—(VF 7).z
A= |:In %@ B (1) (1):| c R(mn+1)><[(T—|lC|)n+2]’ b= e Rmn—i—l’
(VFT):,IL
1

ZZ%Tf\ICl)iH < Z(T—|K|)n+1> vt € {07 Y |IC| - 1}7

where (V). ; is the i-th column of VF'T. Then, condition equation can be equivalently written

as

Jz e RT-IKD42 gt Az =b, 2€8.

(18)

Since the cone S is closed and convex, we can apply the generalized Farka’s lemma to conclude that

condition equation [T8]is equivalent to
vy e R™L (ATyeS" = b'y>0),

where S* is the dual cone of S. It can be verified that the dual cone is

T-IKl-1 [ n

- {Z € R Z ZZ?T—IICl)i-&-t S AT-|K)n+1
t=0 i=1

AT —=|K])n+1s Z(T—|K|)n+2 = 0}

We can equivalently write condition equation[T9]as
VZeR™™ peR, (|ZB|21<p, p>0 = (VFT,Z") <p),
By eliminating variable p, we get
(VF',ZT) <||ZB|l2x, VZ eR™™,
where the {5 ;-norm is defined as

n

[M]l21 =

j=1

m
> M2, VM e R™

i=1

The above condition is equivalent to condition equation[4] and this completes the proof.

16
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D.2 PROOF OF COROLLARY [I]

Proof of Corollary[]} The sufficient condition follows from the fact that [|d;||2 = 1 and
d} Zf(x:) < || Zf(xo)]l2 V€K
This completes the proof. O

D.3 PROOF OF COROLLARY 2]

Proof of Corollary[2] We choose
ZtEIC Citf(act)—r

7 = -
HZtelC def ()T HF

Then, condition equation @] implies

Do fa)dl || = d[ Zf(@) < D NZf()lla < Y 1@l

tell F tell teke teke

where the last step is because || Z||2 < || Z]|F = 1. Now, suppose that the basis dimension is m = 1.
In this case, we have

T
> d] Zf () (Zf x¢) ) ZT <Y f@d| 2],
tek tek tek F
DoNZf@)le = Y 1f@lIZle = Y 1 @) 2l 2]
tekce tekce tekce
Combining the above two inequalities shows that condition equation [6]is also a sufficient condition.

O

D.4 PROOF OF THEOREM[2|

We establish the sufficient and the necessary parts of Theorem [2] by the following two lemmas.

Lemma 1 (Sufficient condition for uniqueness). Suppose that condition equation | holds. If for
every nonzero Z € R™ ™ such that

Sdl Zf(x) = Y 11 Zf (@),

tek texe
it holds that

S| zrn| < S 1zs@le.
tek tek
Then, the ground truth matrix A is the unique global solution to problem equation

Proof. The ground truth A is the unique solution if and only if for every matrix A € R™*™ such that
A # A, the loss function of A is larger than that of A, namely,

D ldilla < D7 A=A f@)llz+ D 1A= A) f(w) + dil2. (20)
tex teke tex
Denote _
Z:=A—AecR"™m,
The inequality equation 20| becomes
Soll=Zf@olla+ > (Il = Zf (@) + dilla = ||di]l2) > 0. 21
teke tek

Since problem equation is convex in A, it is sufficient to guarantee that A is a strict local minimum.
Therefore, the uniqueness of global solutions can be formulated as

condition equation 2T holds, VZ € R™*™ s.t.0 < [|Z|r <, (22)

where € > 0 is a sufficiently small constant. In the following, we fix the direction Z and discuss two
different cases.
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Case I.  We first consider the case when condition equation ] holds strictly, namely,

D2 @)l =D d} Zf(w) > 0.
teke tex
Since the ¢5-norm is a convex function, it holds that
| = Zf(ze) + dell2 — |dell2 > (Ol del|2, —Z f (x2)) = —d[ Zf ().

Therefore, we get

DolI=Zf@lla+ > (I = Zf (@) + dill2 = llde]12)

texe te
>N = Zf(@)l2+ Y —di Zf(x:) >0,
terKe te

which exactly leads to inequality equation 21]

Case II. Next, we consider the case when
Sd Zf@) = 3 128 @olles S |d 20| < D212 @)l 23)
tek teke tek tek
Since ¢ is a sufficiently small constant, we know
d¥ = —aZf(x)) +d; #0, Va€l0,1],

and the /5-norm is second-order continuously differentiable in an open set that contains the line.
Therefore, the mean value theorem implies that there exists a € [0, 1] such that for each ¢t € K, it
holds

| = 25 (@) + dilla = ldilla = (di ~Z (@) ) 4
LT (1 _Jg(d‘g)T st
+ 5 =25 <||d?||2 A )[ Zf(w).

‘We can calculate that

o 1 d@)”

[—Zf ()] <||d?||2 - ||g?||§ > [—Zf ()] (25)
_lzs@olly (@ 2560)"
212 I =

where the equality holds if and only if Z f (z) is parallel with d*. By the definition of d', the equality
holds if and only if Z f(x;) is parallel with d;, which is further equivalent to

(drn2f(@0)| = 125 @),
Substituting equation [24] and equation [23]into equation 21} we have
ST = Z@olle + 3 (1= Zf () + dilla — i)

teKe tell
>3 125 @0l = (d Zf () ) =0,
teKe tek

where the equality holds if and only if
(0 2f0))| = 125 @Ol Ve k.

Considering the second condition in equation[23] the above equality condition is violated by some
t € K. Therefore, we have proven that condition equation 21| holds strictly.

Combining the two cases, we complete the proof. [
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Next, we prove that the condition in Lemmal[I]is also necessary for the uniqueness.

Lemma 2 (Necessary condition for uniqueness). Suppose that condition equation || holds. If the
ground truth matrix A is the unique global solution to problem equation then for every nonzero
Z € R™ ™ we have

S A Zfw) < Y NZ8@le or Y|l Zf@0| < Y12l @6

tek teKe tek tek

Proof. Assume conversely that there exists a nonzero Z € R™*™ such that

S A Zf@) =Y 1Zf@)l Y |dT Z2i@)| = Y IZ2f @)l @D

tell texe tek tek

Without loss of generality, we assume that
0<||Z]2 <€
for a sufficiently small e. In this case, the second condition in equation [27]implies that
‘cZIZf(xt)‘ = |Zf(xs)|2, and  Zf(xy) is parallel with d, V¢ € K.
Therefore, when e is sufficiently small, equations equation 23| and equation 23]lead to
| = Zf (@) + dille = |dills = = (di. Z(a0)) . VEEK.

We now show that condition equation 2] fails:

Do l=Zf@llz + D (I = Zf(ze) + dellz — [|de]l2)

teke tek
= Z <Cit7 Zf($t)> — Z <dt, Zf(xt)> = 0
tek tek
This contradicts with the assumption that A is the unique solution to problem equation O

Combining Lemmas [T] and 2] we have the following necessary and sufficient condition for the
uniqueness of the ground truth solution A.

D.5 PROOF OF THEOREM [4]

Proof of TheoremH) Since both sides of inequality equation [§]are affine in Z, it suffices to prove that
P [Jl(Z) —dy(Z) <0, VZ € SF} >1-4, (28)

where Sr is the Frobenius-norm unit sphere in R"*"™ and

di(2):=) (2T, f(x)d]), do(Z):= ) 1 Zf(ze)le.

tekl teke

The proof is divided into two steps.
Step 1. First, we fix the vector Z € S and prove that
P [31(2) —dy(2) < —9} >1-4,

holds for some constant > 0. Using Markov’s inequality, it is sufficient to prove that for some
v > 0, it holds that

E {exp (V [czl(Z) — JQ(Z):|>:| < exp(—v8)d. (29)

We focus on the case when K is not empty, which happens with high probability. The proof of this
step is also divided into two sub-steps.
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Step 1-1. We first analyze the term dl(Z ). Let T” be the last attack time instance, i.e.,
T :=max{t |t € K}.

Then, we have

E {exp {Vcil(Z)H =E |exp | v Z <ZT,f(xt)dtT> x E [exp |:V <ZT,f(IT/)dA;,>} | ]:T/}
tek\{T"}
(30)
According to Assumption the direction d7 is a unit vector. Since

12 @) dro| < 1Zf )l < 12020 f (27l
< |2l f (@)l < VB,

the random variable [Z f (acT/)]T dr is sub-Gaussian with parameter mB2. Therefore, the property
of sub-Gaussian random variables implies that

V2. mB2)

E [exp [1/ <ZT,f($T’)dA;’>] | }-T/} < exp < 2

Substituting into equation [30] we get

exp (v Y <ZT,f(xt)cftT> ‘|~exp<l/2.2mBQ>.

teR\{T"}

E [exp [ycfl(Z)H <E

Continuing this process for all ¢t € IC, it follows that

3D

v? - mB?|K|
—s )

E [exp [z/cfl(Z)” < exp (
Step 1-2. Now, we consider the second term in equation namely, —czg(Z ). Define
K':={t|1<t<T,tek’ t—1€eKk}.
With probability at least 1 — exp[—O[p(1 — p)T]], we have
K| = ©[p(1 - p)T].
Therefore, X' is non-empty with high-probability. Since || Z f(x;)||2 > 0 for all t € K¢, we have

exp <_u > ||Zf(xt)||2>] (32)

teK!

E [exp |:—VdA2(Z):|:| <E

=E |exp [ —v Y NZf(@)le | X Elexp (—vI|Zf(zr)l2) | Fri]| .
teX\{T"}

where T is the last time instance in ', namely,
T :=max{t |t € K'}.
By Bernstein’s inequality Wainwright (2019), we can estimate that

Elexp (—v|Zf(z1)|2) | Fr]

2
<exp | VB (12f(ar)la | Fr) + SE(1Z1r)I | 72)]

2
<exp [—WBE (12f @) | Frr) + SE (12 f @)} | fT/)] ,
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where the last inequality is from
1Zf(z7)ll2 < VmB.
Assumption [3|implies that
E(I1Zf(zr)l3 | Frr) = (ZZT E [f(zr) f(er)" | Fr]) 2 N||Z|[7 = A%

If we choose v such that

beve 2 o
we have
E Z Fr] < A P
lexp (—v[|Z f(z1/)|]2) | Fri] < exp {<2 - \/7an> } :

Substituting into inequality equation [32] it follows that

E [exp [—udz(Z)H

<Elew [ 120l xexp[(”;— ) ¥

teKN\{T"}

Continuing this process for all t € K’, we have

E [exp [71/(22(2)” < exp K”; - \/%B> >\2|IC’] . (34)

Combining the inequalities equation 3T]and equation [34] we have

E [exp (y [d}(Z) _JQ(Z)m < exp {WQBQUC + (”2 z )AQUC@ .

2 2 /mB
We choose
.- AL —p)T
' 4/mB
In order to satisfy condition equation [29] it is equivalent to have
mv?B? v? v ANvp(1 — p)T
- - A|K| + ——=="— < log (d). 35
sl (g = e ) I+ ST < g ) 65)

Now, we consider the fact that K is generated by the probabilistic attack model. Using the Bernoulli
bound, it holds with probability at least 1 — exp[—O[p(1 — p)T] that

1-p)T

Kl < 2T, K > By (36)

Thus, with the same probability, we have the estimation

mv?B? K|+ (V2 v > K|+ Nvp(1 —p)T

2 2 /mB 4/mB
mv?B? v? v p(1—p)T
< 2pT+ (= — A% :
= pE < 2 2\/53) 2
Choosing
o A*(1—p)
T 2y/mBMAMB? + X2(1 - p)|’
we get
2B2 2 )\2 1— T 1— 2
my |]C| 4 1/7 _ v )\2|’C/‘ + Vp( p) < - 2]7( 2p) T,
2 2 /mB 4/mB 16mk2(4mk? + 1 — p)
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where we define k := B/A > 1. Note that our choice of v satisfies the condition equation
Therefore, in order for inequality equation [35]to hold, the sample complexity should satisfy

2 2 _
T 16mk*(4dmk —1;1 D) log <1> .
p(1—p) J
By considering the Bernoulli bound equation [36] the sample complexity bound becomes
mrZ(mk? +1—p) 1 1
T>0 [max{ , }log ()} (37)
p(l—p)? p(1—p) 5
m2k? 1
ol ()]
p(1—p)? o
Step 2. Next, we establish the bound equation@by discretization techniques. More specifically,
suppose that € > 0 is a constant and {Z!,..., Z"} C S is an e-net of the sphere Sy under the

Frobenius norm, where we can bound

2

log(N) < mn - log <1 + ) .

€

Then, for every Z € Sg, we can find a point in the e-net, denoted as Z’, such that
1Z —Z'||F <.
Now, we upper bound the difference f(Z) — f(Z'), where we define the function
f(2):=d\(Z) —do(Z), VZ e R™™,

We can calculate that

F(2)=§(Z) =Y di(Z = Z') f(a) = Y (1ZF ()]l = 12" f(@r)ll2)

tex texe

<3 Az -2 f)+ 3 N2~ Z) f()s
telc texe

<SNZ = Z'Nelf@)d] e+ SN2 = 22l F o)l
telc teke

<SNZ - Zplf@dlla+ SN2~ 2wl £ )]z
te texe

<T-ey/mB = +vmTB -e.
‘We choose

Therefore, under the event that
f(Z) < -6, Vi=1,...,N, (38)
we have
f(Z) < —0+/mTB-e=0, VZE€Sp.
Hence, it suffices to estimate the probability that event equation 38 happens. To bound the failing
probability, we replace § with § /N in equation37|and it follows that

P[f(Z") < 6] 21—%, Vi=1,...,N.

Applying the union bound over all ¢ € {1,..., N}, the event equationhappens with probability at
least 1 — §, namely,

P[f(Z')<—0,Vi=1,...,N| >1-3.
With this choice of §, the sample complexity should be at least

rze[5izm s (5)

-0 e e () s ()]

This completes the proof. O
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D.6 PROOF OF THEOREM[3

Proof of Theorem[5| We only need to show that condition equation [/|fails with probability at least
1 — exp(—m/3). We choose the matrix

i 1 O1x (m—1
A= x(m—1) R™X™
On—1 O(n—l)x(m—l) <

As aresult, the last n — 1 elements of Af(z) are zero for every state z € R™. Moreover, we will
choose the basis function f such that its values will only depend on the first element of state x € R™.
With these definitions, the dynamics of z; reduces to the dynamics of its first element (x;);. Hence,
we can assume without loss of generality that n = 1 in the remainder of the proof.

We define the basis function f : R — R™ as
f(.'lf) = [max{ﬁw\,l} Sln(]") sm(Zx) e Sil’l[(m - 1)1’]] 5 Vo € R.

Under the above definitions, it is straightforward to show that the following properties hold and we
omit the proof:

f(0) =0y, f[Af(2)]=f(z), VzeR. (39)
Finally, the attack vector is defined as
di|F¢ ~ Uniform {[—(|z¢| + 27), —(Jo¢| + 7)] U [|z¢| + 7, |22| + 27]}, Vte K.

The remainder of the proof is divided into three steps.

Step 1. In the first step, we prove that Assumptions hold. By the definition of f(x), we have

]

1@l = {

which implies that Assumption 2] holds with B = 1. Moreover, the stealthy condition (Assumption|T)
is a result of the symmetric distribution of d;|F;.

ma (o, 1y [S@) - [sinf(m 1)w]l} <1, VzeR,

Finally, we prove that Assumption [3|holds. For the notational simplicity, in this step, we omit the
subscript ¢, the conditioning on the filtration F; and the event ¢ € K. The model of attack d implies
that

|z +d| > |d| —|z| > 7> 1.

Therefore, we have

flo+d) = [éii\ sin[(z +d)] - sin[(m— 1>(a;+d)]] .

For any vector v € R™, we want to estimate

m—1

d
Tt + Z Vit1 Sll’l[l(.]? + d)]
i=1

Z/TE[f(x—ﬁ-d)f(.’L’-i-d)T}V:]E vl

l/1|

First, we can calculate that

1'+d 2 2 . or. 2 2 1 .
E =vi, E Vi1 sinfi(z + d)]] =Vip1 g Vie{l,...,m—1}. (40)

et
Then, forevery i € {1,...,m — 1}, we have
x+d L
E {VIHC” - Vit sinfi(z + d)]} 41)
—lz|—m z+d |z| 427 z+d
—lz|—27 x|+

—|z|—m |z|+27
v [ / — sinfi(z + )] dd + / sinfi(z + d)] dd] ~0.

—|z|—27 |z| 47
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Forevery i,j € {1,...,m — 1} such that ¢ # j, it holds that
E [viy1sinfi(z + d)] - vj41 sin[j(z + d)]] 42)

—|z|—m
=Viy1Vj41 [/ SIH[Z(I + d)] Sln[](l’ + d)] dd

—|z|—27

|z|+27
+ / " sinfi(z + d)]sin[j(z + d)] dd| = 0.
|z|+m

Combining equations equation [d0fequation 42} it follows that

m—1

1 1
JTE [f(z+d)f(z+ d)T] v=uvi4 3 Z Vi, > §||VH§7
=1
which implies that Assumption [3|holds with A2 = 1/2.

Step 2. In this step, we prove that the linear space spanned by the set of vectors
Fe={f(z) |t € K}

has dimension at most m — 1 with probability at least 1 — 4. By the second property in equation
the subspace spanned by F° is equivalent to that spanned by

Fr={f(z) |t e K},
where we define
K':={t|t—-1ek, teKk}.
Therefore, the dimension of the subspace is at most |X’|.
To estimate the cardinality of K’, we divide K’ into the following two disjoint sets:
T={2t+1]2tek, 2t+1 €K}, Ky:={2t|2t—1€K, 2t € K}.

The size of K] is the summation of [7'/2] independent Bernoulli random variables with parameter
p(1 — p). Therefore, the Chernoff bound implies

frnsmn-n [2] 21w 52T

Similarly, the size of K} is the summation of |7"/2] independent Bernoulli random variables with
parameter p(1 — p). Therefore, the Chernoff bound implies

T 1- T
Pl < 2w - [ 2] 21— e [-2022 2], @)
Combining the bounds equation 3] and equation 4] and applying the union bound, it holds that

P(IK'| < 2p(1—p)T] > 1—exp [—p(l_p) ' V“ TP [_p(l_p) ' F”

3 2 3 2
>1—2exp {p(l—p)T} ,
3
where the last inequality is because |7/2] < [T/2] < T. Since
m
T< ——m,
2p(1 —p)
we know
P[|K'| <m] >1—2exp(—m/3). (45)

In addition, when K is the empty set §) or the full set {0, ...,T — 1}, the set K’ is an empty set, which
implies that |K’| is smaller than m. This event happens with probability

pT+(1=p) " >2[p(1—p)"72
Combining with inequality equation 5] we get

P(IK'| < m] = max {1 - 2exp (~m/3) ,2[p(1 - p)]"/2} .
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Step 3. Finally, we prove that if the dimension of the subspace spanned by ¢ is smaller than m,
the condition equation [7]cannot hold. Since the dimension of the subspace is at most m — 1, there
exists Z € R™ such that

Zf(z) =0, VteKke.
With this choice of Z, the condition on the left hand-side of equation [/| holds while the strict
inequality on the right hand-side fails. Therefore, we know that A is not the unique global solution to
equation 3] O

D.7 PROOF OF THEOREM [6]

Proof of Theorem 6] The proof is similar to that of Theorem 4] Since both sides of inequality
equation [§]are affine in Z, it suffices to prove that

P [&(Z) —dy(2) <0,VZ € SF} >1—9,
where Sg is the Frobenius-norm unit sphere in R™*"* and

d(2) =Y (27, J@)dl ), da(2) =3 12f (@)l

tek teke
The proof is divided into two steps.

Step 1. First, we fix the vector Z € S and prove that
P [dl(Z) —dy(2) < 79} >1-4,

holds for some constant § > 0. The proof of this step is divided into two steps.

Step 1-1. We first analyze the term d (Z). For each k € K, we define the following attack vectors:
. d; ift<k
dr = = vte{o,...,T—1}.
¢ {On otherwise, { '
Then, we define the trajectory generated by the above attack vectors:
zf =0y, xp, =Af(2f)+d}, vte{o,...,T-1}.

Let
’C = {kl,.. .7]€‘)q}7

where the elements are sorted as k; < kg < --- < k| x|- Under the above definition, we know

ay%! = g, for all t. We define

g L) = J ) it > 1,
R BCS if j =1,

We note that g;” is measurable on ;. Using these introduced notations, we can write d(Z) as

~
—~

vief{l,..., |k}

) K| ) K| -1 K|kl
0= 3 ()i ) =3 (4 Sl ) -3 3 Bt
j=1 j=1 (=1 =1 j=(+1

Then, Assumption E]implies that d; is sub-Gaussian with parameter o conditional on F;. Now, we
estimate the expectation

E [exp [ucil(Z)H ,

where v € R is an arbitrary constant. First, for each £ € {1,...,|K| — 1}, we estimate the following
probability:
Kl
P> diZgt| > €| Fr,
j=t+1
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Since Jk]. is a unit vector and || Z|| p = 1, we know
5T 5T 5T
|45, 2, < 1L 12021z < 17, 201211 = 1. (46)
Moreover, we can estimate that

ke—1
xk — Ty,

AR C 2
=L HA [f (xllel) f (mﬁ‘i)} H < pL Hf (% 71) _ f( Z@fll)H

< L(pL) by =i s || <o Leny o e - ]|

L <rlet

(xS )

= L(pL)kj_kz_l ”dkz H27

where the first inequality holds because f has Lipschitz constant L, the second inequality is from
||A]l2 < p and the last equality holds because

i = 31 () 4 = () = 21 ().

By the sub-Gaussian assumption (Assumption [6), it holds that

_ 2
P<||dke|2>n f) <2ew (-5 ). wzo @)

Combining inequalities equation F6equation 48] we get

K| K|
P Z deZTglljf >e|Fg, | <P Z Hgfj 226 Fre
j=t+1 J=t+1
K| B
<P > LD il 2 € | B,
j=0+1
L(pL)™ (1—pL)%
< _ > < _
_IP( 1L i, ll2 > €| Fr, | <2exp 502 L2(pL)5 | (49)
where A; := k; — k;_1 — 1 and the second last inequality is from
IK| 0o A
- , _ L(pL)™
L(pL)ki—ket L(pL)" = :
2 LD <D U T
Jj=4+1 i=A;
Since
<l
E( > dlZg" | Fi | =0,
Jj=L+1

inequality equation @ implies that the random variable Z p e 11 d;j zZ" g,]if is zero-mean and sub-

Gaussian with parameter 0L /(1 — pL) conditional on Fy,. By the property of sub-Gaussian random
variables, we have

K|

E |exp [ v Z dTng" ’}"k[ <exp[
j=t+1

V20_2L2(pL)2Aj

> 0.
el B
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Finally, utilizing the tower property of conditional expectation, we have

IK|—2 |K|
E [exp {VdAl(Z)” =E|exp (v Z Z d;:Zng (50)
=1 j=(+1
Kl
X E |exp | v Z d,l—ng,ljf Flix) -1 ]
i=IK|
IK|-2 |K| 2, 272 2A;
N veoe L= (pL)=~i
<Efexp |V Z Z dngg],jf X exp [2(1_(/)132}]
=1 j=0+1 P
V202 L2
<. < . L)%A > 0.
<. <exp 2(1_pL)QZ(p 251, V>0

Jjex

Since the random variable (pL)? is bounded in [0, 1] and thus, it is sub-Gaussian with parameter
1/2. Therefore, with constant number of samples, the mean of (pL)247 will concentrate around its
expectation, which is approximately

o0

2 2A _ p p
AZ:OP(l —p)*2(pL)** = 1—(1—p)2(pL)? < 1—pL’

Then, the bound in equation [50] becomes
5 V22 L2p|K|
E [exp |:Vd1(Z)i|:| 5 exp |:2(1—pl/)3:| ; Yv Z 0. (51)
Applying Chernoff’s bound to equation[5T] we get
(1-pL)®

e“} , Ye>0. (52)
Step 1-2. Next, we analyze the term cig(Z ). Define the set
K={t|1<t<T, tek’ t-—1€K}.
With probability at least 1 — exp[—O[p(1 — p)T]], we have
IK'| = ©[p(1 —p)T7.
Therefore, K’ is non-empty with high-probability. Since || Z f(x¢)||2 > 0 for all t € K¢, we know
b(2)> Y 125 (@)
kek’
To establish a high-probability lower bound of || Z f () ||2, we prove the following lemma.
Lemma 3. For eacht € K', it holds that
A eA?
PlI1zsel > § | 7)) > S

where ¢ := 1/1058 is an absolute constant.

For each t € K, let 1; be the indicator of the event that || Z f (x;)||2 is larger than the (f%;—quantile
conditional on F;. Then, it holds that

D%

Pl =1]|F) =1-P1,=0|F) = —=.

et
{1t byt te IC’}
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is a martingale with respect to filtration set { F;, ¢ € K'}. Applying Azuma’s inequality, it holds with
)\4 ‘ }C/ |

probability at least 1 — exp[—© (77 )] that
K|
Doz
tex 20%L
which means that for at least C;‘:if;' elements in K, the event that ||Z f(xz;)]|2 is larger than the

%-quantlle conditional on F; happens. Using the lower bound on the quantile in Lemma , we

know
Szl = LA (g - XKD o - XK (53)
= V2= 00408 2 20111 T 401L]

holds with the same probability.
Combining inequalities equation [52]and equation[53] we get

c)\5\IC’| (1-— pZ/)3 9 )\4\IC’|
P{f(Z) € 1 4} 1 exp{ 207 L2p|K] € exp |—O ) ,

where we define f(Z) := di(Z) — d2(Z). Choosing
e’ |K|

o4L4’

it follows that

51!
cA qu (54)

P [f(Z) s - o4 L4

(1—pL)3)\10|IC’|2 )\4"C/|
>1 - -0 - -0l —1|-
S [ ( 10 L10p K] exp Py
By the definition of the probabilistic attack model, it holds with probability at least 1 — exp[—O[p(1 —
p)T]] that

1—p)T
Kl <21, |k > DT (55)
Therefore, the probability bound in equation [54]becomes
A°p(1 —p)T (1= pL)’A(1 — p)*T
¥ {f T 7 e oL
X'p(l—p)T
B B L [
Now, if the sample complexity satisfies
= =) % )
T > O |max , log =11, (56)
{ {ﬂ—pw%l—mzpﬂ—p) 0
we know
PIf(Z2) < -0 21—, (57)
where we define
oL, eNp-pT
P ’ 1604L4

Step 2. In the second step, we apply discretization techniques to prove that condition equation
holds for all Z € Sg. For a sufficiently small constant € > 0, let

{(Z',...,ZN}
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be an e-cover of the unit ball Sp. Namely, for all Z € S, we can find r € {1,2,..., N} such that
|Z - Z"||p < e Itis proved in|Wainwright|(2019) that the number of points N can be bounded by

2
log(N) < mnlog (1 + > .
€

Now, we estimate the Lipschitz constant of f(Z) and construct a high-probability upper bound for
the Lipschitz constant. For all Z, Z’ € R™*™, we can calculate that

12) = 12 =3 {(Z=2)T f@)dl ) = S (1Zf @)l = 12 F@)]l,)

telkl teke

<NZ2=2Z0 Y |fadl | +12 =2, Y 1@l
tek texe
T-1

<NZ=2ZMp > 1@l (58)

t=0

Using the decomposition in Step 1-1, we have

J
k
xt) = Z 9 [{7
=1
where k; is the maximal element in KC such that k; < t. Therefore, we can calculate that

Kl T-1

Z||fxtuz<z > |

j=1lt=k;+1

(59)

Foreach j € {1, ...

that

V< LD dy ey VE > Ky

’SJt

Substituting into inequality equatlon@], it follows that

K| T-1 K|
an e <Y S LD i < LZH ol
Jj=1lt=k;+1

Using Assumption [6]and the same technique as in equation[50} we know

P di. |2 < >1-2 —— | >1-2 -
Y ldla <) > 120 (- ) > 120 ().

Jj=1

where the second inequality is from the high probability bound in equation[55] Hence, it holds that

T—1 2 2
n°(1—pL)
P(; If ()l <77> >1—2exp <_402LQPT ) (60)
Choosing
_ 9
77 T 26’
the bound in equation [60|becomes
T-1
(1— PL)2 2
t=0
(1-pL)> ([ Np(1—p)T\
=1-2 -0 .
P 402 [2pTe? otL4
1— oL 2,10 _ 2T
sy [ [t ]
€
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We set

€:=0 [\/(1 — pL)?k10p(1 — p)z] :
Then, it follows that

oxp {—@ {(1 - 'OL)%izp(l _p)QTH = exp[-O(T) < 7,

where the last inequality is from the choice of T" in equation[56] Substituting back into equation
we get

T—1 0 s
P (; o)l < 2€> >1-3. (62)
Under the event in equation for all Z € S, there exists an element Z" in the e-net such that
T—1 0
FZ2) < FZ) + e D lIf @), < F(Z7) + 7
t=0

If we replace § with /(2N in equation[57]and choose Z = Z" for all € {1,..., N'}, the union
bound implies that

P[f(Z")<—0,r=1,...,N]>1—

N>

(63)

Under the above condition, we have
- 0 0
f(Z)< f(z )+§§—§<0.

To satisfy condition equation [63] the sample complexity bound equation 56| becomes

r=6 [max { = pLH;(zl —p)?’ 1D(1Hj ») } o (255\[)}
410 KA

< [rosn (7)1 (3)] |

which is the desired sample complexity bound in the theorem.

Lower bound of x. Before we close the proof, we provide a lower bound of x = o L/ A. Equiva-
lently, we provide an upper bound on A2, which is at most the minimal eigenvalue of

E [f($+Jt)f($+Jt)T | Fiody # 0, .
Let v € R™ be a vector satisfying
Ivllo=1, v"f(z)=0.

Then, we know

vifletd)fe+d) v=v"[flz+d)— f(2)] [flz+de) - f(ﬂﬁﬂT v (64)
= [[f@+d) - f@)] " v] < |f@+d) - f@);
< L3,

where the last inequality is from the Lipschitz continuity of f. Using the sub-Gaussian assumption, it
follows that

E [|de|l3 | i, de # 0] < 02, (65)
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where we utilize the fact that the standard deviation of sub-Gaussian random variables with parameter
o is at most 0. Combining inequalities equation [64]and equation[63] it follows that

VIE[f(x+d)f(x+d) | Fiydy # 00 v < 0”17,
Therefore, it holds that
N < N [E [f(@ +do) f(a+ )T | Frody # 0]] <0®L%, Yz eR”,

which further leads to

oL
=—>1
K N2

This completes the proof. O
D.8 PROOF OF LEMMA[3

Proof of Lemma[3] Let

0% Tora
0= m, Gt = HZ f [Af(l’f_l)] ||2 .

We finish the proof by discussing two cases.

Case 1. 'We first consider the case when

A 2
>7 272 .
9t2+\/20'L 10g<1_6>

Using the Lipschitz continuity of f, we have

Zf(@)lly = ||[Z2f(x) = Z7 f [Af(me-1)]] + Zf [Af(2e-1)] ] (66)
> ||2f [Af ()|, = |12 (@e) = ZF [Af (-]
>0 — |1 Zl2 || f (2e) = | [Af(ze-1)]]],
>0, — | Z||lp - L ||de|, > 0: — L||dy]

I, -

By Assumption@ we know ||d;||, = |¢;| and it follows that

I

2

B (||, > c| F) < 2exp (;{72> L Wezo.

Therefore, we get the estimation
A A
P <||Zf(xt)||2 < B ’ .7-}) <P (9,5 - L ||dtH2 < B} ‘ ]:t)
- 0 — /2
(> 222 | )

L

P (12l 2 5| ) 28

Therefore, we have proved that

Case 2. Then, we focus on the case when

A 2
<Z 2r2 — .
0, < 2+\/20L log<1_6> (67)
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Assume conversely that

A
P (1270l 2 § | 7) <6 (68)

Similar to inequality equation [66] the Lipschitz continuity of f implies
1Zf(ze)lly < 0c + L ||dy
Therefore, by applying Assumption [6] we get the tail bound

I>-

P(1Zf(z)ll2 > 0| Fe) <P (0 + L||de]|, > 0| Fe)
- 60— 0, (0 —6,)?
= (lal, = 3% | 7) <200 [- O] oo
Define (x)+ := max{z, 0}. The above bound leads to
P(|Zf(z)]2 > 0| Fi) < 2ex AL PRV (69)
t)i2 = t) = p 2022 ) .

Using the definition of expectation, we can calculate that

E(12f@)IE | 7] = [ 20 PlIZfw0) 2 01 7] ab

2

)\ o0
<% +/ 20-P[|Zf(ze)l2 = 6| F] db.
2/2

By condition equation [68] we get
A A
PIZfwle >0 ) <P 125wl > | 7] <5 >3,

Combining with inequality equation [69] it follows that

E[||Zf(a:)||2|]-']<)\2+/w29-min 5,2 ex _O-0)% deo (70)
DI = T ), S =y

A2 A2 > (0 — 0,)?
= — 2 — = 460 ——2| df
4+5<1 4>+/91 exp[ 202[/2} ,

A 2
0, := max {2, 0; + /202 L2 log (6) } > 0.

Using condition equation[67] we know

2
A 2 2
2 Z 27,2 27,2 Z
07 < <2+\/20L log(1_5>+\/20L log<5>> (71)
/ ? 2
A 2 A 2
<2 272 z < 2712 z
_<2+2 20Llog(6)> _2—5-160L10g(5)7

where the last inequality is from Cauchy’s inequality. Moreover, we can estimate that

where we define

> (0 —0,)? /°° (60 —6,)
N Y < N Y
/91 40 exp [ 55772 do < 5 40 exp 95772 do (72)
_ [ (-0 /°° B -0
_ /9 e [ Sarz | W [ 40— 0exn || ao
* (0 — 0,)° 272
= /92 49t exp |:—W df + 26c°L s
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where we denote 6 := 6, + /202L?log (2) < 6;. Utilizing the following bound on the cumulative
density function of the standard Gaussian distribution:

o0 12 ‘I]2
/ e~ T dr<nleT T, Vnp>0,
n

we have
o 0 —6;)2 1 )
/ 46, exp {(252)] df < 46,0L - ——— - = < V26, - 6o L.
2 % 2105 (3)
Combining with equation [72] it follows that
00 0—0 2
/ 40 exp {—(2%‘” df < 20, - 6oL + 260°L? < 466% + 4602 L?, (73)
01 g

where the last inequality is from Cauchy’s inequality. Substituting inequalities equation [71] and
equation[73]back into equation [70} we get

2 2
E[II1Zf(z)ll5 | Fe] < % +4 D + 1602L% log (?)} + 4667 + 400%L?

2
A 2
2 27,2
2+\/2UL log<15>

2
_(+0))

2
< +1602L% - §log () +0 + 4602 L*

)

2 2
g% +160%L? - §log ((25) + % +40%L? - §log <§) + 4602 L2
2
S@ + 240217 - 6 log (?) .

where the second inequality is from equation [67]and the last inequality is from Cauchy’s inequality
and 0 < 1/2. On the other hand, Assumption [3|implies that

E(I1Zf(z)ll3 | Fe) = (ZZ7 B [f(z:) f(xe) " | Fe]) = X[ 25 = A2
Combining the last two inequalities, we get
1+ 30)A\2 2
A< % +2402L*% - §log (5> ,

which is equivalent to

4] 9602L% ~ 2302L*
For all x € (0, 1), it holds that z log(2/x) < v/2z. Hence, we have

Viss o
20> o3 5T

which contradicts with our assumption equation

o 2 2
510g(2>>(3 392 A

D.9 PROOF OF THEOREM[]]

Proof of Theorem[/] In this proof, we focus on the case when m = n and the counterexample can be
easily extended into more general cases. We construct the following system dynamics:

A:=pl,, f(z):=2, VzeR",

where p > 2 4 /6 is a constant. One can verify Assumptionlé__l]holds with Lipschitz constant L = 1.
Therefore, the stability condition (Assumption is violated since p > 1/L. The system dynamics
can be written as

ve= Y p 7y, vte{o,...,T}. (74)
kelC,k<t
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Conditional on F; and t € I, the attack vector is generated as
d; ~ Uniform(S™1),

where S" 71 is the unit ball {d € R™ | ||d|2 = 1}. The attack model satisfies Assumption with
A = 1/4/n and Assumption [6|with o = 1//n. Define the event

E={T-1eKk,|K|>1}.

By the definition of the probabilistic attack model, we can calculate that
PE)=p[1-(1-p" ]

Our goal is to prove that

P [dl(Z) —dy(2) > 0] 5} -

where we define

d(2) =3 (27 f@)d] ), da(2):= > 1Zf @),
tek teke
Then, by Theorem we know that A is not a global solution to problem equation [3| with probability
at least
pl-1-p)""].

Let 1 be the smallest element in /C, namely, the first time instance when there is an attack. Under
event £, it holds that ¢; < 7" — 1. We first prove that

2 #0,, Vte{ti+1,...,T—1}

By the system dynamics equation |/4|and the triangle inequality, we have

lzelle = p 0 e lla = Y P el =pt = Y PR
kEK ty <k<t kEK ty <k<t
t—t1-2 —t1 _ g t—ti—1 ||
prhTt = Z pr= P oo,
p—1

where the last inequality holds because p > 2. Then, we choose

7 = I'Tfldgfl 7& 0.
It follows that

(2) =327 pwdl ) = eradio |+ 3 (eradiy sod])

tekl tek,t<T—1
2
> lor-alf = D lloz-all s,
tek,t<T—1
da(2) = 3 125 @)y = Y [oradim, < D7 laraly lacll-

teke teke teke

Combining the above two inequalities, we get

T-2
di(Z) = d2(2) < |27, <|xT P Z IIxtHz) = [lzr-1ll (IIxT = > IIxtHg),

t=t1+1

where the last equality holds because x; = 0,, for all ¢ < ¢1. Since ||x7_1]|2 > 0, it is sufficient to
prove that

T-2

lez—illy > D el (75)

t=t1+1

34



Under review as a conference paper at ICLR 2025

Considering the system dynamics equation [74]and the fact that ||dx||; = 1 for all k € K, we have

the estimation
t—t1—1 t—k—1 t—k—1
P = E P < laelly < E P :
keK,t1<k<t kel k<t

The desired inequality equation[75]holds if we can show

pT—1-ti—1 Z pT-1=k=1 5 Tz:_Q Z ptk1

kEK, t1<k<T—1 t=t1+1 ek, k<t

which is further equivalent to

2prt172> g Z ptfkrfl

t=t1+1 kel k<t

T-1 t-1 T—1 44 Tt
Tty —2 k1 prr =1 p —p—(T'—t1 =1)(p—1)
e D YD WA S T
t=t14+1 k=t, t=t1+1

T—t1

T—t-2 - _P
T (p—1)?
By our choice of p, we know condition equation [75]holds and this completes our proof.

— 2 = P —4p—2>0 <= p>2+6.

E NUMERICAL EXPERIMENTS FOR BOUNDED BASIS FUNCTION

In this section, we provide the descriptions of basis functions and analyze the performance of estimator
equation [2]in the case of bounded basis function. We show that the estimator equation [2is able to
exactly recover the ground truth A with different attack probability p and problem dimension (1, m).
We utilize the same evaluation metrics as in Section[7]and define the system dynamics as follows.

Lipschitz basis function. Given the state space dimension n, we choose m = n and define the
basis function as

Vie =213 +1= Va5 +1

1
f(z):= NG : , VreR™
Viiz = zall3 +1 = /a3 +1
where x1,...,x, € R™ are instances of i.i.d. standard Gaussian random vectors. We can verify

that the basis function is Lipschitz continuous with Lipschitz constant L = 1 and thus, it satisfies
Assumption For each time instance t € I, the noise d; is generated by

d; := Ettit, where ¢; ~ N (0, atz), dy ~ uniform(S"il), ¢, and d; are independent.

Here, we define o2 := min{||24|%,1/n}. We can verify that the random variable /; is zero-mean

and sub-Gaussian with parameter ¢ = 1. In addition, the random vector d; follows the uniform
distribution and therefore, Assumption E]is satisfied. Note that dy, . .., dp—1 are correlated and they
violate the i.i.d. assumption in the literature. Our attack model implies that the intensity of an attack
(namely, /;) depends on the current state, which is a function of previous attacks. Since the points
Z1,...,T, are randomly generated, the multiquadric radial basis functions are linearly independen
with probability 1 and therefore, the non-degenerate assumption (Assumption [3) is satisfied. Finally,
the ground truth matrix A is constructed as U VT, where U,V € R™ " are random orthogonal
matrices and ¥ = diag(o1,...,0y,) is a diagonal matrix. The singular values are generated as
follows: N
o TR uniform(0, p), Vi€ {1,...,n},
where p > 0 is the upper bound on the spectral norm of A.

"Functions g1 (y), . . ., gx (v) are said to be linearly independent if there do not exist constants ci, . . . , cx
such that Zle ¢;gi(y) = 0 for all y.
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Figure 4: Loss gap, solution gap and optimality certificate of the bounded basis function case with
attack probability p = 0.7,0.8 and 0.85.

Bounded basis function. Given the state space dimension n, we choose m = 5n and define the
basis function as

(1) sin(y)
f(z) = ,  where f(y) := , VxeR" yeR.
flan) sin(5y)
The basis function satisfies Assumption 2] with B = 1. For each time instance ¢ € K and for each
i € {1,...,n}, the noise d; ; is independently generated by

Jt,i ~ Uniform (—¢; ;m,¢; ;m), where ¢; ; := min{max{|z;|,0.1},0.5}.

Note that d; ; and x; ; is the ¢-th component of d; and z, respectively. Since the attack is symmetric
with respect to the origin, it satisfies Assumption|[I] Since the sine functions sin(y), ..., sin(5y) are
linearly independent, the non-degenerate assumption (Assumption 3) is satisfied. Finally, the ground
truth matrix A is constructed such that

22:1 as i sin(kxq)
Af(x) = : ;
22:1 a1 sin(kxy,)

where N
di g %" Uniform(—100,100), Vi e {1,...,n}, ke {1,...,5}.

We note that we choose the upper bound of coefficients @; j, to be larger than 1 to show that the
stability condition (Assumption [3]) is not required in the bounded basis function case.

Results. We first compare the performance of estimator equation [2| with different attack probability
p. We choose T'= 900, » = 1 and p € {0.7,0.8,0.85}. The results are plotted in Figure We
can observe behaviors similar to the Lipschitz basis function case. More specifically, the optimality
certificate accurately measures the exact recovery of the estimator equation 2] and the required sample
complexity increases with the probability of attack p.

Next, we show the performance of the estimator equation with different dimensions (n, m). We
choose T' = 500, p = 0.7 and n € {1,2,4}. The results are plotted in Figure We can see that
the exact recovery occurs with more samples when (n, m) is larger, which still verifies the results in
Theorem (4l

F NUMERICAL EXPERIMENTS WITH LOW ATTACK FREQUENCY

In this section, we repeat the experiments in Figure with p € {0.001,0.1,0.3} and n = 5. The
results are plotted in Figure[6] We can see that the predictor fails to find the ground truth within 500
steps when p = 0.01, while it converges when p = 0.1 and 0.3. Note that the loss gap and optimality
certificate are both equal to 0 in the case when p = 0.001. This is because there exist multiple global
solutions and the estimator fails to recover the ground truth solution within 500 iterations. Note that
the algorithm will eventually converge to the ground truth solution when more samples are available.
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Figure 5: Loss gap, solution gap and optimality certificate of the bounded basis function case with
dimension (n, m) = (1,5), (2, 10) and (4, 20).
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Figure 6: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with
attack probability p = 0.001, 0.1 and 0.3. Note that the loss gap and the optimality certificate for the
case when p = 0.001 is always equal to 0.

With that said, the main focus of this paper is the regime when p is larger than 0.5. Note that when
p is very small or even zero, learning the system is a classic problem in control theory, where it is
known that one should add an artificial noise to the system (named excitation signal) to be able to
learn the system. There is a rich literature on why an excitation signal is necessary when the system
is (almost) deterministic. As an example, assume that we have the system z;11 = Ax;, where our
aim is to learn A from measuring x;. If z is zero, x; always remains zero and we cannot find A. To
avoid this, we should excite the system as z;11 = Ax; + w; where w; is, for example, Gaussian
noise. When p is away from zero, the adversarial attack does us a favor and acts as an excitation
signal.

G NUMERICAL EXPERIMENTS WITH SPARSE A

In this section, we repeat the experiments shown in Figure [T]using the sparse ground truth matrix
A. Specifically, we generate a sparse matrix A where A; ; is set to 0 whenever |¢ — j| > 1. In
other words, A is a tridiagonal matrix. We repeat the experiments for Lipschitz basis functions
with p € 0.7,0.8,0.85 and n = 10. Additionally, we extend the simulation period to 7" = 1000,
compared to 7" = 500 in the previous experiments. To save computational time, we solve the problem
in equation ] every 10 time periods. Consequently, the plots exhibit discrete jumps corresponding
to time periods that are multiples of ten. We excluded the loss gap from the figures because the
estimator is computed only for a subset of the time periods. Figure[7]suggests that we achieve exact
recovery despite the sparse structure of the ground truth matrix A. This result is not surprising, as
the theoretical results do not depend on the sparsity structure of A. In addition to demonstrating
robustness, the non-smooth objective function in equation 2] serves as a regularization term for the
specific matrix structure.

H NUMERICAL EXPERIMENTS WITH LARGER ORDER SYSTEMS

In this section, we repeat the experiments shown in Figure 2] with significantly higher-order dynamical
systems and a larger number of basis functions, specifically (n,m) € (10, 20), (25, 50), (50, 100).
We set the probability of an attack occurring to p = 0.6. Additionally, we extend the simulation
period to T" = 1100, compared to 7" = 500 in the previous experiments. To save computational time,
we solve the problem in equation [2]every 100 time periods. Consequently, the plots exhibit discrete
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figures because the estimator is computed only for a subset of the time periods.

In Figure[8] we observe that exact recovery is achieved even when the system’s dimension and the
number of basis functions are significantly large within the context of system identification problems.
for a sufficiently long time, with the required

Achieving exact recovery requires the system to run
time horizon specified in our theoretical results.
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Figure 8: Loss gap, solution gap and optimality certificate of the Lipschitz basis function case with

dimension (n,m) = (10, 20), (25, 50) and (50, 100).
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