

Simplicial 2-Complex Convolutional Neural Networks

Eric Bunch¹, Qian You¹, Glenn Fung¹, Vikas Singh² American Family Insurance Machine Learning and Innovation¹ University of Wisconsin Madison²

Abstract

Recently, neural network architectures have been developed to accommodate when the data has the structure of a graph or, more generally, a hypergraph. While useful, graph structures can be potentially limiting. Hypergraph structures in general do not account for higher order relations between their hyperedges. Simplicial complexes offer a middle ground, with a rich theory to draw on. We develop a convolutional neural network layer on simplicial 2-complexes.

Simplicial 2-complex *S* and boundary maps $\mathbf{B}_k : C_k \to C_{k-1}$ Feature maps X_0, X_1, X_2 **Simplicial Complex Convolution layer** $X_0^{(h+1)} = \sigma \left(\mathbf{D}_1^{-1} \mathbf{B}_1 X_1^{(h)} W_{0,1}^{(h)} + \widetilde{\mathbf{A}}_0^u X_0^{(h)} W_{0,0}^{(h)} \right)$ $X_1^{(h+1)} = \sigma \left(\mathbf{B}_2 \mathbf{D}_3 X_2^{(h)} W_{1,2}^{(h)} + (\widetilde{\mathbf{A}}_1^d + \widetilde{\mathbf{A}}_1^u) X_1^{(h)} W_{1,1}^{(h)} + \mathbf{D}_2 \mathbf{B}_1^* \mathbf{D}_1^{-1} X_0^{(h)} W_{1,0}^{(h)} \right)$ $X_2^{(h+1)} = \sigma \left(\widetilde{\mathbf{A}}_2^d X_2^{(h)} W_{2,2}^{(h)} + \mathbf{D}_4 \mathbf{B}_2^* \mathbf{D}_5^{-1} X_1^{(h)} W_{2,1}^{(h)} \right)$

Ablation study on MNIST classificatio	
Model	acc. \pm std.
$\mathbf{CONV1D} - \mathbf{FC}$	87.40 ± 0.70
$\mathbf{GCONV} - \mathbf{CONV1D} - \mathbf{FC}$	87.42 ± 0.59
$\mathbf{SCCONV} - \mathbf{CONV1D} - \mathbf{FC}$	$\textbf{91.10} \pm 0.40$