Appendix of Accelerating Large Batch Training via Gradient Signal to Noise Ratio (GSNR)

Anonymous Author(s) Affiliation Address email

A Proof of VR-SGD's convergence rate:

² Assumption 1 (bounded gradient). $||\nabla L(\theta)|| \leq G$

3 Assumption 2 (*l*-smooth). $\exists l > 0$ satisfies $||\nabla L(x) - \nabla L(y)|| \le l||x - y||$

Our assumptions are weaker than LARS/LAMB/DecentLaM and similar with SGD. We assume that 4 the training process satisfies Assumption.1 and Assumption.2, which are widely used in famous 5 optimizers (Table.1). Our derivations does not require the bounded variance. We confine the bound of 6 GSNR to $r(\theta) \leq 1$. GSNR upper bound is not strong and may exist in practise, e.g., Liu *et al.* [2020] 7 found that GSNR will first grow and than decay over time. Layer level bound is also used in the 8 derivations of LARS/LAMB[You et al., 2020] and such assumption can be inferred under the overall 9 bound. For example, if it satisfies $||\nabla L(\theta)|| \leq G_{max}$, then $\exists G_i \leq G_{max}, i \in \{1, 2, ..., h\}$ satisfy 10 $||\nabla L_i(\theta)|| \leq G_i$. We define the expectation of stochastic mini-batch gradient as the true gradient, 11 i.e., $E(\mathbf{g}^{(i)}) = \nabla_i L(\theta)$. 12

Ontimizor	Asumption.1	Asumption.2	Other assumption
Optimizer	(bounded gradient)	(l-smooth)	(bounded variance)
SGD[Sa, 2021]	\checkmark		×
Adam[Kingma and Ba, 2015]	\checkmark	×	×
SVRG[Johnson and Zhang, 2013]	×		×
LARS[You et al., 2020]	\checkmark		\checkmark
LAMB[You et al., 2020]	\checkmark		
EXTRAP-SGD[Lin et al., 2020]	×		\checkmark
DecentLaM[Yuan et al., 2021]	\checkmark		\checkmark
VR-SGD(ours)	\checkmark	\checkmark	×

Table 1: Assumptions comparing with widely used optimizers.

¹³ Proof. Inspired by [Sa, 2021; You et al., 2020; Shamir and Zhang, 2013; Ghadimi and Lan, 2013;

Allen-Zhu and Hazan, 2016; Allen-Zhu et al., 2019], the convergence of VR-SGD under general

15 nonconvex setting is derived below. VR-SGD's updating rule is:

$$\theta_{t+1}^{(i)} = \theta_t^{(i)} - \lambda_t \cdot r_t^{(i)} \cdot \mathbf{g}_t^{(i)} \tag{1}$$

where $\theta_t^{(i)}$ represents the *i*th layer parameters of the model at *t*th training step, $r_t^{(i)}$ and $\mathbf{g}_t^{(i)}$ represents the corresponding GSNR and gradient mean.

18 From Taylor's theorem and Assumption.2, there exists the upper quadratic bound:

$$L(\theta_{t+1}) \leq L(\theta_t) + \underbrace{<\nabla_i L(\theta_t), \theta_{t+1}^{(i)} - \theta_t^{(i)} >}_{T_1} + \underbrace{\sum_{i=1}^n \frac{\ell_i}{2} ||\theta_{t+1}^{(i)} - \theta_t^{(i)}||^2}_{T_2}$$
(2)

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

19 The 2^{nd} term T_2 of eq.(2):

$$T_2 = \sum_{i=1}^{h} \frac{\ell_i}{2} ||\theta_{t+1}^{(i)} - \theta_t^{(i)}||^2$$
(3)

$$=\sum_{i=1}^{h} \frac{\ell_i}{2} (-\lambda_t \cdot r_t^{(i)} \cdot \mathbf{g}_t^{(i)})^2$$
(4)

20 Applying the GSNR definition $r_t^{(i)} := rac{\mathbf{g}_t^{2(i)}}{\sigma_t^{2(i)}}$, we have:

$$T_2 = \frac{\lambda_t^2}{2} \sum_{i=1}^h \ell_i \frac{[\mathbf{g}_t^{(i)}]^6}{[\sigma_t^{(i)}]^4}$$
(5)

²¹ Taking expectation, we have:

$$E(T_2) \le \frac{\lambda_t^2 r_u^2 G^2 ||\ell||_1}{2} \tag{6}$$

The 1^{st} term T_1 of eq.(2):

$$T_{1} = \langle \nabla_{i} L(\theta_{t}), \theta_{t+1}^{(i)} - \theta_{t}^{(i)} \rangle$$

$$h_{t} = d_{i} \qquad (7)$$

$$= -\lambda_t \sum_{i=1}^h \sum_{j=1}^{d_i} [\nabla_i L(\theta_t)]_j \cdot \frac{[\mathbf{g}_{t,j}^{(i)}]^3}{[\sigma_{t,j}^{(i)}]^2}$$
(8)

$$\leq \underbrace{-\lambda_t r_l^2 \sum_{i=1}^h \sum_{j=1}^{d_i} \left([\nabla_i L(\theta_t)]_j \cdot [\mathbf{g}_{t,j}^{(i)}] \right)}_{T_3} \tag{9}$$

$$\underbrace{+\lambda_{t} \sum_{i=1}^{h} \sum_{j=1}^{d_{i}} ([\nabla_{i} L(\theta_{t})]_{j} \cdot \frac{[\mathbf{g}_{t,j}^{(i)}]^{3}}{[\sigma_{t,j}^{(i)}]^{2}}) \mathbf{1}(sign[\nabla_{i}] \neq sign[\mathbf{g}^{(i)}])}_{T_{4}}}_{T_{4}}$$
(10)

where $\mathbf{1}(sign[\nabla_i] \neq sign[\mathbf{g}^{(i)}]) = \mathbf{1}(sign([\nabla_i L(\theta_t)]_j) \neq sign(\mathbf{g}^{(i)}_{t,j})).$

²⁴ Taking expectation of T_3 and T_4 , we have:

$$E(T_3) = -\lambda_t r_l^2 \sum_{i=1}^h \sum_{j=1}^{d_i} E\left([\nabla_i L(\theta_t)]_j \cdot [\mathbf{g}_{t,j}^{(i)}] \right)$$
(11)

$$= -\lambda_t r_t^2 ||\nabla L(\theta_t)||^2 \tag{12}$$

$$E(T_4) = \lambda_t \sum_{i=1}^h \sum_{j=1}^{d_i} E[([\nabla_i L(\theta_t)]_j \cdot \frac{[\mathbf{g}_{t,j}^{(i)}]^3}{[\sigma_{t,j}^{(i)}]^2}) \cdot \mathbf{1}(sign([\nabla_i L(\theta_t)]_j) \neq sign(\mathbf{g}_{t,j}^{(i)}))]$$
(13)

$$= \lambda_t \sum_{i=1}^h \sum_{j=1}^{d_i} E[([\nabla_i L(\theta_t)]_j \cdot \frac{[\mathbf{g}_{t,j}^{(i)}]^3}{[\sigma_{t,j}^{(i)}]^2}) \mid \mathbf{P}(sign([\nabla_i L(\theta_t)]_j) \neq sign(\mathbf{g}_{t,j}^{(i)}))]$$
(14)

The probability is bounded by relaxing the condition, then using Markov's and finally Jensen's inequality (inspired by Sign-SGD[Bernstein *et al.*, 2018; Nado *et al.*, 2021]):

$$\mathbf{P}(sign([\nabla_i L(\theta_t)]_j) \neq sign(\mathbf{g}_{t,j}^{(i)}))$$
(15)

$$\leq \mathbf{P}\left(|[\nabla_i L(\theta_t)]_j - \mathbf{g}_{t,j}^{(i)}| \geq |[\nabla_i L(\theta_t)]_j|\right)$$
(16)

$$\leq \frac{E\left[\left|\left[\nabla_{i}L(\theta_{t})\right]_{j} - \mathbf{g}_{t,j}^{(i)}\right]\right]}{\left|\left[\nabla_{i}L(\theta_{t})\right]_{j}\right|} \tag{17}$$

$$\leq \frac{\sqrt{E\left[([\nabla_i L(\theta_t)]_j - \mathbf{g}_{t,j}^{(i)})^2\right]}}{|[\nabla_i L(\theta_t)]_j|} \tag{18}$$

$$=\frac{\sigma_{t,j}^{(i)}}{\left|\left[\nabla_i L(\theta_t)\right]_j\right|}\tag{19}$$

27 Substituting this relation into T_4 , we have

$$E(T_4) \le \lambda_t \sum_{i=1}^h \sum_{j=1}^{d_i} E\left[[\nabla_i L(\theta_t)]_j \cdot \frac{[\mathbf{g}_{t,j}^{(i)}]^3}{[\sigma_{t,j}^{(i)}]^2} \cdot \frac{\sigma_{t,j}^{(i)}}{[\nabla_i L(\theta_t)]_j|} \right]$$
(20)

$$\leq \lambda_t \sum_{i=1}^h \sum_{j=1}^{d_i} E\left[\frac{[\mathbf{g}_{t,j}^{(i)}]^3}{\sigma_{t,j}^{(i)}}\right]$$
(21)

$$\leq \lambda_t r_u^{\frac{1}{2}} G^2 \tag{22}$$

28 Rearranging eq.(2) and taking expectation, we have:

$$E[L(\theta_{t+1})] \le E[L(\theta_t)] - \lambda_t r_l^2 ||\nabla L(\theta_t)||^2 + \lambda_t r_u^{\frac{1}{2}} G^2 + \frac{\lambda_t^2 r_u^2 G^2 ||\ell||_1}{2}$$
(23)

$$= E[L(\theta_t)] - \lambda_t r_l^2 ||\nabla L(\theta_t)||^2 + \lambda_t r_u^{\frac{1}{2}} G^2 \cdot (1 + \frac{\lambda_t r_u^{\frac{1}{2}} ||\ell||_1}{2})$$
(24)

Summing this until step T, we have:

$$E[L(\theta_{T+1})] \le L(\theta_1) - \lambda_t r_l^2 \sum_{t=1}^T ||\nabla L(\theta_t)||^2 + T\lambda_t r_u^{\frac{1}{2}} G^2 \cdot (1 + \frac{\lambda_t r_u^{\frac{3}{2}} ||\ell||_1}{2})$$
(25)

Rearranging this and assuming θ^* to be the optimal model parameters satisfies $L(\theta^*) \leq E[L(\theta_{T+1})]$:

$$\frac{1}{T}\sum_{t=1}^{T} ||\nabla L(\theta_t)||^2 \le \frac{1}{r_l^2} \left[\frac{L(\theta_1) - E[L(\theta_{T+1})]}{\lambda_t T} + r_u^{\frac{1}{2}} G^2 \cdot \left(1 + \frac{\lambda_t r_u^{\frac{3}{2}} ||\ell||_1}{2}\right) \right]$$
(26)

$$\leq \frac{1}{r_l^2} \left[\frac{L(\theta_1) - L(\theta^*)}{\lambda_t T} + r_u^{\frac{1}{2}} G^2 \cdot \left(1 + \frac{\lambda_t r_u^{\frac{3}{2}} ||\ell||_1}{2}\right) \right]$$
(27)

Taking $\lambda_t = \sqrt{\frac{L(\theta_1) - L(\theta^*)}{T ||\ell||_1}}$, we can get the bound of VR-SGD: $E||\nabla L(\theta_t)||^2 \le \frac{1}{r_l^2} \left[\sqrt{\frac{[(L(\theta_1) - L(\theta^*)]||\ell||_1}{T}} + r_u^{\frac{1}{2}}G^2(1 + \frac{r_u^{\frac{3}{2}}}{2}\sqrt{\frac{[L(\theta_1) - L(\theta^*)]||\ell||_1}{T}}) \right]$ (28)

Denoting $\frac{1}{\sqrt{\hat{T}}} = \sqrt{\frac{\left[(L(\theta_1) - L(\theta^*)\right]||\ell||_1}{T}}$, we have: $E||\nabla L(\theta_t)||^2 \le \mathcal{O}\left(\left(1 + \frac{r_u^2 G^2}{2}\right)\frac{1}{r_l^2 \sqrt{\hat{T}}}\right)$ (29)

B Generalization Gap Derivations of SGD and VR-SGD in LB Scenarios

Inspired by [Liu *et al.*, 2020], the generalization gap of SB and LB using SGD and VR-SGD is derived below. Firstly, the derivations of one step generalization gap are briefly reviewed below and the detailed derivations can be reached in [Liu *et al.*, 2020]. The gradient mean over training set D is denoted as $\mathbf{g}_D(\theta)$. $\mathbf{g}_i(\theta)$ denotes the gradient of a single data sample and $\tilde{\mathbf{g}}(\theta)$ to denote its expectation over the entire data distribution. Similarly we denote $\mathbf{g}_{D'}(\theta)$ as the gradient mean over test set D'.

$$\mathbf{g}_{D}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{g}(x_{i}, y_{i}, \theta) = \frac{\partial L[D]}{\partial \theta}$$
$$\mathbf{g}_{D'}(\theta) = \frac{1}{n'} \sum_{i=1}^{n'} \mathbf{g}(x'_{i}, y'_{i}, \theta) = \frac{\partial L[D']}{\partial \theta}$$
(30)

⁴⁰ Using Assumption 0.0.1 in the main context, we have:

$$\mathbf{E}_{D\sim\mathcal{Z}^n}[\mathbf{g}_D(\theta)] = \mathbf{E}_{D,D'\sim\mathcal{Z}^n}[\mathbf{g}_{D'}(\theta)] = \tilde{\mathbf{g}}(\theta)$$
(31)

$$\operatorname{Var}_{D \sim \mathcal{Z}^n}[\mathbf{g}_D(\theta)] = \sigma^2(\theta) \tag{32}$$

- After one training step, the model parameters are updated by $\Delta \theta = -\lambda \mathbf{g}_D(\theta)$. If λ is small enough,
- 43 the reduction in one-step training and test loss can be approximated as:

$$\Delta L[D] \approx -\Delta \theta \cdot \frac{\partial L[D]}{\partial \theta} + O(\lambda^2)$$

$$= \lambda \mathbf{g}_D(\theta) \cdot \mathbf{g}_D(\theta) + O(\lambda^2)$$
(33)

44

41

$$\Delta L[D'] \approx -\Delta \theta \cdot \frac{\partial L[D']}{\partial \theta} + O(\lambda^2)$$

= $\lambda \mathbf{g}_D(\theta) \cdot \mathbf{g}_{D'}(\theta) + O(\lambda^2)$ (34)

- 45 Empirically, $\Delta L[D]$ will be larger than $\Delta L[D']$, and the generalization gap will gradually increase.
- 46 When $\lambda \to 0$, after one single training step the empirical generalization gap is denoted as \bigtriangledown for
- 47 simplicity. Therefore we have

$$\nabla := \Delta L[D] - \Delta L[D'] \tag{35}$$

$$\approx \lambda \mathbf{g}_D(\theta) \cdot \mathbf{g}_D(\theta) - \lambda \mathbf{g}_D(\theta) \cdot \mathbf{g}_{D'}(\theta)$$
(36)

$$=\lambda(\tilde{\mathbf{g}}(\theta)+\epsilon)(\tilde{\mathbf{g}}(\theta)+\epsilon-\tilde{\mathbf{g}}(\theta)-\epsilon')$$
(37)

$$=\lambda(\tilde{\mathbf{g}}(\theta)+\epsilon)(\epsilon-\epsilon') \tag{38}$$

⁴⁸ Note that ϵ and ϵ' are random variables with zero mean $(E(\epsilon) = E(\epsilon') = 0)$ and the variance of ϵ is ⁴⁹ $\sigma^2(\theta)$. They are also independent. Therefore the expectation of ∇ is simplified as:

$$E_{D,D'\sim\mathcal{Z}^n}(\nabla) = E(\lambda\epsilon\cdot\epsilon) + O(\lambda^2)$$
(39)

$$=\lambda \sum_{j} \sigma^{2}(\theta_{j}) + O(\lambda^{2})$$
(40)

where $\sigma^2(\theta_j)$ is the gradient variance of the parameters θ_j . For simplicity, we use σ_j^2 , r_j , and $\mathbf{g}_{D,j}$ to denote $\sigma^2(\theta_j)$, $r(\theta_j)$, and $\mathbf{g}_D(\theta_j)$ respectively.

Next, we denote the empirical generalization gap at t^{th} step as \bigtriangledown_t , then we have the accumulated generalization gap after training T steps for SB with SGD:

$$\mathbf{GAP}_{SB,SGD} := \bigtriangledown_1 + \bigtriangledown_2 + \ldots + \bigtriangledown_T = \sum_{t=1}^T \bigtriangledown_t \tag{41}$$

54 Taking expectation, we have:

$$E(\mathbf{GAP}_{SB,SGD}) = E(\sum_{t=1}^{T} \nabla_t) = \sum_{t=1}^{T} E(\nabla_t) \approx \lambda_0 \sum_{t=1}^{T} \sum_j \sigma_{t,j}^2$$
(42)

so where λ_0 denotes the learning rate of SB. As for LB scenarios, we assume the batch size of LB is k

⁵⁶ times as the SB, then we have the gradient variance of SB and LB are:

$$\sigma_{SB}^{2}(\theta) = \operatorname{Var}\left[\frac{1}{B}\sum_{i=1}^{B}\mathbf{g}_{i}(\theta)\right] = \frac{1}{B}\rho^{2}(\theta)$$

$$\sigma_{LB}^{2}(\theta) = \operatorname{Var}\left[\frac{1}{kB}\sum_{i=1}^{kB}\mathbf{g}_{i}(\theta)\right] = \frac{1}{kB}\rho^{2}(\theta)$$
(43)

respectively. Similarly, using eq.43, we have the accumulated generalization gap after training T/ksteps for LB:

$$E(\mathbf{GAP}_{LB,SGD}) \approx \lambda \sum_{t=1}^{T/k} \sum_{j} \frac{\sigma_{t,j}^2}{k}$$
(44)

59 If $\sigma_{t,j}$ is t independent, eq.42 and eq.44 are simplified as:

$$E(\mathbf{GAP}_{SB,SGD}) \approx \lambda_0 T \sum_j \sigma_j^2 \tag{45}$$

$$E(\mathbf{GAP}_{LB,SGD}) \approx \frac{\lambda T}{k^2} \sum_{j} \sigma_j^2$$
 (46)

- respectively. Taking $\lambda = k^2 \cdot \lambda_0$, $E(\mathbf{GAP}_{LB,SGD})$ will have the same accumulated generalization
- ⁶¹ gap as SB. This is known as the linear/square scaling rules. However, the assumption that " $\sigma_{t,j}$
- $_{62}$ is *t* independent" is unrealistic. Similarly, the accumulated generalization gap of VR-SGD in LB scenarios can be written as:

$$E(\mathbf{GAP}_{LB,VR-SGD}) \approx \sum_{t=1}^{T/k} \sum_{j} \frac{\lambda \cdot r_{t,j} \cdot \sigma_{t,j}^2}{k} = \frac{\lambda}{k} \sum_{t=1}^{T/k} \sum_{j} \mathbf{g}_{t,j}^2$$
(47)

64 When training converges, $\mathbf{g}_{t,j} \to 0$, $\mathbf{g}_{t,j}^2 < \sigma_{t,j}^2$ because $r_{t,j} = \frac{\mathbf{g}_{t,j}^2}{\sigma_{t,j}^2} \to 0$, which has been verified 65 experimentally (see Figure 4 of [Liu *et al.*, 2020]). Therefore, we have:

$$\frac{\lambda}{k} \sum_{t=1}^{T/k} \sum_{j} \mathbf{g}_{t,j}^2 < \lambda \sum_{t=1}^{T/k} \sum_{j} \frac{\sigma_{t,j}^2}{k} \ i.e., \ E(\mathbf{GAP}_{LB,VR-SGD}) < E(\mathbf{GAP}_{LB,SGD})$$
(48)

⁶⁶ This inequality demonstrates that the generalization ability of VR-SGD is much better than that of ⁶⁷ SGD.

68 C Notations

69

Z	A data distribution satisfies $\mathcal{X} \times \mathcal{Y}$
(x_i, y_i)	A single data sample
D	Training set consists of n samples drawn from \mathcal{Z}
D'	Test set consists of n' samples drawn from $\mathcal Z$
θ	Model parameters, whose components are denoted as θ_j
$ heta^*$	The optimal model parameters
$\mathbf{g}_i(heta)$	Parameters' gradient w.r.t. a single data sample (x_i, y_i)
$egin{array}{lll} ilde{\mathbf{g}}(heta) & ext{or} \ ilde{\mathbf{g}}_d(heta) & ext{or} \end{array}$	Mean values of parameters' gradient over a total data distribution <i>i.e.</i> , $E_{s\sim Z}(\mathbf{g}_i(\theta))$, or gradient over the data on device d .
$\mathbf{g}_D(heta)$	Average gradient over the training dataset, <i>i.e.</i> , $\frac{1}{n} \sum_{i=1}^{n} \mathbf{g}_{i}(\theta)$
$\mathbf{g}_{D'}(heta)$	Average gradient over the test dataset, <i>i.e.</i> , $\frac{1}{n'} \sum_{i=1}^{n'} \mathbf{g}'_i(\theta)$. Note that, in eq. (30), we assume $n' = n$
$\rho^2(\theta)$	Variance of parameters' gradient of a single sample, <i>i.e.</i> , $\operatorname{Var}_{s\sim \mathcal{Z}}(\mathbf{g}_s(\theta))$
$\sigma^2(\theta)$	Variance of the average gradient over a training dataset of size <i>n</i> , <i>i.e.</i> , $\operatorname{Var}_{D \sim \mathbb{Z}^n}[\mathbf{g}_D(\theta)]$
σ_j^2	Same as $\sigma^2(\theta_j)$
r_j or $r(\theta_j)$	Gradient signal to noise ratio (GSNR) of model parameter θ_j
$r(\theta_t^{(l)})$	GSNR of model parameters θ on l^{th} layer at t^{th} step
L[D]	Empirical training loss, <i>i.e.</i> , $\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i, \theta))$
L[D']	Empirical test loss, <i>i.e.</i> , $\frac{1}{n'} \sum_{i=1}^{n'} L(y'_i, f(x'_i, \theta)))$
$\Delta L[D]$	One-step training loss decrease
$\Delta L_j[D]$	One-step training loss decrease caused by updating one parameter θ_j
\bigtriangledown	One-step generalization gap increment, <i>i.e.</i> , $\Delta L[D] - \Delta L[D']$
$\mathbf{R}(\mathcal{Z},n)$	One-step generalization ratio (OSGR) for the training and test sets of size n sampled from data distribution \mathcal{Z} , <i>i.e.</i> , $\frac{E_{D,D' \sim \mathbb{Z}^n}(\Delta L[D'])}{E_{D \sim \mathbb{Z}^n}(\Delta L[D])}$
λ	Learning rate
G	Upper bound of the gradients w.r.t all training samples
σ_l^2 or σ_u^2	Lower and upper coordinate bounded variance of the gradients
r_l or r_u	Lower and upper bound of the GSNR
ℓ_i	Upper bound of $\nabla_i^2 L(\theta_t)$ satisfies $u \in \mathcal{R}^d$, $ u^T \nabla_i^2 L(\theta_t) u \leq \ell_i u ^2$
T	Max training steps
ϵ	Random variables with zero mean and variance $\sigma^2(\theta)$

 $\mathbf{GAP}_{\mathit{SB,SGD}}$ Accumulated generalization gap of SGD during small batch scenario

D Algorithms and Experiments

 Algorithm 1: SGD

 Input: B = GlobalBatchSize/DeviceNumber(k)

 1 while θ_t not converged do

 for device d = 1 to k do

 $\left\lfloor \tilde{\mathbf{g}}_d(\theta_t) \leftarrow \frac{1}{B} \sum_{i=1}^B \nabla_{\theta} L(y_i, f(x_i, \theta_{t-1})) \right.$ (Get gradient on each GPU/TPU)

 $\tilde{\mathbf{g}}(\theta_t) \leftarrow \frac{1}{k} \sum_{d=1}^k \tilde{\mathbf{g}}_d(\theta_t)$ (Reduce gradient over all devices)

 $\theta_t \leftarrow \theta_{t-1} - \lambda \cdot \tilde{\mathbf{g}}(\theta_t)$ (Update weights)

Algorithm 2: VR - Adam**Input:** require device number $k \ge 2$ **Input:** B = GlobalBatchSize/k**Input:** $\gamma_1 = 0.1$ **Input:** $\beta_1, \beta_2 \in [0, 1)$ (1st and 2nd order decay rates for momentum of gradient) **Input:** $\beta_3 \in [0, 1)$ (1st order decay rates for momentum of GSNR) 1 while θ_t not converged do $m_0 \leftarrow 0$ (Initialize 1st order momentum of gradient) $v_0 \leftarrow 0$ (Initialize 2^{nd} order momentum of gradient) $p_0 \leftarrow 0$ (Initialize 1^{st} order momentum of GSNR) $t \leftarrow 0$ (Initialize train step) for device d = 1 to k do $\tilde{\mathbf{g}}_d(\theta_t) \leftarrow \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(y_i, f(x_i, \theta_{t-1}))$ (Get gradient on each GPU/TPU) $\tilde{\mathbf{g}}_d^2(\theta_t) \leftarrow \tilde{\mathbf{g}}_d(\theta_t) \otimes \tilde{\mathbf{g}}_d(\theta_t)$ (Element-wise multiply, so as square terms below) $\tilde{\mathbf{g}}(\theta_t) \leftarrow \frac{1}{k} \sum_{d=1}^k \tilde{\mathbf{g}}_d(\theta_t)$ (Reduce gradient over all devices) $\sigma_t^2 \leftarrow \frac{1}{k} \sum_{d=1}^{k} \tilde{\mathbf{g}}_d^2(\theta_t) - \tilde{\mathbf{g}}^2(\theta_t)$ (Compute gradient variance) $r(\theta_t) \leftarrow \frac{\tilde{\mathbf{g}}^2(\theta_t)}{\sigma_t^2}$ (Compute GSNR) for layer l = 0 to m do $\begin{bmatrix} r(\theta_t^{(l)}) \leftarrow \frac{r(\theta_t^{(l)})}{\frac{1}{J} \sum_{j=1}^{J} r(\theta_{t,j}^{(l)})} \text{ (Normalize GSNR so that } \overline{r(\theta_t^{(l)})} = 1 \text{)} \\ r(\theta_t^{(l)}) \leftarrow \begin{cases} \gamma_1 & \text{if } r(\theta_t^{(l)}) < \gamma_1 \\ 1 & \text{if } r(\theta_t^{(l)}) > 1 \end{cases} \text{ (Confine the max/min ratio within } \frac{1}{\gamma_1} \text{)} \end{cases}$ $p_t \leftarrow \beta_3 \cdot p_{t-1} + (1 - \beta_3) \cdot r(\theta_t)$ (Update 1^{st} order biased momentum of GSNR) $\hat{p}_t \leftarrow p_t / (1 - \beta_3^t)$ (Bias correction) $\hat{\mathbf{g}}(\theta_t) \leftarrow \hat{p}_t \cdot \tilde{\mathbf{g}}(\theta_t)$ (Adapt gradient mean with GSNR) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \hat{\mathbf{g}}(\theta_t)$ (Update 1^{st} order biased momentum) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot \hat{\mathbf{g}}^2(\theta_t)$ (Update 2^{nd} order biased momentum) $\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Bias correction) $\hat{v}_t \leftarrow v_t / (1 - \beta_2^t)$ (Bias correction) $\theta_t \leftarrow \theta_{t-1} - \lambda \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \varepsilon)$ (Update weights)

Algorithm 3: Adam

Algorithm 4: VR - LAMB

Input: require device number k > 2**Input:** B = GlobalBatchSize/k**Input:** $\gamma_1 = 0.1$ **Input:** $\beta_1, \beta_2 \in [0, 1)$ (1st and 2nd order decay rates for momentum) **Input:** $\beta_3 \in [0, 1)$ (1st order decay rates for momentum of GSNR) 1 while θ_t not converged do $m_0 \leftarrow 0$ (Initialize 1st order momentum of gradient) $v_0 \leftarrow 0$ (Initialize 2^{nd} order momentum of gradient) $p_0 \leftarrow 0$ (Initialize 1^{st} order momentum of GSNR) $t \leftarrow 0$ (Initialize train step) for device d = 1 to k do $\tilde{\mathbf{g}}_{d}(\theta_{t}) \leftarrow \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(y_{i}, f(x_{i}, \theta_{t-1}))$ (Get gradient on each GPU/TPU) $\tilde{\mathbf{g}}_{d}^{2}(\theta_{t}) \leftarrow \tilde{\mathbf{g}}_{d}(\theta_{t}) \otimes \tilde{\mathbf{g}}_{d}(\theta_{t})$ (Element-wise multiply, so as square terms below) $\tilde{\mathbf{g}}(\theta_t) \leftarrow \frac{1}{k} \sum_{d=1}^k \tilde{\mathbf{g}}_d(\theta_t)$ (Reduce gradient over all devices) $\sigma_t^2 \leftarrow \frac{1}{k} \sum_{d=1}^k \tilde{\mathbf{g}}_d^2(\theta_t) - \tilde{\mathbf{g}}^2(\theta_t)$ (Compute gradient variance) $r(\theta_t) \leftarrow \frac{\tilde{\mathbf{g}}^2(\theta_t)}{\sigma_t^2}$ (Compute GSNR) for layer l = 0 to m do $r(\theta_t^{(l)}) \leftarrow \frac{r(\theta_t^{(l)})}{\frac{1}{J} \sum_{j=1}^J r(\theta_{t,j}^{(l)})} \text{ (Normalize GSNR so that } \overline{r(\theta_t^{(l)})} = 1)$ $r(\theta_t^{(l)}) \leftarrow \begin{cases} \gamma_1 \quad if \ r(\theta_t^{(l)}) < \gamma_1 \\ 1 \quad if \ r(\theta_t^{(l)}) > 1 \end{cases} \text{ (Confine the max/min ratio within } \frac{1}{\gamma_1}) \end{cases}$ $p_t \leftarrow \beta_3 \cdot p_{t-1} + (1 - \beta_3) \cdot r(\theta_t)$ (Update 1^{st} order biased momentum of GSNR) $\hat{p}_t \leftarrow p_t / (1 - \beta_3^t)$ (Bias correction) $\hat{\mathbf{g}}(\theta_t) \leftarrow \hat{p}_t \cdot \tilde{\mathbf{g}}(\theta_t)$ (Adapt gradient mean with GSNR) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \hat{\mathbf{g}}(\theta_t)$ (Update 1^{st} order biased momentum) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot \hat{\mathbf{g}}^2(\theta_t)$ (Update 2^{nd} order biased momentum) $\hat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Bias correction) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Bias correction) $\hat{\mathbf{G}}(\theta_t) \leftarrow \hat{m}_t / (\sqrt{\hat{v}_t} + \varepsilon)$ for layer l = 0 to m do $\theta_t^{(l)} \leftarrow \theta_{t-1}^{(l)} - \lambda \cdot \frac{\phi(||\theta_t^{(l)}||)}{||\hat{\mathbf{G}}(\theta_t)||} \cdot \hat{\mathbf{G}}(\theta_t) \text{ (Update weights)}$

Algorithm 5: LAMB

Input: $\beta_1, \beta_2 \in [0, 1)$ (1st and 2nd order decay rates for momentum) Input: scaling function ϕ 1 while θ_t not converged do 1 while θ_t not converged do 1 $m_0 \leftarrow 0$ (Initialize 1st order momentum of gradient) $v_0 \leftarrow 0$ (Initialize 2nd order momentum of gradient) $t \leftarrow 0$ (Initialize train step) for device d = 1 to k do $\begin{bmatrix} \tilde{\mathbf{g}}_d(\theta_t) \leftarrow \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(y_i, f(x_i, \theta_{t-1}))$ (Get gradient on each GPU/TPU) $\tilde{\mathbf{g}}(\theta_t) \leftarrow \frac{1}{k} \sum_{d=1}^{k} \tilde{\mathbf{g}}_d(\theta_t)$ (Reduce gradient over all devices) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \tilde{\mathbf{g}}(\theta_t)$ (Update 1st order biased momentum) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot \tilde{\mathbf{g}}^2(\theta_t)$ (Update 2nd order biased momentum) $\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Bias correction) $\hat{\mathbf{g}}(\theta_t) \leftarrow \hat{m}_t/(\sqrt{\hat{v}_t} + \varepsilon)$ for layer l = 0 to m do $\begin{bmatrix} \theta_t^{(l)} \leftarrow \theta_{t-1}^{(l)} - \lambda \cdot \frac{\phi(||\theta_t^{(l)}||)}{||\tilde{\mathbf{g}}(\theta_t)||} \cdot \hat{\mathbf{g}}(\theta_t)$ (Update weights)

Table 2. Hyper-parameters of DEKT pretraining with VK-LAW	Table 2:	Hyper-	parameters	of BERT	pretraining	with	VR-LAM
--	----------	--------	------------	---------	-------------	------	---------------

Batch Size	Steps	Warm-up Steps Phase1	Phase-1 LR	Phase-1 Acc-steps (k)	Warm-up Steps Phase2	Phase-2 LR	Phase-2 Acc-steps (k)	F1 Score
16k	31250	2800	0.0035	8	280	0.0035	32	91.42
32k	15625	2800	0.0053	8	280	0.0053	32	91.58
64k/32k	8599	2000	0.007	8	200	0.0045	32	91.49
64k	7820	2000	0.007	8	200	0.0055	64	91.30
96k/32k	6256	1870	0.007	12	200	0.00575	32	91.23
96k	5214	1870	0.007	12	187	0.0055	96	90.70
128k/64k	4301	1760	0.007	16	200	0.00575	64	90.85

Note that $\gamma = 0.1$ for all batch size. Acc-steps in NVIDIA's code is equivalent to device number k.

Table 3:	Hyper-parameters	of ImageNet	trained with	VR-LARS	opti-
mizer or	1 ResNet50.				

Batch	Warm-up	Best	Device	Test
Size	Epochs	LR	Number (k)	Accuracy
2k	0.625	$7 \cdot 2^0$	8	77.14%
4k	1.25	$7 \cdot 2^{0.5}$	8	77.23%
8k	2.5	$7 \cdot 2^1$	16	77.36%
16k	5	$7 \cdot 2^{1.5}$	32	77.27%
32k	14	$7 \cdot 2^2$	64	76.81%
64k	40	37	128	75.86%
96k	41	38	192	74.82%

Note that $\gamma = 0.1$ for all batch size.

Table 4: Hyper-parameters of **DLRM** trained with SGD and VR-SGD.

Opt	Batch Size	Warm-up Epochs	LR	Test Accuracy	Opt	Batch Size	Warm-up Epochs	LR	Test Accuracy
	32k	$1/2^4$	$2^{3.5}$	0.8014	<u> </u>	32k	$1/2^4$	$2^{3.5}$	0.8026
\cap	64k	$1/2^{3}$	2^{4}	0.8025	5	64k	$1/2^{3}$	2^{4}	0.8048
5	128k	$1/2^{2}$	$2^{4.5}$	0.8021	S-S	128k	$1/2^{2}$	$2^{4.5}$	0.8042
	256k	1/2	2^{5}	0.7827	ΥF	256k	1/2	2^{5}	0.8023
	512k	3/4	$2^{5.5}$	0.7787		512k	3/4	$2^{5.5}$	0.8013

Note that $\gamma = 0.1$ and device number k = 8 for all batch size.

Ont	Batch	Warm-up	ΤD	Test	Ont	Batch	Warm-up	ID	Test
Ορι	Size	Epochs	LK	Accuracy	Opt	Size	Epochs	LK	Accuracy
	256	2^2	$\frac{128}{2^2 \times 100}$	93.68%	я	256	2^{2}	$\frac{128}{2^2 \times 100}$	93.79%
Ш	512	$2^{2.5}$	$\frac{128}{2^{1.5} \times 100}$	93.56%	l ut	512	$2^{2.5}$	$\frac{128}{2^{1.5} \times 100}$	93.71%
entu	1k	2^{3}	$\frac{128}{2^1 \times 100}$	93.17%	mei	1k	2^{3}	$\frac{128}{2^1 \times 100}$	93.50%
omc	2k	$2^{3.5}$	$\frac{128}{2^{0.5} \times 100}$	92.19%	Mo	2k	$2^{3.5}$	$\frac{128}{2^{0.5} \times 100}$	93.28%
Ž	4k	2^4	$\frac{128}{2^0 \times 100}$	17.40%	-R-	4k	2^{4}	$\frac{128}{2^0 \times 100}$	92.70%
	8k	2^{5}	$\frac{128}{2^{-0.5} \times 100}$	14.57%	~	8k	2^{5}	$\frac{128}{2^{-0.5} \times 100}$	90.57%
	256	2^{2}	$\frac{192}{2^3 \times 1e4}$	91.88%		256	2^{2}	$\frac{192}{2^3 \times 1e4}$	92.46%
	512	$2^{2.5}$	$\frac{192}{2^{2.5} \times 1e4}$	92.24%	E	512	$2^{2.5}$	$\frac{192}{2^{2.5} \times 1e4}$	92.40%
am	1k	2^{3}	$\frac{192}{2^2 \times 1e4}$	92.02%	Ada	1k	2^{3}	$\frac{192}{2^2 \times 1e4}$	92.43%
Ρq	2k	$2^{3.5}$	$\frac{192}{2^1 \times 1e4}$	91.98%	R-/	2k	$2^{3.5}$	$\frac{192}{2^1 \times 1e4}$	92.10%
	4k	2^{4}	$\frac{192}{2^0 \times 1e4}$	59.38%	N N	4k	2^{4}	$\frac{192}{2^0 \times 1e4}$	91.74%
	8k	2^5	$\frac{192}{2^{-1} \times 1e4}$	20.74%		8k	2^{5}	$\frac{192}{2^{-1} \times 1e4}$	90.86%
	256	2^{2}	$\frac{64}{2^4 \times 1e3}$	92.08%		256	2^{2}	$\frac{64}{2^4 \times 1e3}$	92.29%
	512	$2^{2.5}$	$\frac{64}{2^{3.5} \times 1e3}$	92.03%	B	512	$2^{2.5}$	$\frac{64}{2^{3.5} \times 1e3}$	92.34%
MB	1k	2^{3}	$\frac{64}{2^3 \times 1e3}$	91.90%	A	1k	2^3	$\frac{64}{2^3 \times 1e3}$	92.05%
ΓY	2k	$2^{3.5}$	$\frac{64}{2^2 \times 1e3}$	92.13%	S-L	2k	$2^{3.5}$	$\frac{64}{2^2 \times 1e3}$	92.43%
	4k	2^{4}	$\frac{64}{2^1 \times 1e3}$	58.35%		4k	2^{4}	$\frac{64}{2^1 \times 1e3}$	92.04%
	8k	2^{5}	$\frac{64}{2^1 \times 1e3}$	15.13%		8k	2^{5}	$\frac{64}{2^1 \times 1e3}$	91.07%
	256	2^{2}	$\frac{896}{2^2 \times 100}$	92.30%		256	2^{2}	$\frac{896}{2^2 \times 100}$	92.35%
	512	$2^{2.5}$	$\frac{896}{2^{1.5} \times 100}$	92.29%	S	512	$2^{2.5}$	$\frac{896}{2^{1.5} \times 100}$	92.53%
RS	1k	2^{3}	$\frac{896}{21 \times 100}$	92.34%	AF	1k	2^{3}	$\frac{896}{21 \times 100}$	92.44%
LA	2k	$2^{3.5}$	$\frac{896}{2^{0.5} \times 100}$	82.39%	R-L	2k	$2^{3.5}$	$\frac{896}{2^{0.5} \times 100}$	92.79%
	4k	2^{4}	$\frac{896}{2^0 \times 100}$	27.50%		4k	2^{4}	$\frac{896}{2^0 \times 100}$	92.35%
	8k	2^{5}	$\frac{896}{2^{-0.5} \times 100}$	12.21%		8k	2^{5}	$\frac{896}{2^{-0.5} \times 100}$	91.86%

Table 5: Hyper-parameters of **CIFAR10** trained with Momentum/Adam/LAMB/LARS optimizers and their corresponding VRGD optimizers.

Note that $\gamma = 0.1$ and device number k = 8 for all batch size.

Figure 1: Linear Regression experiments trained with SGD and VR-SGD: (a) training and test loss (batch size = 256); (b) model parameters $w_i, i \in [1, 10]$; (c) GSNR of model parameters before max/min constraint used in VR-SGD. Note that $w_i, i \in (2, 4, 7, 9)$ are omitted for simplicity. They behave almost the same as their neighbors.

References 71

- Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In 72 International conference on machine learning, pages 699-707. PMLR, 2016. 73
- Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-74
- parameterization. In International Conference on Machine Learning, pages 242–252. PMLR, 75 2019. 76
- Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd: 77 Compressed optimisation for non-convex problems. In International Conference on Machine 78
- Learning, pages 560-569. PMLR, 2018. 79
- Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex 80 stochastic programming. SIAM J. Optim., 23(4):2341-2368, 2013. 81
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance 82 reduction. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, 83
- editors, Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural 84
- Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake 85
- Tahoe, Nevada, United States, pages 315-323, 2013. 86
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio 87 and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR, 2015. 88
- Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch training in 89 deep learning. In International Conference on Machine Learning, pages 6094–6104. PMLR, 2020. 90
- Jinlong Liu, Guoging Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Understanding why neural 91 networks generalize well through GSNR of parameters. In 8th International Conference on 92
- Learning Representations, ICLR. OpenReview.net, 2020. 93
- Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large 94 batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv 95 preprint arXiv:2102.06356, 2021. 96
- Christopher De Sa. Cs4787: Principles of large-scale machine learning. 2021. 97

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence 98

results and optimal averaging schemes. In International conference on machine learning, pages 99 71-79. PMLR, 2013. 100

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan 101 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: 102 Training BERT in 76 minutes. In 8th International Conference on Learning Representations, ICLR. 103

- OpenReview.net, 2020. 104
- Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin. 105 Decentlam: Decentralized momentum SGD for large-batch deep training. In 2021 IEEE/CVF 106 International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 107
- 2021, pages 3009-3019. IEEE, 2021. 108