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ABSTRACT

Whitening loss offers a theoretical guarantee against feature collapse in self-
supervised learning (SSL) with joint embedding architectures. Typically, it in-
volves a hard whitening approach, transforming the embedding and applying loss
to the whitened output. In this work, we introduce Spectral Transformation (ST),
a framework to modulate the spectrum of embedding and to seek for functions
beyond whitening that can avoid dimensional collapse. We show that whitening is
a special instance of ST by definition, and our empirical investigations unveil other
ST instances capable of preventing collapse. Additionally, we propose a novel ST
instance named IterNorm with trace loss (INTL). Theoretical analysis confirms
INTL’s efficacy in preventing collapse and modulating the spectrum of embedding
toward equal-eigenvalues during optimization. Our experiments on ImageNet
classification and COCO object detection demonstrate INTL’s potential in learning
superior representations. The code is available at https://github.com/winci-ai/INTL.

1 INTRODUCTION

Self-supervised learning (SSL) via joint embedding architectures to learn visual representations has
made significant progress over the last several years (Bachman et al., 2019; He et al., 2020; Chen
et al., 2020a; Chen & He, 2021; Bardes et al., 2022; Oquab et al., 2023), almost outperforming their
supervised counterpart on many downstream tasks (Liu et al., 2021; Jaiswal et al., 2020; Ranasinghe
et al., 2022). This paradigm addresses to train a dual pair of networks to produce similar embeddings
for different views of the same image (Chen & He, 2021). One main challenge with the joint
embedding architectures is how to prevent a collapse of the representation, in which the two branches
ignore the inputs and produce identical and constant outputs (Chen & He, 2021). A variety of methods
have been proposed to successfully avoid collapse, including contrastive learning methods (Wu et al.,
2018; He et al., 2020; Saunshi et al., 2019) that attract different views from the same image (positive
pairs) while pull apart different images (negative pairs), and non-contrastive methods (Grill et al.,
2020; Chen & He, 2021) that directly match the positive targets without introducing negative pairs.

The collapse problem is further generalized into dimensional collapse (Hua et al., 2021; Jing et al.,
2022) (or informational collapse (Bardes et al., 2022)), where the embedding vectors only span a
lower-dimensional subspace and would be highly correlated. In this case, the covariance matrix of
embedding has certain zero eigenvalues, which degenerates the representation in SSL. To prevent
dimensional collapse, a theoretically motivated paradigm, called whitening loss, is proposed by
minimizing the distance between embeddings of positive pairs under the condition that embeddings
from different views are whitened (Ermolov et al., 2021; Hua et al., 2021). One typical implementation
of whitening loss is hard whitening (Ermolov et al., 2021; Weng et al., 2022) that designs whitening
transformation over mini-batch data and imposes the loss on the whitened output (Ermolov et al.,
2021; Hua et al., 2021; Weng et al., 2022). We note that the whitening transformation is a function
over embedding during forward pass, and modulates the spectrum of embedding implicitly during
backward pass when minimizing the objective. This raises questions whether there exist other
functions over embedding can avoid collapse? If yes, how the function affects the spectrum of
embedding?

This paper proposes spectral transformation (ST), a framework to modulate the spectrum of embed-
ding in joint embedding architecture. ST maps the spectrum of embedding to a desired distribution
during forward pass, and modulates the spectrum of embedding by implicit gradient update during
backward pass (Figure 1).
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Figure 1: The framework using spectral transfor-
mation (ST) to modulate the spectrum of embed-
ding in joint embedding architecture for SSL.

This framework provides a way to seek for
functions beyond whitening transformation that
can avoid dimensional collapse. We show that
whitening transformation is a special instance
of ST using a power function by definition, and
there exist other power functions that can avoid
dimensional collapse by our empirical investi-
gation (see Section 3.2 for details). We demon-
strate that IterNorm (Huang et al., 2019), an
approximating whitening method by using New-
ton’s iterations (Bini et al., 2005; Ye et al., 2020),
is also an instance of ST, and show that IterNorm
with different iteration number corresponds to different ST (see Section 3.2.2 for details). We further
theoretically characterize how the spectrum evolves as the increasing of iteration number of IterNorm.

We empirically observe that IterNorm suffers from severe dimensional collapse and mostly fails to
train the model in SSL unexpectedly, unlike its benefits in approximating whitening for supervised
learning (Huang et al., 2019). We thus propose IterNorm with trace loss (INTL), a simple solution to
address the failure of IterNorm, by adding an extra penalty on the transformed output. Moreover,
we theoretically demonstrate that INTL can avoid dimensional collapse, and reveal its mechanism
in modulating the spectrum of embedding to be equal-eigenvalues. We conduct comprehensive
experiments and show that INTL is a promising SSL method in practice. Our main contributions are
summarized as follows:

• We propose spectral transformation, a framework to modulate the spectrum of embedding
and to seek for functions beyond whitening that can avoid dimensional collapse. We show
there exist other functions that can avoid dimensional collapse by empirical observation and
intuitive explanation.

• We propose a new instance of ST, called IterNorm with trace loss (INTL). We theoretically
prove that INTL can avoid collapse and modulate the spectrum of embedding towards an
equal-eigenvalue distribution during the course of optimization.

• INTL’s experimental performance on standard benchmarks showcases its high promise as a
practical SSL method, consistently achieving or surpassing state-of-the-art methods, even
when utilizing a relatively small batch size.

2 RELATED WORK

Our work is related to the SSL methods that address the feature collapse problem when using joint
embedding architectures.

Contrastive learning prevents collapse by attracting positive samples closer, and spreading negative
samples apart (Wu et al., 2018; Ye et al., 2019). In these methods, negative samples play an important
role and need to be well designed (Oord et al., 2018; Bachman et al., 2019; Henaff, 2020). MoCos (He
et al., 2020; Chen et al., 2020b) build a memory bank with a momentum encoder to provide consistent
negative samples, while SimCLR (Chen et al., 2020a) addresses that more negative samples in a
batch with strong data augmentations perform better. Our proposed INTL can avoid collapse and
work well without negative samples. Additionally, recent work (Zhang et al., 2023) explores the use
of data augmentation for contrastive learning through spectrum analysis to enhance performance,
while our paper focuses on developing a novel non-contrastive method to prevent collapse under
standard augmentation.

Non-contrastive learning can be categorized into two groups: asymmetric methods and whitening
loss. Asymmetric methods employ asymmetric network architectures to prevent feature collapse
without the need for explicit negative pairs (Caron et al., 2018; 2020; Li et al., 2021; Grill et al.,
2020; Chen & He, 2021). For instance, BYOL (Grill et al., 2020) enhances network stability by
appending a predictor after the online network and introducing momentum into the target network.
SimSiam (Chen & He, 2021) extends BYOL and emphasizes the importance of stop-gradient to
prevent trivial solutions. Other advancements in this realm include cluster assignment prediction using
the Sinkhorn-Knopp algorithm (Caron et al., 2020) and the development of asymmetric pipelines
with self-distillation losses for Vision Transformers (Caron et al., 2021). However, it remains unclear
how these asymmetric networks effectively prevent collapse without the inclusion of negative pairs.
This has sparked debates surrounding topics such as batch normalization (BN)(Fetterman & Albrecht,
2020; Tian et al., 2020b; Richemond et al., 2020) and stop-gradient(Chen & He, 2021; Zhang et al.,
2022a). Despite preliminary efforts to analyze training dynamics (Tian et al., 2021) and establish

2



Published as a conference paper at ICLR 2024

connections between non-contrastive and contrastive methods (Tao et al., 2022; Garrido et al., 2023),
the exact mechanisms behind these methods remain an ongoing area of research. In our work, we
address the more intricate challenge of dimensional collapse and theoretically demonstrate that our
INTL method effectively prevents this issue, offering valuable insights into mitigating feature collapse
in various scenarios.

Whitening loss is a theoretically motivated paradigm to prevent dimensional collapse (Ermolov et al.,
2021). One typical implementation of whitening loss is hard whitening that designs whitening
transformation over mini-batch data and imposes the loss on the whitened output. The designed
whitening transformation includes batch whitening in W-MSE (Ermolov et al., 2021) and Shuffled-
DBN (Hua et al., 2021), channel whitening in CW-RGP (Weng et al., 2022), and the combination
of both in Zero-CL (Zhang et al., 2022b). Our proposed ST generalizes whitening transformation
and provides a frame to modulate the spectrum of embedding. Our INTL can improve these work in
training stability and performance, by replacing whitening transformation with IterNorm (Huang et al.,
2019) and imposing an additional trace loss on the transformed output. Furthermore, we theoretically
show that our proposed INTL modulates the spectrum of embedding to be equal-eigenvalues.

Another way to implement whitening loss is soft whitening that imposes a whitening penalty as
regularization on the embedding, including Barlow Twins (Zbontar et al., 2021), VICReg (Bardes
et al., 2022) and CCA-SSG (Zhang et al., 2021). Different from these works, our proposed INTL
imposes the trace loss on the approximated whitened output, providing equal-eigenvalues modulation
on the embedding.

There are also theoretical works analyzing how dimensional collapse occurs (Hua et al., 2021; Jing
et al., 2022) and how it can be avoided by using whitening loss (Hua et al., 2021; Weng et al., 2022).
The recent works (He & Ozay, 2022; Ghosh et al., 2022) further discuss how to characterize the
magnitude of dimensional collapse, and connect the spectrum of a representation to a power law.
They show the coefficient of the power law is a strong indicator for the effects of the representation.
Different from these works, our theoretical analysis presents a new thought in demonstrating how to
avoid dimensional collapse, which provides theoretical basis for our proposed INTL.

3 SPECTRAL TRANSFORMATION BEYOND WHITENING

3.1 PRELIMINARY AND NOTATION

Joint embedding architectures. Let x denote the input sampled uniformly from a set of images
D, and T denote the set of data transformations available for augmentation. We consider a pair of
neural networks Fθ and F ′

θ′ , parameterized by θ and θ′ respectively. They take as input two randomly
augmented views, x(1) = T1(x) and x(2) = T2(x), where T1,2 ∈ T; and they output the embedding
z(1) = Fθ(x

(1)) and z(2) = F ′
θ′(x(2)). The networks are trained with an objective function that

minimizes the distance between embeddings obtained from different views of the same image:

L(x, θ) = Ex∼D, T1,2∼T ℓ
(
Fθ(T1(x)), F ′

θ′(T2(x))
)
. (1)

where ℓ(·, ·) is a loss function. The mean square error (MSE) of L2−normalized vectors as

ℓ(z(1), z(2)) = ∥ z(1)

∥z(1)∥2
− z(2)

∥z(2)∥2
∥22 is usually used as the loss function (Chen & He, 2021). This loss

is also equivalent to the negative cosine similarity, up to a scale of 1
2 and an optimization irrelevant

constant (Chen & He, 2021). This architecture is also called Siamese Network (Chen & He, 2021), if
Fθ = F ′

θ′ . Another variant distinguishes the networks into target network F ′
θ′ and online network Fθ,

and updates the weight θ′ of target network through exponential moving average (EMA) (Chen et al.,
2020b; Grill et al., 2020) over θ of online network.

Feature collapse. While minimizing Eqn. 1, a trivial solution known as complete collapse could
occur such that Fθ(x) ≡ c, ∀x ∈ D. Moreover, a weaker collapse condition called dimensional
collapse can be easily arrived, for which the projected features collapse into a low-dimensional
manifold. To express dimensional collapse more mathematically, we refer to dimensional collapse as
the phenomenon that one or certain eigenvalues of the covariance matrix of feature vectors degenerate
to 0. Therefore, we can determine the occurrence of dimensional collapse by observing the spectrum
of the covariance matrix.

Whitening loss. To address the collapse problem, whitening loss (Ermolov et al., 2021) is pro-
posed to minimize Eqn. 1, under the condition that embeddings from different views are whitened.
Whitening loss provides theoretical guarantee in avoiding (dimensional) collapse, since the embed-
ding is whitened with all axes decorrelated (Ermolov et al., 2021; Hua et al., 2021). Ermolov et
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al. (Ermolov et al., 2021) propose to whiten the mini-batch embedding Z ∈ Rd×m using batch
whitening (BW) (Huang et al., 2018; Siarohin et al., 2019) and impose the loss on the whitened
output Ẑ ∈ Rd×m, given the mini-batch inputs X with size of m, as follows:

min
θ

L(X; θ) = EX∼D, T1,2∼T ∥Ẑ(1) − Ẑ(2)∥2F

with Ẑ(v) = Σ− 1
2Z(v), v ∈ {1, 2}, (2)

where Σ = 1
mZZT is the covariance matrix of embedding1. Σ− 1

2 is called the whitening matrix, and
is calculated either by Cholesky decomposition in (Ermolov et al., 2021) or by eigen-decomposition
in (Hua et al., 2021). E.g., zero-phase component analysis (ZCA) whitening (Huang et al., 2018)
calculates Σ− 1

2 = UΛ− 1
2UT , where Λ = diag(λ1, . . . , λd) and U = [u1, ...,ud] are the eigenvalues

and associated eigenvectors of Σ, i.e., UΛUT = Σ. One intriguing result shown in (Weng et al.,
2022) is that hard whitening can avoid collapse by only constraining the embedding Z to be full-rank,
but not whitened.

We note that the whitening transformation is a function over embedding Z during forward pass, and
modulates the spectrum of embedding Z implicitly during backward pass when minimizing MSE
loss imposed on the whitened output. This raises a question of whether there are other functions over
embedding Z that can avoid collapse? If yes, how the function affects the spectrum of embedding Z?

3.2 SPECTRAL TRANSFORMATION

In this section, we extend the whitening transformation to spectral transformation (ST), a more general
view to characterize the modulation on the spectrum of embedding, and empirically investigate the
interaction between the spectrum of the covariance matrix of Ẑ and collapse of the SSL model.
Definition 1. (Spectral Transformation) Given any unary function g(·) in the definition domain
λ(Z) = {λ1, λ2, . . . , λd}. Drawing an analogy with whitening, g(·) on the covariance matrix Σ
of embedding Z is defined as g(Σ) = Ug(Λ)UT , where g(Λ) = diag(g(λ(Z))). We denote the
transformation matrix of ST as ΦST = g(Σ), so that the output of ST is calculated by Ẑ = ΦSTZ =

Ug(Λ)UTZ and the covariance matrix of Ẑ is ΣẐ = 1
m ẐẐT = UΛg2(Λ)UT .

Based on Definition 1, ST is an abstract framework until g(·) is determined, and its essence is
mapping the spectrum λ(Z) to λ(Ẑ) =

{
λ1g

2(λ1), λ2g
2(λ2), . . . , λdg

2(λd)
}

. When applied in the
context of self-supervised learning, the loss function for ST remains the same as Eqn 2, with the
only difference being that Ẑ is determined by g(·). Meanwhile, the optimization direction for the
embedding spectrum can also be determined when employing gradient-based methods. That is, what
spectrum of embedding will be modulated to be during the course of training.

Can we unveil the potential of ST? Our ST framework exhibits uncertainty and diversity, allowing
g(·) to adopt the guise of any single-variable function within the defined domain, including power
functions, exponential functions, iterative functions, and more. Whitening, on the other hand, is a
special and successful instance within ST, where g(·) takes the form of a power function g(λ) = λ− 1

2 .
This naturally prompts two questions: 1. Could there be other functions, akin to whitening, capable
of preventing collapse within the ST framework? 2. If yes, how the function works and affects the
spectrum of embedding Z?

3.2.1 SPECTRAL TRANSFORMATION USING POWER FUNCTIONS
With these questions in mind, we embark on a deeper exploration of the mechanics extending beyond
whitening, considering a more comprehensive transformation g(λ) = λ−p, p ∈ (−∞,+∞) for ST.
Based on Definition. 1, this comprehensive power transformation is mapping the spectrum λ(Z) to
λ(Ẑ) =

{
λ1

1−2p, λ2
1−2p, . . . , λd

1−2p
}

.

Empirical observation. Initially, we conduct experiments on a 2D dataset, varying the parameter p,
and visualize the outputs of the toy models as depicted in Figure 2(a). Our observations indicate that
the toy model tends to perform well in avoiding collapse when p falls within the neighborhood of 0.5,
specifically in the range of 0.45 to 0.55. However, as p gradually deviates from 0.5, collapse becomes
more pronounced. Subsequently, we extend our experiments to real-world datasets to validate these
findings. The results presented in Figure 2(b) align with the previously observed phenomena. When
p is set to either 0.45 or 0.55, the model maintains high evaluation performance, similar to that

1The embedding is usually centralized by performing Z := Z(I− 1
m
1 · 1T ) for whitening, and we assume

Z is centralized in this paper for simplifying discussion.
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Figure 2: Investigate ST using power functions. We choose several p from 0 to 1.5. We show (a) the
visualization of the toy model output; (b) top-1 and 5-nearest neighbors (5-nn) accuracy on CIFAR-10;
(c) condition indicator of embedding Z and transformed output Ẑ on CIFAR-10. We use the inverse
of the condition number (IoC) in logarithmic scale with base 10 ( lgIoC = lgc−1 = lg λd

λ1
) as the

condition indicator. The results on CIFAR-10 are obtained through training with ResNet-18 for 200
epochs and averaged over five runs, with standard deviation shown as error bars. We show the details
of experimental setup in Appendix D. Similar phenomena can be observed when using other datasets
(e.g., ImageNet) and other networks (e.g., ResNet-50).

of whitening (p = 0.5). This discovery suggests that within the ST framework, there exist other
functions capable of successfully preventing collapse, which answers the first question.

For the second question, as illustrated in Figure 2(c), it becomes evident that when p lies in the
vicinity of 0.5, the embedding showcases a more well-conditioned spectrum, characterized by a
smaller condition number (larger IoC). However, when p significantly deviates from 0.5, the spectrum
of embedding loses its well-conditioned attributes, closely aligning with the occurrence of embedding
collapse. This statement asserts that if g(·) is effective in preventing collapse within the ST framework,
it will result in the modulation of the embedding spectrum towards a well-conditioned state.

Intuitive explanation. We note that (Weng et al., 2022) implied that whitening loss in Eqn 2 can
be decomposed into two asymmetric losses L = 1

m∥ϕ(Z(1))Z(1) − (Ẑ(2))st∥2F + 1
m∥ϕ(Z(2))Z(2) −

(Ẑ(1))st∥2F , where ϕ(Z) refers to the whitening matrix of Z, st represents the stop gradient operation,
and Ẑ denotes the whitening output. Each asymmetric loss can be viewed as an online network
to match a whitened target Ẑ. As a more generalized form of whitening, our ST can also extend
this decomposition to the loss function. As depicted in Figure 2(c), when p falls within the range
of 0.45 to 0.55, Ẑ exhibits a well-conditioned spectrum, with each eigenvalue approaching 1. In
such instances, Ẑ serves as an ideal target for ϕ(Z)Z to match, enabling the embedding Z to learn
a favorable spectrum to prevent collapse. Conversely, when p deviates significantly from 0.5, the
spectrum of the transformed output loses its well-conditioned characteristics, with Ẑ becoming a
detrimental target, ultimately leading to the collapse of the embedding.

3.2.2 IMPLICIT SPECTRAL TRANSFORMATION USING NEWTON’S ITERATION

However, utilizing the power function g(λ) = λ−p (where p is approximately 0.5) within our
ST framework is not without its drawbacks. One issue is the potential for numerical instability
when computing eigenvalues λ and eigenvectors U via eigen-decomposition, particularly when the
covariance matrix is ill-conditioned (Paszke et al., 2019). We provide comprehensive experiments
and analysis in Appendix D.3 to validate the presence of this problem in SSL.

Naturally, if we could implement a spectral transformation that can modulate the spectrum without
the need for explicit calculation of λ or U, this issue could be mitigated. In fact, we take note of
an approximate whitening method called iterative normalization (IterNorm) (Huang et al., 2019),
which uses Newton’s iteration to address the numerical challenges associated with batch whitening
in supervised learning. Specifically, given the centered embedding Z, the iteration count T , and
the trace-normalized covariance matrix ΣN = Σ/tr(Σ), IterNorm performs Newton’s iteration as
follows. {

P0 = I

Pk = 1
2 (3Pk−1 −P3

k−1ΣN ), k = 1, 2, ..., T.
(3)

The whitening matrix Σ− 1
2 is approximated by ΦT = PT /

√
tr(Σ) and we have the whitened output

Ẑ = ΦTZ. When T → +∞, ΦT → Σ− 1
2 and the covariance matrix of Ẑ will be an identity matrix.

Here, we theoretically show that IterNorm is also an instance of spectral transformation as follows.
Theorem 1. Define one-variable iterative function fT (x), satisfying

fk+1(x) =
3
2fk(x)−

1
2xfk

3(x), k ≥ 0; f0(x) = 1.
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The mapping function of IterNorm is g(λ) = fT (
λ

tr(Σ) )/
√

tr(Σ). Without calculating λ or U,

IterNorm implicitly maps ∀λi ∈ λ(Z) to λ̂i =
λi

tr(Σ)fT
2( λi

tr(Σ) ).

The proof is provided in Appendix B.1. For simplicity, we define the T-whitening function of
IterNorm hT (x) = xfT

2(x), which obtains the spectrum of transformed output. Based on the fact
that the covariance matrix of transformed output will be identity when T of IterNorm increases to
infinity (Bini et al., 2005), we thus have

∀λi > 0, lim
T→∞

hT (
λi

tr(Σ)
) = 1. (4)

Different iteration numbers T of IterNorm imply different T-whitening functions hT (·). It is interest-
ing to analyze the characteristics of hT (·).
Proposition 1. Given x ∈ (0, 1), ∀T ∈ N we have hT (x) ∈ (0, 1) and h′

T (x) > 0.

The proof is shown in Appendix A.1. Proposition 1 states hT (x) is a monotone increasing function
for x ∈ (0, 1) and its range is also in (0, 1). Since λi

tr(Σ) ∈ (0, 1), ∀λi > 0, we have

∀T ∈ N, λi > λj > 0 =⇒ 1 > λ̂i > λ̂j > 0. (5)

Formula 5 indicates that IterNorm maps all non-zero eigenvalues to (0, 1) and preserves monotonicity.
Proposition 2. Given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).

The proof is shown in Appendix A.2. Proposition 2 indicates that IterNorm gradually stretches the
eigenvalues towards one as the iteration number T increases. This property of IterNorm theoretically
shows that the spectrum of Ẑ will have better condition if we use a larger iteration number T of
IterNorm.

In summary, our analyses theoretically show that IterNorm gradually stretches the eigenvalues towards
one as the iteration number T increases, and the smaller the eigenvalue is, the larger T is required to
approach one.

4 ITERATIVE NORMALIZATION WITH TRACE LOSS

It is expected that IterNorm, as a kind of spectral transformation, can avoid collapse and obtain good
performance in SSL, due to its benefits in approximating whitening for supervised learning (Huang
et al., 2019). However, we empirically observe that IterNorm suffers severe dimensional collapse and
mostly fails to train the model in SSL (we postpone the details in Section 4.2.). Based on the analyses
in Section 3.2 and 3.2.2, we propose a simple solution by adding an extra penalty named trace loss
on the transformed output Ẑ by IterNorm to ensure a well-conditioned spectrum. It is clear that the
sum of eigenvalues of ΣẐ is less than or equal to d, we thus propose a trace loss that encourages
the trace of ΣẐ to be its maximum d, when d ≤ m. In particular, we design a new method called
IterNorm with trace loss (INTL) for optimizing the SSL model as2:

min
θ∈Θ

INTL(Z) =
d∑

j=1

(1− (ΣẐ)jj)
2, (6)

where Z = Fθ(·) and Ẑ = IterNorm(Z). Eqn. 6 can be viewed as an optimization problem over θ
to encourage the trace of Ẑ to be d.

4.1 THEORETICAL ANALYSIS

In this section, we theoretically prove that INTL can avoid collapse, and INTL modulates the spectrum
of embedding towards an equal-eigenvalue distribution during the course of optimization.

Note that ΣẐ can be expressed using the T-whitening function hT (·) as ΣẐ =
d∑

i=1

hT (xi)uiu
T
i ,

where xi = λi/tr(Σ) ≥ 0 and
d∑

i=1

xi = 1. When the range of Fθ(·) is wide enough, the optimization

2The complete loss function of INTL is LINTL = LMSE + β · Ltrace, where the coefficient β is fixed
across all datasets and architectures, and its determination is elaborated in ’Algorithm of INTL’ of Appendix C.
To simplify the discussion, we omit the LMSE term here, without compromising the validity.
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Figure 3: Investigate the effectiveness of IterNorm with and without trace loss. We train the models
on CIFAR-10 with ResNet-18 for 100 epochs. We apply IterNorm with various iteration numbers
T , and show the results with (solid lines) and without (dashed lines) trace loss respectively. (a) The
spectrum of the embedding Z; (b) The spectrum of the transformed output Ẑ; (c) The top-1 accuracy.
(d) indicates that IterNorm (without trace loss) suffers from numeric divergence when using a large
iteration number, e.g. T = 9. It is noteworthy that when T ≥ 11, the loss values are all NAN, making
the model unable to be trained. Similar phenomena can be observed when using other datasets (e.g.,
ImageNet) and other networks (e.g., ResNet-50).

problem over θ (Eqn. 6) can be transformed as the following optimization problem over x (Eqn. 7)
without changing the optimal value (please see Appendix B.2 for the details of derivation):

min
x

INTL(x) =
d∑

j=1

(
d∑

i=1

[1− hT (xi)]u
2
ji

)2

s.t.
d∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , d,

(7)

where uji is the j-th elements of vector ui. In this formulation, we can prove that our proposed INTL
can theoretically avoid collapse, as long as the iteration number T of IterNorm is larger than zero.

Theorem 2. Let x ∈ [0, 1]d, ∀T ∈ N+, INTL(x) shown in Eqn. 7 is a strictly convex function.
x∗ = [ 1d , · · · ,

1
d ]

T is the unique minimum point as well as the optimal solution to INTL(x).

The proof is provided in Appendix B.2. Based on Theorem 2, INTL modulates the spectrum of
embedding to be equal-eigenvalues during the backward pass, which provides a theoretical guarantee
to avoid dimensional collapse.
Connection to hard whitening. Hard whitening methods, like W-MSE (Ermolov et al., 2021) and
shuffle-DBN (Hua et al., 2021), design a whitening transformation over each view and minimize
the distances between the whitened outputs from different views. This mechanism modulates
the covariance matrix of embedding to be full-rank (Weng et al., 2022). Our INTL designs an
approximated whitening transformation using IterNorm and imposes an additional trace loss penalty
on the (approximately) whitened output, which modulates the covariance matrix of embedding having
equal eigenvalues.
Connection to soft whitening. Soft whitening methods, like Barlow-Twins (Zbontar et al., 2021)
and VICReg (Bardes et al., 2022) directly impose a whitening penalty as a regularization on the
embedding. This modulates the covariance matrix of the embedding to be identity (with a fixed scalar
γ, e.g., γI). Our INTL imposes the penalty on the transformed output, but can be viewed as implicitly
modulating the covariance matrix of the embedding to be identity with a free scalar (i.e., having equal
eigenvalues).

Intuitively, INTL modulates the spectrum of embedding to be equal-eigenvalues during the backward
pass, which is a stronger constraint than hard whitening (the full-rank modulation), but a weaker
constraint than soft whitening (the whitening modulation). This preliminary but new comparison
provides a new way to understand the whitening loss in SSL.

4.2 EMPIRICAL ANALYSIS

In this section, we empirically show that IterNorm-only and trace-loss-only fail to avoid collapse, but
IterNorm with trace loss can well avoid collapse.
IterNorm fails to avoid collapse. In theory, IterNorm can map all non-zero eigenvalues to approach
one, with a large enough T . In practice, it usually uses a fixed T , and it is very likely to encounter
small eigenvalues during training. In this case, IterNorm cannot ensure the transformed output has
a well-conditioned spectrum (Figure 3(b)), which potentially results in dimensional collapse. One
may use a large T , however, IterNorm will encounter numeric divergence upon further increasing the
iteration number T , even though it has converged. E.g., IterNorm suffers from numeric divergence
in Figure 3(d) when using T = 9, since the maximum eigenvalue of whitened output is around

7
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Table 1: Classification top-1 accuracy of a linear classifier and a 5-nearest neighbors classifier
for different loss functions and datasets. The table is mostly inherited from solo-learn (da Costa
et al., 2022). All methods are based on ResNet-18 with two augmented views generated from per
sample and are trained for 1000-epoch on CIFAR-10/100 with a batch size of 256 and 400-epoch on
ImageNet-100 with a batch size of 128.

Method CIFAR-10 CIFAR-100 ImageNet-100
top-1 5-nn top-1 5-nn top-1 5-nn

SimCLR (Chen et al., 2020a) 90.74 85.13 65.78 53.19 77.64 65.78
MoCo V2 (Chen et al., 2020b) 92.94 88.95 69.89 58.09 79.28 70.46
BYOL (Grill et al., 2020) 92.58 87.40 70.46 56.46 80.32 68.94
SwAV (Caron et al., 2020) 89.17 84.18 64.88 53.32 74.28 63.84
SimSiam (Chen & He, 2021) 90.51 86.82 66.04 55.79 78.72 67.92
W-MSE (Ermolov et al., 2021) 88.67 84.95 61.33 49.65 69.06 58.44
Shuffled-DBN (Hua et al., 2021) 91.17 88.95 66.81 57.27 75.27 67.21
DINO (Caron et al., 2021) 89.52 86.13 66.76 56.24 74.92 64.30
Barlow Twins (Zbontar et al., 2021) 92.10 88.09 70.90 59.40 80.16 72.14
VICReg (Bardes et al., 2022) 92.07 87.38 68.54 56.32 79.40 71.94
Zero-CL (Zhang et al., 2022b) 90.81 87.51 70.33 59.21 79.26 71.18
CW-RGP (Weng et al., 2022) 92.03 89.67 67.78 58.24 76.96 68.46
INTL (ours) 92.60 90.03 70.88 61.90 81.68 73.46

Table 2: Comparisons on ImageNet linear classification with various training epochs. All methods
are based on ResNet-50 backbone with two augmented views generated from per sample. EMA
represents Exponential Moving Average. Given that one of the objectives of SSL methods is to
achieve high performance with small batch sizes, it’s worth noting that our INTL performs effectively
when trained with small batch sizes, such as 256 and 512.

Method Batch size EMA 100 eps 200 eps 400 eps 800 eps
SimCLR 4096 No 66.5 68.3 69.8 70.4

SwAV 4096 No 66.5 69.1 70.7 71.8
512 No 65.8 67.9 - -

SimSiam 256 No 68.1 70.0 70.8 71.3
W-MSE 512 No 65.1 66.4 - -
Shuffled-DBN 512 No 65.2 - - -
Barlow Twins 2048 No 67.7 - 72.5 73.2
Zero-CL 1024 No 68.9 - 72.6 -
CW-RGP 512 No 67.1 69.6 - -
INTL (ours) 512 No 69.5 71.1 72.4 73.1
MoCo v2 256 Yes 67.4 69.9 71.0 72.2
BYOL 4096 Yes 66.5 70.6 73.2 74.3
INTL (ours) 256 Yes 69.2 71.5 73.7 74.3

107, significantly large than 1 (we attribute to the numeric divergence, since this result goes against
Proposition 1 and 2, and we further validate it by monitoring the transformed output). It is noteworthy
that when T ≥ 11, the loss values are all NAN, making the model unable to be trained. These
problems make IterNorm difficult to avoid dimensional collapse in practice.

The Synergy between IterNorm and trace loss. IterNorm in combination with trace loss demon-
strates significant differences compared to IterNorm-only. Our experimental results, as shown in
Figure 3(a), empirically confirm that INTL effectively prevents dimensional collapse, aligning with
the findings of Theorem 2. INTL encourages the uniformity of eigenvalues within the covariance
matrix of the embedding Z, resulting in well-conditioned spectra for the transformed output (Fig-
ure 3(b)) and impressive evaluation performance (Figure 3(c)), even when the iteration count T is as
low as 1. To further evaluate the performance of trace-loss-only, we conducte experiments under the
same setup. Without IterNorm, trace-loss-only achieves a top-1 accuracy of only 16.15%, indicating
significant collapse. Therefore, the efficacy of INTL, as well as the attainment of an optimal solution
characterized by equal eigenvalues, is a result of the synergy between IterNorm and trace loss.

5 EXPERIMENTS ON STANDARD SSL BENCHMARK

In this section, we conduct experiments on standard SSL benchmarks to validate the effectiveness
of our proposed INTL. We first evaluate the performance of INTL for classification on CIFAR-
10/100 (Krizhevsky, 2009), ImageNet-100 (Tian et al., 2020a), and ImageNet (Deng et al., 2009).
Then we evaluate the effectiveness in transfer learning, for a pre-trained model using INTL. We
provide the full PyTorch-style algorithm in Appendix C as well as details of implementation and
computational overhead in Appendix E.
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Table 3: Transfer Learning. All competitive unsupervised methods are based on 200-epoch pre-
training on ImageNet (IN). The table are mostly inherited from (Chen & He, 2021). Our INTL is
performed with 3 random seeds, with mean and standard deviation reported.

Method COCO detection COCO instance seg.
AP50 AP AP75 AP50 AP AP75

Scratch 44.0 26.4 27.8 46.9 29.3 30.8
Supervised 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 58.8 39.2 42.5 55.5 34.3 36.6
BYOL 57.8 37.9 40.9 54.3 33.2 35.0
SwAV 57.6 37.6 40.3 54.2 33.1 35.1
SimSiam 57.5 37.9 40.9 54.2 33.2 35.2
W-MSE (repro.) 60.1 39.2 42.8 56.8 34.8 36.7
Barlow Twins 59.0 39.2 42.5 56.0 34.3 36.5
INTL (ours) 60.9±0.08 40.7±0.09 43.7±0.17 57.3±0.08 35.4±0.05 37.6±0.14

5.1 EVALUATION FOR CLASSIFICATION

Evaluation on small and medium size datasets. We initially train and perform linear evaluation
of INTL using ResNet-18 as the backbone on CIFAR-10/100 (Krizhevsky, 2009) and ImageNet-
100 (Tian et al., 2020a). We strictly adhere to the experimental settings outlined in solo-learn (da Costa
et al., 2022) for these datasets. As depicted in Table 1, INTL achieves remarkable results, with a
top-1 accuracy of 92.60% on CIFAR-10, 70.88% on CIFAR-100, and 81.68% on ImageNet-100.
These results are on par with or even surpass the state-of-the-art methods as reproduced by solo-learn.
Furthermore, when employing a 5-nearest neighbors classifier, INTL outperforms other baselines by
a significant margin, underscoring its capacity to learn superior representations.
Evaluation on ImageNet. To further assess the versatility of INTL, we train it using a ResNet-50
backbone and evaluate its performance using the standard linear evaluation protocol on ImageNet.
The results, presented in Table 2, demonstrate the effectiveness of INTL, achieving top-1 accuracy of
69.5%, 71.1%, 72.4%, and 73.1% after pre-training for 100, 200, 400, and 800 epochs, respectively.
We observe that our INTL performs even better when utilized in conjunction with the Exponential
Moving Average (EMA) technique, as employed in BYOL and MoCo. This combination yielded a
top-1 accuracy of 74.3% after 800 epochs of training.

5.2 TRANSFER TO DOWNSTREAM TASKS

We examine the representation quality by transferring our pre-trained model to other tasks, including
COCO (Lin et al., 2014) object detection and instance segmentation. We use the baseline of the
detection codebase from MoCo (He et al., 2020) for INTL. The results of baselines shown in Table 3
are mostly inherited from (Chen & He, 2021). We observe that INTL performs much better than
other state-of-the-art approaches on COCO object detection and instance segmentation, which shows
the great potential of INTL in transferring to downstream tasks.

5.3 ABLATION STUDY
We conducte a comprehensive set of ablation experiments to assess the robustness and versatility of
our INTL in Appendix F. These experiments cover various aspects, including batch sizes, embedding
dimensions, the use of multi-crop augmentation, semi-supervised training, the choice of Vision
Transformer (ViT) backbones and adding trace loss to other methods. Through these experiments,
we gain valuable insights into how INTL performs under different conditions and configurations,
shedding light on its adaptability and effectiveness in diverse scenarios. The results collectively
reinforce the notion that INTL is a robust and flexible self-supervised learning method capable of
delivering strong performance across a wide range of settings and data representations. Notably, our
INTL achieved a remarkable top-1 accuracy of 76.6% on ImageNet linear evaluation with ResNet-50
when employing multi-crop augmentation, surpassing even the common supervised baseline of
76.5%.

6 CONCLUSION

In this paper, we proposed spectral transformation (ST) framework to modulate the spectrum of
embedding and to seek for functions beyond whitening that can avoid dimensional collapse. Our
proposed IterNorm with trace loss (INTL) is well-motivated, theoretically demonstrated, and em-
pirically validated in avoiding dimension collapse. Comprehensive experiments have shown the
merits of INTL for achieving state-of-the-art performance for SSL in practice. We showed that INTL
modulates the spectrum of embedding to be equal-eigenvalues during the backward pass, which is a
stronger constraint than hard whitening (the full-rank modulation), but a weaker constraint than soft
whitening (the whitening modulation). This preliminary but new results provides a potential way to
understand and compare SSL methods.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility and comprehensiveness of our paper, we have included an appendix
comprising six main sections. These sections serve various purposes:

• Appendix A contains detailed proofs for the propositions presented in our work.
• Appendix B provides in-depth proofs for the theorems introduced in our research.
• Appendix C offers a comprehensive view of the INTL algorithm, including detailed formulas

and PyTorch-style code for implementation.
• Appendix D elaborates on the settings used in our analytical experiments, with reference to

Figure 2 and Figure 3.
• Appendix E furnishes insights into the implementation details and computational intricacies

of experiments conducted on standard SSL benchmarks, as discussed in Section 5.
• Finally, Appendix F encompasses a comprehensive set of ablation experiments, assessing

the robustness and versatility of our INTL method across various scenarios.
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A PROOFS OF PROPOSITION

A.1 PROOF OF PROPOSITION.1

Proposition 1. Given x ∈ (0, 1), ∀T ∈ N we have hT (x) ∈ (0, 1) and h′
T (x) > 0.

Proof. We know the iterative function fT (x) satisfies

fk+1(x) =
3

2
fk(x)−

1

2
xfk

3(x), k ≥ 0; f0(x) = 1 (8)

We define hT (x) = xfT
2(x). When x = 1, it is easy to verify ∀T ∈ N, hT (1) = fT (1) = 1. We

first prove fT (x) > 0 and h′
T (x) > 0 by mathematical induction.

(1) When T = 0, we have f0(x) = 1 > 0, and h0(x) = x, h′
0(x) = 1 > 0.

(2) Assuming it holds when T = k, we have fk(x) > 0 and h′
k(x) > 0. Based on h′

k(x) =
fk(x)[fk(x) + 2xf ′

k(x)], we have:

fk(x) + 2xf ′
k(x) > 0 (9)

Since hk(1) = 1, h′
k(x) > 0 and hk(x) is continuous, we have ∀x ∈ (0, 1), hk(x) < 1. We thus can

obtain:

fk+1(x) =
1

2
fk(x)[3− xf2

k (x)]

=
1

2
fk(x)[3− hk(x)]

> 0 (10)

Furthermore, h′
k+1(x) = fk+1(x)[fk+1(x) + 2xf ′

k+1(x)], where

fk+1(x) + 2xf ′
k+1(x)

=
3

2
[fk(x) + 2xf ′

k(x)]−
3

2
xf3

k (x)− 3x2f2
k (x)f

′
k(x)

=
3

2
[fk(x) + 2xf ′

k(x)]−
3

2
xf2

k (x)[fk(x) + 2xf ′
k(x)]

=
3

2
[1− xf2

k (x)][fk(x) + 2xf ′
k(x)]

=
3

2
[1− hk(x)][fk(x) + 2xf ′

k(x)]

So we have h′
k+1(x) = 3

2fk+1(x)[1 − hk(x)][fk(x) + 2xf ′
k(x)] > 0. Combining the result in

Eqn. 10, we thus have it holds when T = k + 1.

As a result, we have ∀T ∈ N, fT (x) > 0 and h′
T (x) > 0, when x ∈ (0, 1).

Since hT (1) = 1 and hT (x) is continuous, we have hT (x) < 1. Besides, we have hT (x) =
xfT

2(x) > 0, then hT (x) ∈ (0, 1).

A.2 PROOF OF PROPOSITION.2

Proposition 2. Given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).

Proof. According to proof of Proposition.1, we have that when x ∈ (0, 1) and ∀T ∈ N, fT (x) > 0
and hT (x) = xfT

2(x) ∈ (0, 1).
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Therefore, we have hT+1(x) > hT (x) ⇐⇒ fT+1(x) > fT (x). It is obvious that

fk+1(x)− fk(x) =
3

2
fk(x)−

1

2
xf3

k (x)− fk(x)

=
1

2
fk(x)−

1

2
xf3

k (x)

=
1

2
fk(x)[1− xf2

k (x)]

=
1

2
fk(x)[1− hk(x)]

> 0

So given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).

B PROOFS OF THEOREM

B.1 PROOF OF THEOREM 1.

Theorem 1. Define one-variable iterative function fT (x), satisfying

fk+1(x) =
3
2fk(x)−

1
2xfk

3(x), k ≥ 0; f0(x) = 1.

The mapping function of IterNorm is

g(λ) = fT (
λ

tr(Σ) )/
√
tr(Σ),

so that ∀λi ∈ λ(Z), IterNorm maps it to λ̂i =
λi

tr(Σ)fT
2( λi

tr(Σ) ).

Proof. Given Σ = UΛUT , Λ = diag(λ1, . . . , λd), U = [u1, . . . ,ud]. Following the calculation
steps of IterNorm, we have

ΣN = Σ/tr(Σ) =

d∑
i=1

λi

tr(Σ)
uiui

T (11)

Define

Φ′
T =

d∑
i=1

1√
tr(Σ)

fT (
λi

tr(Σ)
)uiui

T (12)

Based on ΦT =
d∑

i=1

g(λi)uiui
T , if we can prove Φ′

T = ΦT , we will have

g(λ) = 1√
tr(Σ)

fT (
λ

tr(Σ) )

Define P′
T =

√
tr(Σ)Φ′

T , then we have Φ′
T = ΦT ⇐⇒ P′

T = PT . We can prove P′
T = PT by

mathematical induction.
(1) When T = 0,

f0(
λi

tr(Σ) ) = 1,P′
0 = P0 = I

(2) When T ≥ 1, assume that P′
T−1 = PT−1, thus

PT =
3

2
PT−1 −

1

2
P3

T−1ΣN

=
3

2
P′

T−1 −
1

2
(P′

T−1)
3ΣN
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According to the definition of P′
T ,

P′
T−1 =

d∑
i=1

fT−1(
λi

tr(Σ)
)uiui

T

Because ∀i,ui
Tui = 1 and ∀i ̸= j,ui

Tuj = 0,

P3
T−1ΣN = (P′

T−1)
3ΣN

=

(
d∑

i=1

fT−1(
λi

tr(Σ)
)uiui

T

)3( d∑
i=1

λi

tr(Σ)
uiui

T

)

=

d∑
i=1

f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)
uiui

T

Therefore, we have

PT =
3

2
P′

T−1 −
1

2
(P′

T−1)
3ΣN

=
3

2

d∑
i=1

fT−1(
λi

tr(Σ)
)uiui

T − 1

2

d∑
i=1

f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)
uiui

T

=

d∑
i=1

{
3

2
fT−1(

λi

tr(Σ)
)− 1

2
f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)

}
uiui

T

Note

fT (
λi

tr(Σ)
) =

3

2
fT−1(

λi

tr(Σ)
)− 1

2
f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)

So that

PT =

d∑
i=1

fT (
λi

tr(Σ)
)uiui

T = P′
T

We obtain that

ΦT = Φ′
T =

d∑
i=1

1√
tr(Σ)

fT (
λi

tr(Σ)
)uiui

T = U
1√
tr(Σ)

fT (
Λ

tr(Σ)
)UT

Thus, the mapping function of IterNorm is g(λ) = fT (
λ

tr(Σ) )/
√
tr(Σ). The whitened output is

Ẑ = ΦTZc = U 1√
tr(Σ)

fT (
Λ

tr(Σ) )U
TZc. The covariance matrix of Ẑ is

ΣẐ =
1

m
ẐẐT = U

Λ

tr(Σ)
fT

2(
Λ

tr(Σ)
)UT =

d∑
i=1

λi

tr(Σ)
fT

2(
λi

tr(Σ)
)uiui

T

So that ∀λi ∈ λ(Z), IterNorm maps it to λ̂i = λi

tr(Σ)fT
2( λi

tr(Σ) ) which is a special instance of
Spectral Transformation.

B.2 PROOF OF THEOREM 2.

Theorem 2. Let x ∈ [0, 1]d, ∀T ∈ N+, INTL(x) shown in Eqn. 7 is a strictly convex function.
x∗ = [ 1d , · · · ,

1
d ]

T is the unique minimum point as well as the optimal solution to INTL(x).

Proof. The INTL can be viewed as the following optimization problem:

min
θ∈Θ

INTL(Z) =

d∑
j=1

(1− (ΣẐ)jj)
2 (13)
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where Z = Fθ(·) and Ẑ = IterNorm(Z). Eqn. 6 can be viewed as a optimization problem over θ
to encourage the trace of Ẑ to be d.

Let (x1, · · · , xd) = φ(Z), where xi = λi/tr(Σ) as defined in the submitted paper. If Z ∈ Rd×m,
φ(·) will be surjective from Rd×m to Dx = {x ∈ [0, 1]d : x1 + · · ·+ xd = 1}. When the range of
Fθ(·) is wide enough, for example, Fθ(·) is surjective from θ ∈ Θ to Z ∈ Rd×m. Here we can view
Fθ(·) as a function over θ, since the input is given and fixed. Then φ(Fθ(·)) is surjective from θ ∈ Θ
to x ∈ Dx, meaning that if we find the optimal solution x∗, we are able to get the corresponding
θ∗ ∈ Θ, subject to x∗ = φ(Fθ∗(·)). On the contrary, for any θ ∈ Θ, we can get x = φ(Fθ(·)) ∈ Dx.

Therefore, the optimization expression for minimizing INTL can be written as follows which have
the same range and optimal value as Eqn. 6:

(PINTL)


min INTL(x) =

d∑
j=1

(
d∑

i=1

[1− hT (xi)]u
2
ji

)2

s.t.
d∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , d

(14)

We denote the Lagrange function of PINTL is that

L(x;α, µ) = INTL(x) +

d∑
i=1

αi(−xi) + µ

(
d∑

i=1

xi − 1

)

B.2.1 CONVEXITY AND CONCAVITY OF hT (x)

Before calculating extreme points of PINTL, we first consider the convexity and concavity of hT (x)
which is critical to proof.

When T = 0, we have h0(x) = x, so h′′
0(x) = 0.

(1) When T = 1, we have h1(x) = f1
2(x) = 9

4x− 3
2x

2 + 1
4x

3, so h′′
1(x) =

3
2 (x− 2) < 0.

(2) Assume that when T = k, h′′
k(x) < 0 holds. We can easily get following propositions by

derivation:

f ′
k+1(x) =

3

2
f ′
k(x)−

1

2
f3
k (x)−

3

2
xf2

k (x)f
′
k(x) (15)

f ′′
k+1(x) =

3

2
f ′′
k (x)− 3f2

k (x)f
′
k(x)−

3

2
xf2

k (x)f
′′
k (x)− 3xfk(x)[f

′
k(x)]

2 (16)

h′′
k+1(x) = 4fk+1(x)f

′
k+1(x) + 2x[f ′

k+1(x)]
2 + 2xfk+1(x)f

′′
k+1(x) (17)

For convenience in our calculation, let a = fk(x), b = f ′
k(x), c = f ′′

k (x), and h = hk(x) = xa2.

We split Eqn. 17 into three parts and take Eqn. 15 and 16 into calculation:

4fk+1(x)f
′
k+1(x) = 4(

3

2
a− 1

2
ah)(

3

2
b− 1

2
a3 − 3

2
bh)

= a(3− h)(3b− a3 − 3bh)

2x[f ′
k+1(x)]

2 = 2x(
3

2
b− 1

2
a3 − 3

2
bh)2

=
1

2
x(3b− a3 − 3bh)2

2xfk+1(x)f
′′
k+1(x) = 2(

3

2
a− 1

2
ah)[

3

2
c(1− h)− 3a2b− 3xab2]

=
1

2
ax(3− h)[3c(1− h)− 6a2b− 6xab2]
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Considering to construct the form of h′′
k(x) = 2(2ab+ xac+ xb2), we first calculate that

4fk+1(x)f
′
k+1(x) + 2xfk+1(x)f

′′
k+1(x)

=
1

2
(3− h)[6ab− 2a4 − 6abh+ 3xac(1− h)− 6abh− 6xb2h]

=
1

2
(3− h)[3xac(1− h) + 6ab(1− h) + 3xb2(1− h)

− 3xb2(1− h)− 2a4 − 6abh− 6xb2h]

=
3

4
(3− h)(1− h)h′′

k(x)−
1

2
(3− h)(3xb2h+ 3xb2 + 2a4 + 6abh)

Then we calculate the left part

2x[f ′
k+1(x)]

2 =
1

2
x(3b− a3 − 3bh)2

=
1

2
(9xb2 + xa6 + 9xb2h2 − 6xa3b− 18xb2h+ 6xa3bh)

=
1

2
(9xb2 + a4h+ 9xb2h2 − 6abh− 18xb2h+ 6abh2)

For convenience, let

S =− 1

2
(3− h)(3xb2h+ 3xb2 + 2a4 + 6abh)

=
1

2
(3xb2h2 + 3xb2h+ 2a4h+ 6abh2 − 9xb2h− 9xb2 − 6a4 − 18abh)

Then we have

2x[f ′
k+1(x)]

2 + S =
1

2
(3a4h+ 12xb2h2 − 24abh− 24xb2h+ 12abh2 − 6a4)

=
3

2
(h− 2)(a4 + 4abh+ 4xb2h)

=
3

2
(h− 2)(a4 + 4xa3b+ 4x2a2b2)

=
3

2
(h− 2)(a2 + 2xab)2

=
3

2
[hk(x)− 2][h′

k(x)]
2

Here we obtain h′′
k+1(x) = 3

4 [3 − hk(x)][1 − hk(x)]h
′′
k(x) +

3
2 [hk(x) − 2][h′

k(x)]
2. Based on

Lemma.1, we know hk(x) ∈ (0, 1), so h′′
k+1(x) < 0. Therefore, when x ∈ (0, 1), then ∀T ∈ N+,

hT (x) = xfT
2(x) is a strictly concave function that satisfies h′′

T (x) < 0 and h′′
0(x) = 0.

B.2.2 OPTIMAL SOLUTION FOR THE LAGRANGE FUNCTION

Based on Section B.2.1, when x ∈ (0, 1), then ∀T ∈ N+, hT (x) = xfT
2(x) is a strictly concave

function that satisfies h′′
T (x) < 0. So 1− hT (x) is a strictly convex function.

We discuss gj(x1, · · · , xd) =
d∑

i=1

[1 − hT (xi)]u
2
ji first. Denote that the Hessen Matrix of

gj(x1, · · · , xd) about x is

∇2gj =

−u2
j1h

′′
T (x1)

. . .
−u2

jdh
′′
T (xd)


and the Hessen Matrix of g2j (x1, · · · , xd) about x is

∇2(g2j ) = ∇(2gj∇gj) = 2gj∇2gj + 2(∇gj)(∇gj)
T
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We denote that all eigenvalues of (∇gj)(∇gj)
T are (∇gj)

T (∇gj), 0, · · · , 0. All eigenvalues are
non-negtive, denoting that 2(∇gj)(∇gj)

T is semi-positive.

Now we denote that the Hessen Matrix of INTL(x) is

∇2INTL(x) =

d∑
j=1

∇2(g2j )

= 2

d∑
j=1

(∇gj)(∇gj)
T + 2

d∑
j=1

gj∇2gj

where

2

d∑
j=1

gj∇2gj = 2


−

d∑
j=1

u2
j1h

′′
T (x1)gj

. . .

−
d∑

j=1

u2
jdh

′′
T (xd)gj



We denote that h′′
T (xi) < 0, gj > 0, and uji are not all zeros for a certain i (since

d∑
j=1

u2
ji = 1).

Therefore, −
d∑

j=1

u2
jih

′′
T (xi)gj > 0 and 2

d∑
j=1

gj∇2gj must be a positive matrix.

Since 2
d∑

j=1

(∇gj)(∇gj)
T is semi-positive, then we can denote that ∇2INTL is positive.

Therefore, INTL(x) is strictly convex about x on (0, 1)d.

And for INTL(x) is continuous, the minimum point on [0, 1]d is the same as that on (0, 1)d.

While the constraints of (PINTL) form a convex set, (PINTL) must be a convex programming, which
means that the KKT point of (PINTL) is its unique extreme point, and the global minimum point in
the same time.

We denote that the KKT conditions of (PINTL) is that



∂L
∂xi

= 0, i = 1, · · · , d
αi(−xi) = 0, i = 1, · · · , d
αi ≥ 0, i = 1, · · · , d
d∑

i=1

xi − 1 = 0

We can identify one of the solutions to the KKT conditions is that


x = [ 1d , · · · ,

1
d ]

T

α = 0

µ = −2h′
T (

1
d )[hT (

1
d )− 1]
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It is easy to identify the last three equations in KKT conditions. As for the first equation, for all
t = 1, · · · , d, we have

∂L

∂xt
= 2h′

T (xt)

d∑
i=1

d∑
j=1

[hT (xi)− 1]u2
jiu

2
jt − αi + µ

= 2h′
T (

1

d
)

d∑
i=1

d∑
j=1

[hT (
1

d
)− 1]u2

jiu
2
jt + µ

= 2h′
T (

1

d
)

d∑
j=1

[hT (
1

d
)− 1]

(
d∑

i=1

u2
ji

)
u2
jt + µ

= 2h′
T (

1

d
)

d∑
j=1

[hT (
1

d
)− 1]u2

jt + µ

= 2h′
T (

1

d
)[hT (

1

d
)− 1]

 d∑
j=1

u2
jt

+ µ

= 2h′
T (

1

d
)[hT (

1

d
)− 1] + µ

= 0

Therefore, x∗ = [ 1d , · · · ,
1
d ]

T is the optimal solution to (PINTL). INTL promotes the equality of all
eigenvalues in the optimization process, which provides a theoretical guarantee to avoid dimensional
collapse.

C ALGORITHM OF INTL

The description of our paper is based on batch whitening (BW) (Ermolov et al., 2021; Hua et al.,
2021), and it can extend similarly for channel whitening (CW) (Weng et al., 2022), where the
covariance matrix of Z is calculated as Σ = 1

dZ
TZ. We implement INTL based on CW, considering

CW is more effective when the batch size m is relatively small.

Given the centralized embedding of two positive pairs Z(v),Z(v) ∈ Rd×m and v ∈ {1, 2}, we use
IterNorm to obtain the approximately whitened output Ẑ(v) = [ẑ

(v)
1 , . . . , ẑ

(v)
m ]. The loss functions

used in our method are

LMSE =
1

m

∑
i

∥ ẑ
(1)
i

∥ẑ(1)i ∥2
− ẑ

(2)
i

∥ẑ(2)i ∥2
∥22 (18)

Ltrace =

2∑
v=1

m∑
i=1

(1− 1

d
ẑ
(v)
i

T

ẑ
(v)
i )2 (19)

LINTL = LMSE + β · Ltrace (20)

where LMSE indicates MSE of L2−normalized vectors which minimizes the distance between Ẑ(1)

and Ẑ(2). Here we simplify the expression of Ltrace in Eqn. 6, because off-diagonal elements of ΣẐ

does not need to be calculated. β is the trade-off between LMSE and INTL.

In our experiments, we observe that when the iteration number T of IterNorm is fixed, the coefficient
β that obtains good performance has only relevant to the batch size. So we fix the iteration number
T to 4 and empirically regress β with various batch sizes and obtain that β = 0.01 ∗ (log2bs − 3)
where bs means the batch size and bs > 8. We keep the iteration number T of IterNorm and the
coefficient β fixed in this form (i.e., β is determined given the batch size) across all the datasets and
architectures, so our INTL can be directly applied to other datasets and models without tuning the
coefficient.

For clarity, we also describe the algorithm of INTL in PyTorch-style pseudocode, shown in Figure 4(a).
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# f: backbone + projection
# bs: batch size
# aug: random augmentation

for x in loader: # load a minibatch x with m samples
z1, z2 = f(aug(x)), f(aug(x)) # embedding
# transformed output
z1_hat, z2_hat = IterNorm(z1), IterNorm(z2)
# trade_off between MSE and trace Loss
trade_off = (log2(bs) - 3) * 0.01
mse = norm_mse(z1_hat, z2_hat) # MSE
trace_loss = TL(z1_hat) + TL(z2_hat) # trace Loss
loss = mse + trade_off * trace_loss
return loss

def IterNorm(x, iters=4): # Iterative Normalization
M, D = x.size() # x: m * d
x = x - x.mean(dim=1).reshape(M, 1)
sigma = (x @ x.T) / (D - 1) # covariance matrix
trace = sigma.diagonal().sum()
sigma_norm = sigma / trace # normalize sigma
P = eye(M) # identity matrix: m * m
for _ in range(iters):

P = 1/2 * (3 * P - matrix_power(P, 3) @ sigma_norm)
return P / trace.sqrt() @ x

def TL(x): #Trace Loss
_, D = x.size()
d = torch.pow(x, 2).sum(axis = 1) / (D - 1)
tl = d.add_(-1).pow_(2).sum()
return tl

def norm_mse(x0, x1):
x0 = normalize(x0) # L2-normalize
x1 = normalize(x1) # L2-normalize
return 2 - 2 * (x0 * x1).sum(dim=-1).mean()

Figure 4: Algorithm of INTL, PyTorch-style Pseudocode.

D ANALYTICAL EXPERIMENTS

D.1 EXPERIMENTS ON SYNTHETIC 2D DATASET

In section 3.2 of the submitted paper, we conduct experiments on the 2D dataset and report the results
on with varying p. Here, we provide the details of the experimental setup, and further show the results
of IterNorm (Huang et al., 2019) for SSL in this 2D dataset.

D.1.1 DETAILS OF EXPERIMENTAL SETUPS

We synthesize a two-dimensional dataset with isotropic Gaussian blobs containing 512 sample points
as shown in Figure 5(a). We construct a toy Siamese network (a simple three-layer neural network,
including three fully connected (FC) layers, with BN and ReLU appended to the first two) as the
encoder for this dataset. The dimensions of the network are (2− 16)− (16− 16)− (16− 2) that
each bracket represents the input and output dimensions of each FC layer respectively. We then use
MSE as the loss function and do not normalize the features before calculating the loss function.

We train the model by randomly shuffling the data into mini-batches, and set the batch size to 32. We
use the stochastic gradient descent (SGD) algorithm with a learning rate of 0.1. In terms of the data
transformation, we only apply Gaussian noise as data augmentation and generate 2 views from each
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Figure 5: Visualization of our synthetic 2D dataset. We show (a) the distribution of our 2D dataset;
(b) the initial output of the toy Siamese network.

sample point in mini-batches. We visualize the output of the initialized network without training in
Figure 5(b). All runs are performed under the same random seed.
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Figure 6: Investigate the spectrum of transformed output Ẑ (solid lines) and the corresponding
embedding Z (dashed lines) using IterNorm for SSL with different iteration numbers T . We show
the evolution of eigenvalues during training on the toy 2D dataset (Note that there are only two
eigenvalues and we ignore the larger one because it always remains a high value during training).
In particular, (a) shows the results with a well-conditioned initial spectrum while (b) with a ill-
conditioned one.

D.1.2 RESULTS OF ITERNORM FOR SSL

To figure out the failure of IterNorm (Huang et al., 2019) for SSL, we further conduct experiments to
investigate the spectrum of the whitened output Ẑ using IterNorm on this synthetic 2D dataset for
intuitive analyses. The output dimension of the toy model is 2, so there are only two eigenvalues
of the covariance matrix of the output. We then track alterations of the two eigenvalues during
training. IterNorm can obtain an idealized whitened output with a small iteration number (e.g.,T=5,
as recommend in (Huang et al., 2019)) and avoid collapse, if the embedding Z has a well-conditioned
spectrum3 (Figure 6(a)). However, if the embedding Z has a ill-conditioned spectrum as shown in
Figure 6(b), IterNorm fails to pull the small eigenvalue to approach 1 which results in dimensional
collapse.

D.2 EXPERIMENTS ON CIFAR-10

In section 3 and 4 of the submitted paper, we conduct several experiments on CIFAR-10 to illustrate
our analysis. We provide a brief description of the setup in the caption of Figure 1 and 2 of the
submitted paper. Here, we describe the details of these experiments. All experiments are uniformly
based on the following training settings, unless otherwise stated in the figures of the submitted paper.

3A well-conditioned spectrum means that the condition number c = λ1
λd

is small. Note λ1 is the maximum
eigenvalue and λd is the minimum one.
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Figure 7: Investigate numerical instability of spectral transformation using power functions for SSL.
The numbers in the legend represent embedding dimensions and the batch size is fixed to 512. (a)
trains models on ImageNet with ResNet-50; (b) trains models on CIFAR-10 with ResNet-18; The
models are trained for 6000 iterations, and we track the inverse of condition number (c−1 = λd

λ1
) in

logarithmic scale with base 10 to judge whether the the covariance matrix is ill-conditioned. The
models that were interrupted before the end of the training indicate training crash caused by numerical
instability.

Training Settings. We use the ResNet-18 as the encoder (the dimension of encoding is 512.), a
two layer MLP with ReLU and BN appended as the projector (the dimension of the hidden layer and
embedding are 1024 and 128 respectively). The model is trained on CIFAR-10 with a batch size of
256, using Adam optimizer (Kingma & Ba, 2014) with a learning rate of 3× 10−3, and learning rate
warm-up for the first 500 iterations and a 0.2 learning rate drop at the last 50 and 25 epochs. The
weight decay is set as 10−6. All transformations are performed with 2 positives extracted per image
with standard data argumentation (see Section E.3 for details). We use the same evaluation protocol
as in W-MSE (Ermolov et al., 2021).

Method Settings. We use MSE of L2−normalized vectors to be the loss function in all experiments.
Specifically, in Figure 3 of the paper for the experiments of training the models with INTL, we simply
set the trade-off parameter β between MSE and INTL as follows: β = 0.05 for T = 5, β = 0.5
for T = 3 and β = 5 for T = 1 without fine-tuning. The details of INTL algorithm please refer to
Section C.

D.3 NUMERICAL INSTABILITY OF SPECTRAL TRANSFORMATION USING POWER FUNCTIONS

One issue with employing the spectral transformation g(λ) = λ−p (where p is approximately 0.5)
is the risk of numerical instability during the calculation of eigenvalues λ and eigenvectors U via
eigen-decomposition. This instability can arise when dealing with an ill-conditioned covariance
matrix, as noted in (Paszke et al., 2019). In this study, we empirically validate the existence of
this phenomenon in the context of self-supervised pre-training. It’s important to mention that we
primarily focus on the special case of p = 0.5, referred to as hard whitening, as similar phenomena
are observed when p is set near 0.5.

To assess the generality of this phenomenon, we conduct experiments on both ImageNet with ResNet-
50 and CIFAR-10 with ResNet-18. We maintain a fixed batch size of 512 and manipulate the shape
of the covariance matrix by adjusting the embedding dimension d (where the covariance matrix has a
shape of d × d). The models undergo 6000 iterations, and we monitor the inverse of the condition
number (c−1 = λd

λ1
) to ascertain the ill-conditioned nature of the covariance matrix. The experimental

results, depicted in Figure 7, lead to the following key observations:

(a) Training crashes when the embedding dimension exceeds the batch size (e.g., d = 1024 or 2048).
In such cases, the covariance matrix becomes theoretically singular, and computing the inverse of
the eigenvalues introduces numerical errors. However, in practice, the minimum eigenvalue of the
covariance matrix is likely a very small non-zero value due to precision rounding or the use of a
small constant. Consequently, the covariance matrix may already be ill-conditioned from the start of
training. Both Figure 7(a) and (b) illustrate that when d = 1024 or 2048, the inverse of the condition
number is approximately 10−12 ∼ 10−10, indicating severe ill-conditioning from the beginning,
resulting in rapid training breakdown.
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Table 4: Parameters used for image augmentations on ImageNet and ImageNet-100.

Parameter T1 T2

crop size 224× 224 224× 224
maximum scale of crops 1.0 1.0
minimum scale of crops 0.08 0.08
brightness 0.4 0.4
contrast 0.4 0.4
saturation 0.2 0.2
hue 0.1 0.1
color jitter prob 0.8 0.8
horizontal flip prob 0.5 0.5
gaussian prob 1.0 0.1
solarization prob 0.0 0.2

(b) Training is prone to crashing when the embedding dimension equals the batch size (d = 512).
In such cases, it’s challenging to definitively establish whether the covariance matrix is singular.
However, our observations from Figure 7 suggest that the covariance matrix tends towards ill-
conditioning when d = 512. The inverse of the condition number progressively decreases during
training, eventually leading to training instability.

(c) There is a possibility of training instability when the embedding dimension is less than the batch
size. In these situations, we initially observe that the covariance matrix remains well-conditioned.
However, this favorable condition is not consistently maintained throughout training. We notice
that well-conditioning suddenly breaks after a few iterations, leading to model collapse for d = 64
or d = 128. Interestingly, training does not crash when d = 256. This phenomenon was briefly
discussed in (Ermolov et al., 2021), suggesting that stability can be improved by setting m = 2d.

We confirm the presence of numerical instability when employing hard whitening (Ermolov et al.,
2021), as indicated by the above analysis. While one can mitigate this instability empirically by setting
m = 2d, our experiments reveal that training crashes due to numerical instability can still occur at
various points during training. In our extensive experimentation (with 10 random seeds and longer
training iterations), we observed instances of numerical issues—approximately 3-4 times—occurring
at different stages, including early, mid, or even towards the end of training. Even though it is
possible to resume training using saved checkpoints in the event of a crash, this significantly limits
the practical applicability of long-term pre-training.

E DETAILS OF EXPERIMENTS ON STANDARD SSL BENCHMARK

In this section, we provide the details of implementation and training protocol for the experiments on
large-scale ImageNet (Deng et al., 2009), medium-scale ImageNet-100 (Tian et al., 2020a) and small-
scale CIFAR-10/100 (Krizhevsky, 2009) classification as well as transfer learning to COCO (Lin
et al., 2014) object detection and instance segmentation. We also provide computational overhead of
INTL pre-training on ImageNet.

E.1 DATASETS

• CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), two small-scale datasets composed of 32 × 32
images with 10 and 100 classes, respectively.

• ImageNet-100 (Tian et al., 2020a), a random 100-class subset of ImageNet (Deng et al., 2009).

• ImageNet (Deng et al., 2009), the well-known largescale dataset with about 1.3M training images
and 50K test images, spanning over 1000 classes.

• COCO2017 (Lin et al., 2014), a large-scale object detection, segmentation, and captioning dataset
with 330K images containing 1.5 million object instances.

E.2 EXPERIMENT ON IMAGENET

In section 5.1 of the paper, we compare our INTL to the state-of-the-art SSL methods on large-scale
ImageNet classification. Here, we describe the training details of these experiments.
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Table 5: Parameters used for multi-crop of INTL on ImageNet.

Parameter T1 T2 T3 T4 T5 T6

crop size 224× 224 224× 224 192× 192 160× 160 128× 128 96× 96
maximum scale of crops 1.0 1.0 0.857 0.714 0.571 0.429
minimum scale of crops 0.2 0.2 0.171 0.143 0.114 0.086
brightness 0.4 0.4 0.4 0.4 0.4 0.4
contrast 0.4 0.4 0.4 0.4 0.4 0.4
saturation 0.2 0.2 0.2 0.2 0.2 0.2
hue 0.1 0.1 0.1 0.1 0.1 0.1
color jitter prob 0.8 0.8 0.8 0.8 0.8 0.8
horizontal flip prob 0.5 0.5 0.5 0.5 0.5 0.5
gaussian prob 0.5 0.5 0.5 0.5 0.5 0.5
solarization prob 0.1 0.1 0.1 0.1 0.1 0.1

Table 6: Parameters used for INTL pre-training on ImageNet-100.
Parameter Value
max epoch 400
backbone ResNet-18
projection layers 3
projection hidden dimension 4096
projection output dimension 4096
optimizer SGD
SGD momentum 0.9
learning rate 0.5
learning rate warm-up 2 epochs
learning rate schedule cosine decay
weight decay 2.5e-5
batch size 128

Backbone and Projection. We use the ResNet-50 (He et al., 2016) as the backbone and the output
dimension is 2048. We use a 3-layers MLP as the projection: two hidden layers with BN and ReLU
applied to it and a linear layer as output. We set dimensions of the hidden layer and embedding to
8192 as our initial experiments followed the settings of VICReg and Barlow Twins, both of which
use a dimension of 8192 for the projection. Compared to a projection dimension of 2048, using a
projection dimension of 8192 can bring about a 0.14% improvement in top-1 accuracy for INTL.
Therefore, we followed this setting in subsequent experiments on ImageNet. We report that using a
projection dimension of 8192 requires approximately 18% additional GPU memory and 2% time per
epoch compared to using the one of 2048.

Image Transformation Details. In image transformation, We use the same augmentation parame-
ters as BYOL (Grill et al., 2020). Each input image is transformed twice to produce the two distorted
views. The image augmentation pipeline consists of the following transformations: random cropping,
resizing to 224× 224, horizontal flipping, color jittering, converting to grayscale, Gaussian blurring,
and solarization. The details of parameters are shown in Table 4.

Optimizer and Learning Rate Schedule. We apply the SGD optimizer, using a learning rate of
base-lr × BatchSize / 256 and cosine decay schedule. The base-lr for 100-epoch pre-training is
0.5, for 200(400)-epoch is 0.4 and for 800-epoch is 0.3. The weight decay is 10−5 and the SGD
momentum is 0.9. In addition, we use learning rate warm-up for the first 2 epochs of the optimizer.

Evaluation Protocol. For linear classification, we train the linear classifier for 100 epochs with
SGD optimizer (using a learning rate of base-lr × BatchSize / 256 with a base-lr of 0.2) and using
MultiStepLR scheduler with γ = 0.1 dropping at the last 40 and 20 epochs. Note that when combining
INTL with multi-crop in the ablation experiments, the base-lr is set to 0.4. The batch size and weight
decay for both are 256 and 0 respectively.

Exponential Moving Average. In the main text, we observe that our INTL can performs even
better when utilized in conjunction with the Exponential Moving Average (EMA) technique. We
set the base coefficient for momentum updating to 0.996 for all-epoch training. The momentum
coefficient follows a cosine increasing schedule with final value of 1.0 as BYOL (Grill et al., 2020).
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Table 7: Parameters used for INTL pre-training on CIFAR-10/100.

Parameter Value
max epoch 1000
backbone ResNet-18
projection layers 3
projection hidden dimension 2048
projection output dimension 2048
optimizer SGD
SGD momentum 0.9
learning rate 0.3
learning rate warm-up 2 epochs
learning rate schedule cosine decay
weight decay 1e-4
batch size 256

E.3 EXPERIMENTS FOR SMALL AND MEDIUM SIZE DATASETS

In section 5.1 of the paper, we provide the classification results of INTL pre-training on small and
medium size datasets such as CIFAR-10, CIFAR-100 and ImageNet-100. Here, We describe the
details of implementation and training protocol for the experiments on these datasets as follows. For
fairness, most of hyper-parameters we used such as batch size, projection settings, data augmentation
and so on are consistent with solo-learn (da Costa et al., 2022).

Experimental setup on ImageNet-100. Details of implementation and training protocol for INTL
pre-training on ImageNet-100 are shown in Table 6. The image transformation and evaluation
protocol are the same as ones on ImageNet.

Experimental setup on CIFAR-10/100. Then Details of implementation and training protocol for
INTL pre-training on CIFAR-10/100 are shown in Table 7. The details of image transformation are
shown in Table 8. For evaluation, we use the same setup of protocol as in W-MSE (Ermolov et al.,
2021): training the linear classifier for 500 epochs using the Adam optimizer and the labeled training
set of each specific dataset, without data augmentation; the learning rate is exponentially decayed
from 10−2 to 10−6 and the weight decay is 5× 10−6.

In addition, we also evaluate the accuracy of a k-nearest neighbors classifier (k-NN, k = 5) in these
experiments. For other methods, we evaluate the models provided by (da Costa et al., 2022) to obtain
k-NN accuracy which does not require additional parameters and training.

E.4 EXPERIMENTS FOR TRANSFER LEARNING

In this part, we describe the training details of experiments for transfer learning. Our implementation
is based on the released codebase of MoCo (He et al., 2020) 4 for transfer learning to object detection
and instance segmentation tasks. We use the default hyper-parameter configurations from the training
scripts provided by the codebase for INTL, using our 200-epoch and 800-epoch pre-trained model on
ImageNet.

For the experiments of COCO detection and COCO instance segmentation, we use Mask R-CNN (1×
schedule) fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. The Mask R-CNN model
is with the C4-backbone. Our INTL is performed with 3 random seeds, with mean and standard
deviation reported.

E.5 COMPUTATIONAL OVERHEAD

In Table 9, we report compute and GPU memory requirements based on our implementation for
different settings on ImageNet with ResNet-50. The batch size is 256, and we train each model with
2 A100-PCIE-40GB GPUs, using mixed precision and py-torch optimized version of synchronized
batch-normalization layers.

4https://github.com/facebookresearch/moco/tree/main/detection under the CC-BY-NC 4.0 license.
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Table 8: Parameters used for image augmentations on CIFAR-10/100.

Parameter T1 T2

crop size 32× 32 32× 32
maximum scale of crops 1.0 1.0
minimum scale of crops 0.08 0.08
brightness 0.4 0.4
contrast 0.4 0.4
saturation 0.2 0.2
hue 0.1 0.1
color jitter prob 0.8 0.8
horizontal flip prob 0.5 0.5
gaussian prob 0 0
solarization prob 0.0 0.2

Table 9: Computational cost. We report time and GPU memory requirements of our implementation
for INTL trained per epoch on ImageNet with ResNet-50.

Method EMA Multi-Crop time / 1 epoch peak memory / GPU

INTL
No No 29min11 16.0 G
Yes No 24min46 11.8 G
No Yes 57min33 25.9 G
Yes Yes 50min52 21.2 G

F ABLATION STUDY

In this section, we conduct a comprehensive set of ablation experiments to assess the robustness and
versatility of our INTL. These experiments cover various aspects, including batch sizes, embedding
dimensions, the use of multi-crop augmentation, semi-supervised training, the choice of Vision
Transformer (ViT) backbones and adding trace loss to other methods.

Table 10: Effect of batch sizes for INTL. We
train 100 epoch on ImageNet and provide the
Top-1 accuracy using linear evaluation. The
embedding dimension is fixed to 8192.

Bs 32 64 128 256 512 1024
acc.(%) 64.2 66.4 68.1 68.7 69.5 69.7

Batch size. Most SSL methods, including certain
whitening-based methods, are known to be sensitive
to batch sizes, e.g. SimCLR (Chen et al., 2020a),
SwAV (Caron et al., 2020) and W-MSE (Ermolov
et al., 2021) all require a large batch size (e.g. 4096)
to work well. We then test the robustness of INTL
to batch sizes. We train INTL on ImageNet for 100
epochs with various batch sizes ranging from 32 to
1024. As shown in Table. 10, even if the batch size is as low as 32 or 64, INTL still maintains good
performance. At the same time, when the batch size increases, the accuracy of INTL is also improved.
These results indicate that INTL has good robustness to batch sizes and can adapt to various scenarios
that constrain the training batch size.

64 128 256 512 1024 2048 4096 8192 16384
Embedding dimension
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Figure 8: Ablation experiments for varying em-
bedding dimensions. The batch size is fixed to
256.

Embedding dimension. Embedding dimension,
the output dimension of the projection, is also a key
element for most self-supervised learning methods,
which may have a significant impact on training
results. As illustrated in (Zbontar et al., 2021), Bar-
low Twins is very sensitive to embedding dimen-
sion and it requires a large dimension (e.g. 8192 or
16384) to work well. We also test the robustness
of INTL to embedding dimensions. Following the
setup of (Chen et al., 2020a) and (Zbontar et al.,
2021), we train INTL on ImageNet for 300 epochs
with the dimension ranging from 64 to 16384. As
shown in Figure. 8, even when the embedding di-
mension is low as 64 or 128, INTL still achieves
good results. These results show that INTL also has strong robustness to embedding dimensions.

Multi-Crop. In the main text experiments, we employ the standard augmentation, which generates
two augmented views for each sample. It’s worth noting that multi-crop strategies, such as the
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Table 11: Ablation experiments on ImageNet linear classification with EMA and multi-crop. All are
based on ResNet-50 backbone.

Method Bs EMA Multi-Crop 100 eps 200 eps 400 eps 800 eps
SwAV 4096 No No 66.5 69.1 70.7 71.8
INTL (ours) 512 No No 69.5 71.1 72.4 73.1
SwAV 4096 No Yes 72.1 73.9 74.6 75.3
SwAV 256 No Yes - 72.7 74.3 -
INTL (ours) 256 No Yes 72.4 74.3 74.9 -
CLSA 256 Yes No - 69.4 - 72.2
INTL (ours) 256 Yes No 69.2 71.5 73.7 74.3
DINO 4080 Yes Yes - - - 75.3
CLSA 256 Yes Yes - 73.3 - 76.2
INTL (ours) 256 Yes Yes 73.5 75.2 76.1 76.6

Table 12: Semi-supervised classification on top of the fine-tuned representations from 1% and 10%
of ImageNet samples.

Method
Epoch Bs Semi-supervised

Top-1 Top-5
1% 10% 1% 10%

Supervised 120 256 25.4 56.4 48.4 80.4
SimCLR 800 4096 48.3 65.6 75.5 87.8
BYOL 1000 4096 53.2 68.8 78.4 89.0
SwAV 800 4096 53.9 70.2 78.5 89.9
Barlow Twins 1000 2048 55.0 69.7 79.2 89.3
VICReg 1000 2048 54.8 69.5 79.4 89.5
INTL (ours) 800 512 55.0 69.4 80.8 89.8

one used by SwAV (Caron et al., 2020), are widely recognized for enhancing the performance of
SSL methods. For instance, SwAV achieves a remarkable Top-1 accuracy of 75.3% with multi-crop.
Therefore, we also conduct experiments with INTL using multi-crop. We apply an efficient multi-crop
approach that generates 6 views for each image, with sizes of 2 × 224 + 192 + 160 + 128 + 96,
which is similar to the approach used by CLSA (Wang & Qi, 2022). (Detailed parameter settings
are provided in Table 5). The results are shown in Table 11. When INTL is paired with multi-crop
augmentation, it consistently achieve notable improvements in top-1 accuracy. For instance, after
800 epochs of pre-training, INTL attains an impressive top-1 accuracy of 76.6%, even surpassing
the common supervised baseline of 76.5%. The incorporation of multi-crop augmentation enhances
the performance of INTL, making it a promising method for self-supervised representation learning
across a range of experimental setups.

Semi-supervised training. For semi-supervised classification, we fine-tune our pre-trained INTL
backbone and train the linear classifier on ImageNet for 20 epochs. We employ subsets of size 1% and
10%, following the same split as SimCLR. The optimization is performed using the SGD optimizer
with a base learning rate of 0.006 for the backbone and 0.2 for the classifier, along with a cosine
decay schedule. The semi-supervised results on the ImageNet validation dataset are presented in
Table 12, demonstrating that INTL performs well in semi-supervised training scenarios.

Vison Transformer backbones. We conduct additional experiments using vision transformer (ViT)
backbones for INTL. For comparison, we reproduce five other method under the same settings. The
results are shown in Figure 9, illustrating that INTL maintains strong performance when ViTs are used
as backbones. This suggests that INTL exhibits robust generalization capabilities across different
network architectures.

Barlow Twins/VICReg with Trace loss. We conducte experiments on CIFAR-10/100 and
ImageNet-100 to assess the impact of adding trace loss to Barlow Twins and VICReg, follow-
ing the experimental setup outlined in Table 2 of our paper. We trained the models on CIFAR-10/100
for 200 epochs and on ImageNet-100 for 100 epochs. The coefficient of trace loss was set to 0.01, an
empirically suitable value for both methods. The results are presented in the Table 13. We observed
that adding trace loss to Barlow Twins had a minor positive effect on performance, while introducing
it to VICReg significantly reduced performance, particularly on ImageNet-100. We hypothesize that
this discrepancy may arise from the influence of trace loss on the regularization strength of these
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Figure 9: Abalation experiments using vision transformer (ViT) backbones. We train our INTL
as well as other 5 methods (including SimCLR, W-MSE, DINO, Barlow Twins, and VICReg) for
comparison when using ViTs as backbones. Our training setup involved ViT-tiny for 200 epochs on
CIFAR-10/100 and ViT-small for 100 epochs on ImageNet-100. The settings were kept consistent
with DINO, with the exception of the embedding dimension for W-MSE, which was set to 64, while
other methods used 2048. We evaluated their classification performance using both a linear classifier
and a 5-nearest neighbors classifier. The results for CIFAR-10, CIFAR-100, and ImageNet-100 are
presented in panels (a), (b), and (c) respectively.

Table 13: Evaluate the performance of adding trace loss to BarlowTwins/VICReg.

Method CIFAR-10 CIFAR-100 ImageNet-100
top-1 5-nn top-1 5-nn top-1 5-nn

Barlow Twins 80.43 76.68 51.60 42.71 58.34 50.21
Barlow Twins + trace loss 80.45 76.32 51.66 43.94 59.78 50.45
VICReg 83.14 79.62 55.96 46.71 66.01 57.76
VICReg + trace loss 81.67 78.74 54.75 46.24 63.54 55.18

methods. It can either disrupt the existing balance, leading to reduced performance, or achieve a more
favorable balance, resulting in improved performance.

G LICENSES OF DATASETS

ImageNet (Deng et al., 2009) is subject to the ImageNet terms of access: (contributors, 2020)

COCO (Lin et al., 2014). The annotations are under the Creative Commons Attribution 4.0 License.
The images are subject to the Flickr terms of use (Flickr, 2020).
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