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1 ADDITIONAL REMARK FOR OPTIMIZATION
In order to optimize the alignment matrix P, the problem of aligning
two anchor sets is formulated as follows:

min
P

∥Z𝑏 − Z𝑖P∥2F + 𝜆∥G𝑏 − P⊤G𝑖P∥2F
⇔ max

P
Tr(Z⊤

b ZiP + 𝜆GbP⊤GiP),

s.t. P1 = 1, P⊤1 = 1, P ∈ {0, 1}𝑚𝑖×𝑚𝑏 .

(1)

The above problem is a quadratic assignment problem (QAP)
and generally is proved to be NP-hard[1]. The feasible region con-
straint often relaxes into its convex hull, the Birkhoff polytope with
double stochastic region. Then the optimization problem can be
transformed as

max
P

Tr(Z⊤
b ZiP + 𝜆GbP⊤GiP),

s.t. P1 = 1, P⊤1 = 1, P ∈ [0, 1]𝑚𝑖×𝑚𝑏 .
(2)

To solve Eq. (2), we use the Projection Fixed-Point Algorithm
[2] to update P as follows:

P(𝑡+1) = (1 − 𝛼)P(𝑡 ) + 𝛼Γ
(
∇𝑓

(
P(𝑡 )

))
=(1 − 𝛼)P(𝑡 ) + 𝛼Γ

(
K⊤ + 2𝜆G𝑖P(𝑡 )G⊤

𝑏

)
, 𝛼 ∈ [0, 1],

(3)

where 𝛼 denotes the step size parameter, 𝑡 denotes the number of
iterations, Γ denotes the double stochastic projection operator and
K = Z⊤

𝑏
Z𝑖 . We set 𝛼 = 0.5 in this paper.

2 EXPERIMENTS
2.1 Convergence
We demonstrate the convergence of the proposed 3AMVC on four
datasets (MFeat, Reuters, Caltech256, VGG2) in Figure 1. As seen,
our 3AMVC algorithm can gradually converge to a stable state as
the number of iterations increases.

2.2 Visualization of Anchor Selection
We record the number of anchors selected and the baseline view of
alignment on all datasets using our HBNC under the best parame-
ter settings when the best clustering performance is achieved. As
shown in Table 1, our method does not always select the view with
the largest number of anchors as the baseline view, because the
quality of the anchor graph is not positively correlated with the
number of anchors. Figure 2 can also prove that determining the
baseline view by evaluating the quality of the anchor graph has a
beneficial effect on the clustering performance.

In addition, we show the anchor selection results of the K-means
and HBNC algorithms in three views on the ForestTypes dataset in
Figure 3. From the experimental results of the ForestTypes dataset,
as with the MFeat dataset, the baseline view we picked generally
has the strongest representation ability of anchors and can better
represent the internal structure in the original sample space.

(a) MFeat (b) Reuters

(c) Caltech256 (d) VGG2

Figure 1: The variation of the objective valuewith the number
of iterations on four datasets.

Table 1: The number of anchors selected by HBNC on all
datasets.

Dataset Baseline View Number of anchors

ForestTypes
1 10
2 16

✓ 3 20

MFeat ✓ 1 54
2 64

Reuters

1 62
2 48
3 45
4 13

✓ 5 53

Caltech256

1 48
2 67

✓ 3 62
4 45

VGG2

1 33
2 74

✓ 3 66
4 38

2.3 Visualization of Ablation Studies
We visualize the ablation experiment on theMFeat dataset. Since the
baseline view of the MFeat dataset is also the first view, in order to
illustrate the effectiveness of our beaseline view alignment method,
we exchange two views of the MFeat dataset and reconstruct the
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Figure 2: The visualization of the anchor graphs on MFeat_test dataset.

(a) K-means on 1-st view (b) HBNC on 1-st view

(c) K-means on 2-nd view (d) HBNC on 2-nd view

(e) K-means on 3-rd view (f) HBNC on 3-rd view

Figure 3: The visualization of anchor selection on Forest-
Types dataset.

(a) 3𝐴_𝑤/𝑜_𝐴𝐵 (b) 3𝐴𝑀𝑉𝐶

Figure 4: The comparison of visualization of the fused anchor
graphs with 3𝐴_𝑤/𝑜_𝐴𝐵 and 3𝐴𝑀𝑉𝐶 on MFeat_test dataset.

Table 2: Experiment results of ablation studies

Datasets Methods ACC NMI Fscore

MFeat_test

3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 0.8107 0.7226 0.6970
3𝐴_𝑤/𝑜_𝑆𝐴 0.8107 0.7226 0.6970
3𝐴_𝑤/𝑜_𝐴𝐵 0.8520 0.8178 0.7806
3𝐴𝑀𝑉𝐶 0.8775 0.8298 0.8044

MFeat_test dataset, aiming to provide a clearer and more illustrative
depiction of the impact of our strategies. As mentioned earlier,
methods that do not use either strategy are recorded as 3𝐴_𝑛𝑒𝑖𝑡ℎ𝑒𝑟 .
3𝐴_𝑤/𝑜_𝑆𝐴 means that the anchors are not automatically selected,
and we use the kmeans method instead. 3𝐴_𝑤/𝑜_𝐴𝐵 stands for not
aligning based on the baseline view, we align based on the first
view uniformly. 3𝐴𝑀𝑉𝐶 means the complete algorithm.

The results of ablation experiments on the MFeat_test dataset
are shown in Table 2. The effect of the baseline view is not reflected
on 3𝐴_𝑤/𝑜_𝑆𝐴. We analyze that the 𝑘 anchors may not adequately
capture the original spatial structure inherent in the data, which
results in an ineffective alignment outcome.
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We visualize the anchor graph of 3𝐴_𝑤/𝑜_𝑆𝐴 and 3𝐴𝑀𝑉𝐶 in
Figure 2. In both methods, we take the representative anchor of
the first cluster as an example. 3𝐴_𝑤/𝑜_𝑆𝐴 realizes the one-to-one
correspondence of the anchor 4 in view 1 according to the anchor 9
in the baseline view 2, while 3𝐴𝑀𝑉𝐶 method matches the anchor
48 of the base view 2 with the two representative anchors 10 and 13
in view 1. Consequently, compared with 3𝐴_𝑤/𝑜_𝑆𝐴, our anchor
selection strategy is more flexible, and the alignment matrix P can
handle one-to-many or many-to-one matching relationships. In
addition, from the fused anchor graph, no matter how the anchor
selection result is, the alignment operation can obtain a clearer
clustering structure.

In addition, we compare the visualization of the fusion anchor
graph Z𝐴𝑙𝑖𝑔𝑛𝑒𝑑 of 3𝐴_𝑤/𝑜_𝐴𝐵 and 3𝐴𝑀𝑉𝐶 . Observing Figure 4,
we find that the clustering structure of the fused anchor graph can
be clearer by aligning the views according to the view with the
best anchor graph quality, which is conducive to improving the
performance of clustering.
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