
Under review as a conference paper at ICLR 2024

A PRELIMINARIES

A.1 BACKGROUND ON ALGORITHM RECOURSE

Suppose f : X ! Y is a classifier that maps features x 2 X ⇢ Rd to labels Y = {0, 1}, where
0 is the unfavorable outcome and 1 is the favorable outcome. Define f(x) = g(h(x)), where h
is the scoring function and the activation function is g(t) = It�⌘ . For ease of illustration, we
adopt the setting of loan approval as an example, i.e., h(x) � ⌘ denotes that a loan is granted and
h(x) < ⌘ denotes that it is denied. For an individual x0 that was denied by the loan-granting institu-
tion, counterfactual explanation methods could provide the individual with a recourse by identifying
which attributes to change for reversing the unfavorable prediction result. Given a cost function
c : Rd ! R+, the counterfactual explanation xCF can be found by solving Wachter et al. (Nov.
2017); Ustun et al. (Jan. 2019)

min
x02A

l(f(x0), 1) + �c(x,x0), (3)

where A is the set of actionable counterfactuals, � is the trade-off parameter, and l is the loss for
invalid recourse. The first term in the objective function guarantees that the prediction result of the
counterfactual x0 is close to the favorable outcome 1. The second term in the objective function
encourages the recourse to have lower cost.

A.2 BACKGROUND ON CONFORMAL PREDICTIVE INFERENCE

Conformal inference framework provides a generic methodology for transforming the outputs of
any black box prediction algorithm into a prediction set Gibbs & Candes (Dec. 2021). The
algorithms from conformal inference provide a prediction set that has valid marginal coverage
P(Yi 2 Ĉ(Xi)) � 1 � ↵ based on standard properties of quantiles, if the training and test data
are exchangeable Cauchois et al. (Aug. 2020); Gibbs & Candes (Dec. 2021).

To produce the prediction set, a conformal predictor uses a nonconformity function, an arbitrary
function s : X ⇥ Y ! R, that measures the strangeness of a sample (x, y) Johansson et al. (May
2017). Based on the nonconformity scores of examples with known output labels, and the noncon-
formity score of a tentatively labels test pattern (xn+1, ỹ), a p-value statistic can be calculated to
reject the hypothesis that ỹ corresponds with the true label yn+1. Then all labels ỹ ⇢ Y that are not
rejected at the chosen significance level ↵ constitute the final prediction set, which contains the true
label yn+1 with a probability of 1� ↵.

In particular, for a given confidence level (1 � ↵), one can define a confidence set Ĉ(x) based on
the validation set Dval = {(Xi, Yi)}ni=1, i.e.

Ĉ(x) = {y 2 Y|s(x, y)  Q̂n,1�↵}, (4)

where
Q̂n,1�↵ = Quantile

✓✓
1 +

1

n

◆
↵; {s(Xi, Yi)}ni=1

◆
.

Then as long as {(Xi, Yi)}n+1
i=1 are exchangeable, the confidence set Ĉ(Xn+1) satisfies Romano

et al. (Dec. 2019)

P(Yn+1 2 Ĉ(Xn+1)) � 1� ↵. (5)

In the algorithmic recourse scenario, we view the counterfactual sample (xCF, yCF) as the (n + 1)-
th test sample. Then the nonconformity score s(xCF, yCF) measures the degree of nonconformity
between the counterfactual sample and samples in D. Different from the above-mentioned inference
problem, we do not have a prescribed value of ↵, but have some observed properties on the value
of s(xCF, yCF). Thus, by transforming equation 4, equation 5 and applying them to (xCF, yCF), we
have

P(s(xCF, yCF)  Q̂n,1�↵) � 1� ↵, (6)

where the value of ↵ can be derived based on the known properties of s(xCF, yCF). Moreover,
equation 6 provides a probability inequality on the value of s(xCF, yCF), which is useful in measuring
the robustness of xCF.

12

Under review as a conference paper at ICLR 2024

However, the above mentioned results are limited by the exchangeable data assumption. Recently,
there are works extending the conformal inference beyond the case of exchangeable data. In par-
ticular, a weighted version of conformal inference has been proposed to compute distribution-free
prediction intervals for problems in which the test and training covariant distributions differ, but the
likelihood ratio between the two distributions is known Tibshirani et al. (Dec. 2019).

Assume that {(Xi, Yi)}ni=1
i.i.d.⇠ P and the independent test sample (Xn+1, Yn+1) ⇠ P 0. Then the

likelihood ratio between P and P 0 is defined as

v(x, y) =
dP 0

dP (x, y), (7)

and v(x, y) is assumed to be known exactly in Tibshirani et al. (Dec. 2019). For any new data
sample (x, y) 2 X ⇥Y (e.g. the generated counterfactual sample (xCF, yCF)), assign weights to the
sample as

pi(x, y) =
v(Xi, Yi)

nP
j=1

v(Xj , Yj) + v(x, y)
, i = 1, 2, · · · , n,

pn+1(x, y) =
v(x, y)

nP
j=1

v(Xj , Yj) + v(x, y)
. (8)

Then we have

P0(Yn+1 2 D̂(Xn+1)) � 1� ↵,

where the prediction interval D̂(Xn+1) is given by

D̂(Xn+1) = {y : s(Xn+1, y)  Ŝ1�↵(y)},

with

Ŝ1�↵(y) = Quantile

1� ↵,

nX

i=1

pi(Xn+1, y)�vn+1(Si) + pn+1(Xn+1, y)�1

!
,

and � denotes the point mass.

In the algorithm recourse scenario, since the distribution of nonconformity score variable s changes,
we can leverage the concept of weighted conformal inference by assigning weights to the validation
samples based on their similarity to the counterfactual example to provide probability bounds on the
nonconformity score of (xCF, yCF).

13

Under review as a conference paper at ICLR 2024

B ADDITIONAL ALGORITHMS

B.1 ALGORITHM FOR FINDING k⇤ GIVEN A TARGET LEVEL ↵

Algorithm 3 Procedure of finding k⇤ given a target level ↵
Input: training data Dtrain, calibration data Dcalib, recourse xCF, nonconformity score function

s(·, ·), model shift parameter ⌧ , target level ↵ 2 (0, 1).
1: Use Dtrain to construct the point-wise bounds L̂(·) and Û(·) for likelihood ratio v.
2: For samples in Dcalib, compute Si = s(Xi, Yi), Li = L̂(Si), Ui = Û(Si).
3: For the recourse xCF, compute LCF and UCF.
4: For 1  k  n, compute F̂ (k).
5: Derive k⇤ = min{k : F̂ (k) � 1� ↵}.

Output: The value of k⇤.

B.2 RECOURSES WITH VARIOUS CHOICES OF �

In this subsection, we provide an additional algorithm for finding recourses with different robustness
levels. The performance of this algorithm can be found in Figure 5.

In state-of-the-art recourse algorithms Wachter et al. (Nov. 2017); Ustun et al. (Jan. 2019); Karimi
et al. (Aug. 2020), the low-cost recourse for an adversely predicted sample x0 is found by solving

xCF = argmin
x2A

[l(f(x), 1) + �c(x0,x)], (9)

where the trade-off parameter � is considered given. However, we note that as the value of �
changes, the generated recourse xCF varies, and the recourse cost as well as the recourse invalidation
rate also change accordingly. Thus, a natural way to find different recourses with different robustness
levels is to vary the value of �. For each choice of � (e.g. � = �j), we can generate a recourse xCF

j

by any recourse generating algorithm and derive the corresponding recourse cost cj = c(x0,xCF
j).

Based on Theorem 12 or Theorem 13, we are able to derive the upper-bound ru,j = ru(xCF
j) on

the recourse invalidation rate, which measures the robustness of xCF
j to model changes. Then all

generated recourses and their corresponding recourse costs as well as robustness metrics (bounds on
the recourse invalidation rates), i.e. {(xCF

j , cj , ru,j)}j , can be provided to users. We summarize the
procedure in Algorithm 4.

Algorithm 4 Recourses with various choices of �
Input: negatively predicted sample x0, current model f , model shift parameter ⌧ , maximum trade-

off parameter �m, increment parameter d� of �.
1: j = 1
2: for � = 0 : d� : �m do

3: solve equation 9 by a recourse generating algorithm and the generated recourse is xCF
j ;

4: calculate the recourse cost cj = c(x0,xCF
j);

5: derive the upper-bound ru,j = ru(xCF
j) (according to Theorems 12 or 13) on the invalidation

rate;
6: j = j + 1;
7: end for

Output: {(xCF
j , cj , ru,j)}j .

14

Under review as a conference paper at ICLR 2024

C ADDITIONAL DETAILS ON NUMERICAL RESULTS

All experiments were run on a 2.8 GHz Quad-Core Intel Core i7.

C.1 DETAILS ABOUT THE DATASETS

We conduct our analysis using three real datasets: Criminal justice dataset Lakkaraju et al. (Aug.
2016), Student performance dataset Amrieh et al. (Aug. 2016) and German credit dataset Dua et al.
(2017). Each dataset contains two parts, initial data (D1) and shifted data (D2).

1. Criminal justice dataset Lakkaraju et al. (Aug. 2016): It contains proprietary data from
1978 (D1) and 1980 (D2), with 8395 and 8595 samples, respectively. It includes demo-
graphic features such as race, sex, age, time-served, and employment, and a target attribute
related to bail decisions. Furthermore, the dataset exhibits an inherent temporal shift, as
the data characteristics in 1980 differ from those in 1978.

2. Student performance dataset Amrieh et al. (Aug. 2016): It comprises publicly available
data collected from schools in Jordan (D1) and Kuwait (D2), with 129 and 122 sam-
ples, respectively. The problem of predicting grades is viewed as a binary classification
task, with numerical grades transformed into pass and fail. Predictors such as grade,
holidays-taken, and class-participation are included, and the dataset demonstrates an inher-
ent geospatial distribution shift as the data characteristics of students vary across countries.
The features we use are: “sex”, “age”, “address”, “famsize”, “Pstatus”, “Medu”, “Fedu”,
“Mjob”, “Fjob”, “reason”, “guardian”, “traveltime”, “studytime”, “failures”, “schoolsup”,
“famsup”, “paid”, “activities”, “nursery”, “higher”, “internet”, “romantic”, “famrel”, “free-
time”, “goout”, “Dalc”, “Walc”, “health”, “absences”.

3. German credit dataset Dua et al. (2017): It contains 900 samples from two versions each.
The applicants’ loan amount, employment history, and age are used to predict their credit
score. Additionally, the data exhibits a data correction-based distribution shift, as the data’s
characteristics differ due to a change in the data preprocessing step. The features we use
are: “duration”, “amount”, “age”, “personal-status-sex”.

C.2 CLASSIFICATION MODELS

This subsection outlines the fitting process for the classification models. A standard 4 : 1 train-
test split was employed for model training and evaluation. Identical architectures were used for all
models across the datasets, as shown in Table 3. The model performance is evaluated based on the
accuracy as shown in Table 4.

Table 3: Classification models architecture
LR NN

Units [Input dimension, 2] [Input dimension, 50, 2]
Type Fully connected Fully connected
Intermediate activation NA ReLu
Last layer activation Softmax Softmax

Table 4: Average test accuracy for classification models

Criminal justice Student performance German credit
LR 1.00± 0.00 0.92± 0.01 0.70± 0.01
NN 1.00± 0.00 0.95± 0.01 0.75± 0.02

15

Under review as a conference paper at ICLR 2024

C.3 IMPLEMENTATION DETAILS

For a given dataset, a particular predictive model (NN or LR), and a specific baseline recourse
generating method, to validate the theoretical bounds on the recourse invalidation rate, we

1. train predictive model M1 on the training fold of D1;
2. use M1 to obtain prediction result for each sample in the validation fold of D1;
3. select samples that have negative prediction results;
4. generate recourses for those negatively-predicted samples based on M1 by using the spec-

ified recourse generating method;
5. derive the updated model M2 on the shifted data D2;
6. verify Assumption 3 and derive the value of ⌧ based on M2;
7. for each recourse, compute bounds on the recourse invalidation rate according to Theo-

rems 12 and 13 (since the bounds are also derived through simulation, we need to run
Algorithm 1 when computing the bounds);

8. use M2 to obtain prediction result for each recourse and evaluate the empirical recourse
invalidation rate;

9. compare the empirical invalidation rate and the theoretical bounds.

C.4 ADDITIONAL EXPERIMENTAL RESULTS

In Table 5 and Table 6, we provide empirical invalidation rates of recourses generated by baseline
algorithms. We report the averaged empirical invalidation rate as well as its standard deviation.

Table 5: Empirical invalidation rate of recourses under model shifts (`1 cost)

Algorithm Dataset Predictive model Empirical invalidation rate

CF

Criminal justice LR 0.69± 0.09
NN 0.48± 0.09

Student performance LR 0.71± 0.09
NN 0.52± 0.09

German credit LR 0.46± 0.27
NN 0.53± 0.06

AR

Criminal justice LR 0.84± 0.06
NN 0.35± 0.17

Student performance LR 0.57± 0.14
NN 0.17± 0.10

German credit LR 0.47± 0.21
NN 0.69± 0.06

MINT German credit LR 0.07± 0.07
NN 0.37± 0.11

In Table 7, we provide the theoretical and empirical recourse invalidation by the considered baseline
algorithms with PFC cost.

The effectiveness of Algorithm 2 (PiRR) is demonstrated by Table 8, which reports the performance
of PiRR and four other baseline robust recourse generating methods in terms of invalidation rates
before and after the model shift, along with the average cost computed under the PFC cost. Fig-
ure 3 compares the performance of PiRR with baseline methods in generating recourse under 3
different prescribed invalidation rates: 0.05, 0.10, 0.15. Figure 4 investigates the impact of ✏ on the
performance of PiRR.

For Algorithm 4, we use the considered three baseline recourse generating methods to generate
recourses for negatively-predicted samples in the validation fold. To obtain recourses with different
costs and robustness, we vary the value of the trade-off parameter �. In particular, we choose
� = {0.1, 0.5, 0.9, 1.3, 1.7}. The results are shown in Figure 5.

16

Under review as a conference paper at ICLR 2024

Table 6: Empirical invalidation rate of recourses under model shifts (PFC cost)

Algorithm Dataset Predictive model Empirical invalidation rate

CF

Criminal justice LR 0.74± 0.11
NN 0.50± 0.13

Student performance LR 0.82± 0.10
NN 0.70± 0.14

German credit LR 0.44± 0.33
NN 0.49± 0.12

AR

Criminal justice LR 0.91± 0.05
NN 0.65± 0.17

Student performance LR 0.76± 0.11
NN 0.18± 0.11

German credit LR 0.46± 0.27
NN 0.44± 0.15

MINT German credit LR 0.05± 0.08
NN 0.36± 0.15

0 2 4 6

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Criminal justice, l
1
 cost

ROAR

ARAR

PROBE

DiRRAc

PiRR

0.1 0.15 0.2 0.25 0.3 0.35

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Criminal justice, PFC cost

1 1.2 1.4 1.6 1.8 2

Average cost

0

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Student performance, l
1
 cost

0.4 0.6 0.8 1 1.2 1.4

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Student performance, PFC cost

1 2 3 4

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

German credit, l
1
 cost

0.1 0.15 0.2 0.25 0.3 0.35

Average cost

0

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

German credit, PFC cost

Figure 3: Recourse invalidation rate v.s. recourse cost plot. For any given invalidation rate, PiRR
could generate recourses that satisfy the invalidation requirement while maintaining low recourse
costs. The average recourse costs of robust recourses generated by PiRR are smaller than other
methods under the same invalidation rate constraint.

17

Under review as a conference paper at ICLR 2024

0 2 4 6

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Criminal justice, l
1
 cost

 =
max

 = (
max

+
0
)/2

 =
0

0.1 0.15 0.2 0.25

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Criminal justice, PFC cost

1 1.1 1.2 1.3 1.4 1.5

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Student performance, l
1
 cost

0.5 0.6 0.7 0.8

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

Student performance, PFC cost

1 1.1 1.2 1.3 1.4 1.5

Average cost

0.05

0.1

0.15

In
va

lid
a
tio

n
 r

a
te

German credit, l
1
 cost

0.1 0.15 0.2 0.25

Average cost

0.05

0.1

0.15
In

va
lid

a
tio

n
 r

a
te

German credit, PFC cost

Figure 4: Impact of ✏ on the performance of PiRR, where ✏0 = min
{s2Strain}

p̂(s), ✏max =
P

{s02Strain:s�⌧s0s+⌧}
p̂(s0). PiRR consistently generates recourses that meet the invalidation re-

quirements across different values of ✏, while maintaining similar overall performance.

0 1 2 3 4 5 6 7 8 9

Average cost

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
co

u
rs

e
 in

va
lid

a
tio

n
 r

a
te

German credit, LR model, l
1
 cost

CF(empirical)
CF(average upper bound)
AR(empirical)
AR(average upper bound)
MINT(empirical)
MINT(average upper bound)

Figure 5: Recourse invalidation rate v.s. recourse cost plot for Algorithm 4. As � varies, the recourse
cost changes, while the recourse invalidation rate changes only slightly. The theoretical bounds on
the recourse invalidation rates are valid.

18

Under review as a conference paper at ICLR 2024

Table 7: Theoretical and empirical recourse invalidation (PFC cost,✏ = min{s2Strain} p̂(s))

Algorithm Dataset Predictive Upper-bound Upper-bound Empirical
model in Theorem 12 in Theorem 13 invalidation rate

CF

Criminal justice LR 0.85± 0.04 0.79± 0.05 0.73
NN 0.67± 0.06 0.58± 0.10 0.51

Student performance LR 0.91± 0.08 0.88± 0.09 0.82
NN 0.83± 0.08 0.78± 0.11 0.69

German credit LR 0.64± 0.06 0.59± 0.06 0.43
NN 0.66± 0.06 0.64± 0.07 0.50

AR

Criminal justice LR 0.93± 0.04 0.92± 0.04 0.90
NN 0.77± 0.03 0.69± 0.04 0.65

Student performance LR 0.85± 0.08 0.81± 0.09 0.76
NN 0.28± 0.04 0.22± 0.04 0.19

German credit LR 0.64± 0.08 0.56± 0.11 0.50
NN 0.59± 0.04 0.54± 0.05 0.42

MINT German credit LR 0.25± 0.07 0.16± 0.08 0.06
NN 0.51± 0.08 0.45± 0.09 0.37

Table 8: The performance of PiRR is compared with other robust recourse generating methods,
using LR model and the PFC cost function. In PiRR, the invalidation targets specified by the user
are assumed to be 0.10 and 0.05. The results show that PiRR generates recourse solutions that
always meet the user’s invalidation targets. For the recourse cost, when compared with existing
baselines, the recourse solutions generated by PiRR are easier to implement by users.

Dataset Algorithm Invalidation rate Invalidation rate Average cost
before shift (M1) after shift (M2)

Criminal justice

ROAR 0.00± 0.00 0.02± 0.01 0.44± 0.12
ARAR 0.00± 0.00 0.02± 0.02 0.36± 0.10
PROBE 0.00± 0.00 0.02± 0.01 0.25± 0.09
DiRRAc 0.00± 0.00 0.01± 0.02 0.28± 0.12
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.16± 0.06
PiRR(0.05) 0.00± 0.00 0.03± 0.01 0.25± 0.08

Student performance

ROAR 0.00± 0.00 0.09± 0.07 1.20± 0.10
ARAR 0.00± 0.00 0.06± 0.07 0.92± 0.09
PROBE 0.00± 0.00 0.04± 0.07 0.74± 0.10
DiRRAc 0.00± 0.00 0.04± 0.06 0.81± 0.08
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.85± 0.08
PiRR(0.05) 0.00± 0.00 0.03± 0.02 0.72± 0.10

German credit

ROAR 0.00± 0.00 0.00± 0.00 0.36± 0.08
ARAR 0.00± 0.00 0.02± 0.02 0.27± 0.06
PROBE 0.00± 0.00 0.02± 0.01 0.27± 0.07
DiRRAc 0.00± 0.00 0.01± 0.02 0.32± 0.08
PiRR(0.10) 0.00± 0.00 0.07± 0.02 0.21± 0.06
PiRR(0.05) 0.00± 0.00 0.02± 0.02 0.26± 0.07

19

Under review as a conference paper at ICLR 2024

D PROOFS

D.1 PROOF OF LEMMA 5

rivd(x
CF) = P(f 0(xCF) = 0|f(xCF) = 1)

= 1� P(h0(xCF) � ⌘|h(xCF) � ⌘)
(a)
= 1� P(h0(xCF) � ⌘|h(xCF) � ⌘, h0(xCF) � ⌘ � ⌧)

= 1� P(h0(xCF) � ⌘, h(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

P(h(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

= 1� P(h0(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)P(h(xCF) � ⌘|h0(xCF) � ⌘, h0(xCF) � ⌘ � ⌧)

P(h(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

= 1� P(h0(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)
P(h(xCF) � ⌘|h0(xCF) � ⌘, h0(xCF) � ⌘ � ⌧)

P(h(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)
(b)
= 1� P(h0(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

·P(h(x
CF) � ⌘|h0(xCF) � ⌘, h(xCF) � ⌘ � ⌧, h0(xCF) � ⌘ � ⌧)

P(h(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

 1� P(h0(xCF) � ⌘|h0(xCF) � ⌘ � ⌧)

= 1� P(h0(xCF) � ⌘, h0(xCF) � ⌘ � ⌧)

P(h0(xCF) � ⌘ � ⌧)

= 1� P(h0(xCF) � ⌘)

P(h0(xCF) � ⌘ � ⌧)
(10)

= 1� P(s0(xCF, 1)  1� ⌘)

P(s0(xCF, 1)  1� ⌘ + ⌧)
,

where (a) is true as h(xCF) � ⌘ implies h0(xCF) � ⌘ � ⌧ based on Assumption 3. Similarly, (b)
holds because h0(xCF) � ⌘ implies h(xCF) � ⌘ � ⌧ based on Assumption 3.

D.2 PROOF OF LEMMA 7

Under Assumption 3, we have h(x)� ⌧  h0(x)  h(x) + ⌧, 8x 2 X , which implies

s(x, y = 0)� ⌧  s0(x, y = 0)  s(x, y = 0) + ⌧,

as well as

s(x, y = 1)� ⌧ = 1� h(x)� ⌧  1� h0(x) = s0(x, y = 1)  1� h(x) + ⌧ = s(x, y = 1) + ⌧.

Then we have

s(x, y)� ⌧  s0(x, y)  s(x, y) + ⌧,

which indicates that to derive p0 from p, only density in the ⌧ -neighborhood of s can be moved to s.
Then for any neighborhood of s with radius �, the cumulative probability under the distribution p0

over this neighborhood is always upper-bounded by the cumulative probability under the distribution
p over a larger neighborhood of radius ⌧ + � around s. Specifically, we have

Z s+�

s��
p0(t)dt 

Z s+⌧+�

s�⌧��
p(t)d(t).

D.3 PROOF OF PROPOSITION 8

In the following, we denote the random variables Si and realized values si, i = 1, 2, · · · , n. For no-
tation simplicity, we denote sn+1 = s0(xCF, yCF). From Tibshirani et al. (Dec. 2019), we know that
independent draws are always weighted exchangeable, with weight functions given by likelihood

20

Under review as a conference paper at ICLR 2024

ratios. Thus, according to Definition 1 and Lemma 2 in Tibshirani et al. (Dec. 2019), we have that
random variables S1, · · · , Sn+1 are weighted exchangeable and

f(s1, · · · , sn+1) = ⇧n+1
i=1 vi(si)g(s1, · · · , sn+1), (11)

where f represents the joint pdf, vi(si) = 1, i = 1, · · ·n, vn+1(sn+1) = v(s0(xCF, yCF)) and g is a
permutation-invariant function.

For a set of values s1, · · · , sn+1 where there might be repeated elements, we denote the unordered
set s = [s1, · · · , sn+1] and denote an event Es = {[S1, S2, · · · , Sn+1] = [s1, s2, · · · , sn+1]}. Let
⇧n+1 be the set of all permutations of {1, · · · , n+ 1}. Then we have

P(Sn+1 = si|Es)

=

P
⇡2⇧n+1:⇡(n+1)=i

f(s⇡(1), s⇡(2), · · · , s⇡(n+1))

P
⇡2⇧n+1

f(s⇡(1), s⇡(2), · · · , s⇡(n+1))

(a)
=

P
⇡2⇧n+1:⇡(n+1)=i

⇧n+1
i=1 vi(s⇡(i))g(s⇡(1), s⇡(2), · · · , s⇡(n+1))

P
⇡2⇧n+1

⇧n+1
i=1 vi(s⇡(i))g(s⇡(1), s⇡(2), · · · , s⇡(n+1))

=

P
⇡2⇧n+1:⇡(n+1)=i

vn+1(si)g(s⇡(1), s⇡(2), · · · , s⇡(n+1))

P
⇡2⇧n+1

vn+1(s⇡(n+1))g(s⇡(1), s⇡(2), · · · , s⇡(n+1))

=
vn+1(si)

n+1P
j=1

vn+1(sj)

=
v(si)

n+1P
j=1

v(sj)

:= pi,

where (a) is due to equation 11.

Then for any unordered set s, we have

P(Sn+1  s[k⇤]|Es) =
n+1X

i=1

pi1sis[k⇤]
=

n+1P
i=1

v(si)1sis[k⇤]

n+1P
j=1

v(sj)

. (12)

Recall that F̂ is defined as

F̂ (k) =

kP
i=1

L[i]

kP
i=1

L[i] +
nP

i=k+1
U[i] + UCF

.

Since k⇤ = min{k : F̂ (k) � 1� ↵}, we have

S[k⇤] = inf

8
>><

>>:
s :

nP
i=1

Li1Sis

nP
i=1

Li1Sis +
nP

i=1
Ui1Si>s + UCF

� 1� ↵

9
>>=

>>;
,

which indicates that

E

2

664

nP
i=1

Li1SiS[k⇤]

nP
i=1

Li1SiS[k⇤]
+

nP
i=1

Ui1Si>S[k⇤]
+ UCF

3

775 � 1� ↵. (13)

21

Under review as a conference paper at ICLR 2024

In the meantime, we apply the power property on equation 12 and have

P(Sn+1  s[k⇤]) = E[P(Sn+1  s[k⇤]|ES)] = E

2

6664

n+1P
i=1

v(Si)1SiS[k⇤]

n+1P
j=1

v(Si)

3

7775
. (14)

By combining equation 13 and equation 14, we have

P(Sn+1  s[k⇤])� (1� ↵)

� E

2

664

n+1P
i=1

v(Si)1SiS[k⇤]

n+1P
i=1

v(Si)

3

775� E

2

664

nP
i=1

Li1SiS[k⇤]

nP
i=1

Li1SiS[k⇤]
+

nP
i=1

Ui1Si>S[k⇤]
+ UCF

3

775

� E

2

664

nP
i=1

v(Si)1SiS[k⇤]

n+1P
i=1

v(Si)

3

775� E

2

664

nP
i=1

Li1SiS[k⇤]

nP
i=1

Li1SiS[k⇤]
+

nP
i=1

Ui1Si>S[k⇤]
+ UCF

3

775

= E

2

664
q(S1, · · · , Sn+1)

n+1P
i=1

v(Si)

� 
nP

i=1
Li1SiS[k⇤]

+
nP

i=1
Ui1Si>S[k⇤]

+ UCF

�

3

775 , (15)

where

q(S1, · · · , Sn+1)

=

"
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

Li1SiS[k⇤]

#
+

"
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

Ui1Si>S[k⇤]

#

+

"
nX

i=1

v(Si)1SiS[k⇤]

#
UCF �

"
n+1X

i=1

v(Si)

#
·
"

nX

i=1

Li1SiS[k⇤]

#

=

"
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

Li1SiS[k⇤]

#
�
"
n+1X

i=1

v(Si)

#
·
"

nX

i=1

Li1SiS[k⇤]

#

+

"
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

Ui1Si>S[k⇤]

#
+

"
nX

i=1

v(Si)1SiS[k⇤]

#
UCF

=

("
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

Ui1Si>S[k⇤]

#
�
"

nX

i=1

v(Si)1Si>S[k⇤]

#
·
"

nX

i=1

Li1SiS[k⇤]

#)

+

(
UCF

"
nX

i=1

v(Si)1SiS[k⇤]

#
� v(Sn+1)

"
nX

i=1

Li1SiS[k⇤]

#)

22

Under review as a conference paper at ICLR 2024

(b)
�

("
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

v(Si)1Si>S[k⇤]

#

�
"

nX

i=1

v(Si)1Si>S[k⇤]

#
·
"

nX

i=1

(v(Si) + max{0, Li � v(Si)})1SiS[k⇤]

#)

+

(
UCF

"
nX

i=1

v(Si)1SiS[k⇤]

#
� v(Sn+1)

"
nX

i=1

(v(Si) + max{0, Li � v(Si)})1SiS[k⇤]

#)

=

("
nX

i=1

v(Si)1SiS[k⇤]

#
·
"

nX

i=1

v(Si)1Si>S[k⇤]

#

�
"

nX

i=1

v(Si)1Si>S[k⇤]

#
·
"

nX

i=1

v(Si)1SiS[k⇤]

#

�
"

nX

i=1

v(Si)1Si>S[k⇤]

#
·
"

nX

i=1

max{0, Li � v(Si)}1SiS[k⇤]

#)

+

(
UCF

"
nX

i=1

v(Si)1SiS[k⇤]

#
� v(Sn+1)

"
nX

i=1

v(Si)1SiS[k⇤]

#

�v(Sn+1)

"
nX

i=1

max{0, Li � v(Si)}1SiS[k⇤]

#)

� �
"

nX

i=1

v(Si)1Si>S[k⇤]

#
·
"

nX

i=1

max{0, Li � v(Si)}1SiS[k⇤]

#

�v(Sn+1)

"
nX

i=1

max{0, Li � v(Si)}1SiS[k⇤]

#

� �
"
n+1X

i=1

v(Si)

#
·
"

nX

i=1

max{0, Li � v(Si)}
#
, (16)

in which (b) is due to the fact that Û(s) � v(s) almost surely since the formula for Û(·) is motivated
by Lemma 7.

Then we come back to equation 15 and have

E

2

664
q(S1, · · · , Sn+1)

n+1P
i=1

v(Si)

� 
nP

i=1
Li1SiS[k⇤]

+
nP

i=1
Ui1Si>S[k⇤]

+ UCF

�

3

775

� E

2

664

�


nP
i=1

v(Si)

�
·


nP
i=1

max{0, Li � v(Si)}
�


n+1P
i=1

v(Si)

� 
nP

i=1
Li

�

3

775

� �E

2

664

nP
i=1

max{0, Li � v(Si)}
nP

i=1
Li

3

775 .

23

Under review as a conference paper at ICLR 2024

By Hölder’s Inequality, we have

E

2

664

nP
i=1

max{0, Li � v(Si)}
nP

i=1
Li

3

775



�����
1

n

nX

i=1

max{0, Li � v(Si)}

�����
p

·

��������

n
nP

i=1
Li

��������
q

(b)
 kmax{0, Li � v(Si)}kp ·

��������

n
nP

i=1
Li

��������
q

 kmax{0, Li � v(Si)}kp ·

�����
1

n

nX

i=1

1

Li

�����
q

(c)
 kmax{0, Li � v(Si)}kp ·

����
1

Li

����
q

,

where (b) and (c) follow from the Minkowski’s inequality. Thus, we have

P(Sn+1  s[k⇤])� (1� ↵) � �kmax{0, Li � v(Si)}kp ·
����
1

Li

����
q

.

Since Si is a random variable and Li = L̂(Si), in general, we have

P(Sn+1  s[k⇤])� (1� ↵) � �

�����
1

L̂(S)

�����
q

·
���max{0, L̂(S)� v(S)}

���
p
.

Proposition 10 can be proved by following similar process.

D.4 PROOF OF THEOREM 12

Given the definition of k⇤1 , we have P(s0(xCF, yCF)  s[k⇤
1]
)  P(s0(xCF, yCF)  1 � ⌘). Then if

s0(xCF, yCF)  1� ⌘, we have
1� ⌘ � s0(xCF, yCF = 1) = 1� h0(xCF)

or
1� ⌘ � s0(xCF, yCF = 0) = h0(xCF). (17)

However, according to Assumption 3, we have

h0(xCF) � ⌘ � ⌧
(a)
> 1� ⌘,

where (a) is true because 2⌘ � ⌧ > 1. Then we see a contradiction in equation 17 and conclude that
as long as s0(xCF, yCF)  1� ⌘ and 2⌘ � ⌧ > 1, we have yCF = 1. Thus, we have

rivd(x
CF)

(b)
 1� P(h0(xCF) � ⌘)

P(h0(xCF) � ⌘ � ⌧)

 1� P(h0(xCF) � ⌘)

= 1� P(s0(xCF, 1)  1� ⌘)

 1� P(s0(xCF, yCF)  s[k⇤
1]
)

 ↵1 + �̂F ,

where (b) is from equation 10.

Similarly, if h(xCF) > 1�⌘+⌧ , according to Assumption 3, we have h0(xCF) � h(xCF)�⌧>1�⌘,
which also causes a contradiction in equation 17. Thus, we have yCF = 1 and rivd(xCF)↵1 + �̂F .

24

Under review as a conference paper at ICLR 2024

D.5 PROOF OF THEOREM 13

rivd(x
CF)  1� P(h0(xCF) � ⌘)

P(h0(xCF) � ⌘ � ⌧)

= 1� P(s0(xCF, 1)  1� ⌘)

P(s0(xCF, yCF)  1� ⌘ + ⌧)

 1� P(s0(xCF, 1)  1� ⌘)

P(s0(xCF, yCF)  s[k⇤
2]
)

 1�
P(s0(xCF, yCF)  s[k⇤

1]
)

P(s0(xCF, yCF)  s[k⇤
2]
)

 1� 1� ↵1 � �̂F

1� ↵2 + �̂E

,

where ↵2 = 1� Ê(k⇤2) with k⇤2 = min{k2 : s[k2] � 1� ⌘ + ⌧}.

25

	Introduction
	Background and Related Work
	Problem Formulation
	Recourse Invalidation Estimation for a Given Recourse
	Recourse Generation with Invalidation Rate Constraint
	Numerical Results
	Validating the recourse invalidation bounds
	Effectiveness of proposed algorithms

	Conclusion
	Preliminaries
	Background on algorithm recourse
	Background on conformal predictive inference

	Additional Algorithms
	Algorithm for finding k* given a target level
	Recourses with various choices of

	Additional Details on Numerical Results
	Details about the datasets
	Classification models
	Implementation details
	Additional experimental results

	Proofs
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Proposition 8
	Proof of Theorem 12
	Proof of Theorem 13

