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1. Introduction
Designing materials with desired properties is

a task being accelerated by various generative
machine-learning approaches, such as variational
autoencoder [1], diffusion model [2] and graph neu-
ral networks [3]. Many of these techniques perform
well for the simulation of interatomic force to guar-
antee material stability. However, due to the insuffi-
ciency of quantummechanics prior, it is hard to be-
lieve such atom-based methods are able to capture
subtle electronic structures within the lattice. This
makes it challenging to bridge the gap between crys-
tal structure and solid-state properties by noting that
amajority ofmaterial properties actually result from
electron-electron interaction.
According to the Hohenberg-Kohn Theorem, all

ground-state properties of a many-electron system
are fully determined by its ground-state electron
density distribution. In this work, by regarding elec-
tron density as the structural representation of solid
state materials, we analysed the space-group sym-
metry of crystal lattices with Fourier transform, and
designed aworkflow for electrondensity reconstruc-
tion and generation of solid-statematerials. Thepro-
posed generative model works in the reciprocal do-
main,where the real-space space-group symmetry is
removed to avoid redundancy. Benefiting from care-
ful optimisation in both real and reciprocal space,
our method achieves a high level of reconstruction
quality in terms of peak signal-noise ratio (PSNR).

2. Apply DFT to DFT
Electron densities vary in shapes and spacial reso-

lution due to their different space groups and probe
settings in density functional theory (DFT) calcula-
tion. For example, according to the pre-computed
data fromMaterials Project [4, 5], evenwith the same
space group 223, Nb3Sn is of size (80,80,80) while
V3Si is (72,72,72). These different shapes and sizes
need to be aligned carefully, because: 1) the elec-
tron densitymap includes self-repetitive parts due to
space-group symmetry, an intriguing property that
one cannot expect the machine to learn inherently;
2) inputs for a neural network model generally need
to be unified to the same size for forward propaga-
tion, noting that simply applying zero-padding at the
boundary of smaller cells is not feasible in this sce-
nario as it breaks periodicity.
Applying discrete Fourier transform (DFT) to the

electron density map ρ of a primitive cell produced
by density functional theory gives

ρ(G) =
∑
m

ρ(rm) exp (−iG · rm)

where r, G are real and reciprocal grid vectors re-
spectively.
Denote {T̂j} as the set of all symmetry operations

of the space group, where ρ(r) satisfies

ρ(r) = ρ(T̂jr), j = 1, 2, · · · , Nop

Therefore, the reciprocal electron density can be
solely represented by the real-space electron densi-
ties in the asymmetric unit (AU):

ρ(G) =
∑

m∈AU

∑
j

ρ(rm)

Rm
exp [−iG · (T̂jrm)]

where Rm is the repetition counts, i.e., the visiting
number of all symmetry operations at pointm.
By noting the two summations are commutable,

we have
ρ(G) =

∑
j

ρj(G)

where

ρj(G) =
∑

m∈AU

ρ(rm)

Rm
exp [−iG · (T̂jrm)]

Since all space-group symmetry operations can
be generalised as affine transformations (a rotation
and/or a translation), this means in the frequency
domain ρj(G) are phase-transitioned and/ormirror-
symmetric to each other. In other words, only with
ρ1(G) (where T̂1 is the identical transformation) can
we have the full information of the electron density
in a primitive cell of a specific space group.
One step further, note that determining ρ1(G) is

equivalent to applying DFT to an "almost empty" cell
with only the AU being non-zero:

ρ1(G) =
∑
m

ρ′(rm) exp (−iG · rm)

where

ρ′(rm) =

{
ρ(rm)/Rm, m ∈ AU
0, m /∈ AU

For electron densities of the same space group
with different sizes, the DFTs of their reduced real-
space electron densities ρ′(r) are of the same size if
the rectangular envelope of the maximum AU in the
dataset is chosen as the fixed sampling size for the
AUof all densitymaps. Thus, smaller AUs can just be
regarded as being zero-padded to the envelope un-
der this aligning strategy.
In order to avoid complex numbers, in practice

we adopt discrete cosine transform (DCT) instead of
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Fig. 1: Visualisation of the asymmetric unit (orange)
of the electron density map of LaNiO3 (space
group 225). The light rectangular box denotes the
area where we apply Fourier transform.

discrete Fourier transform. Since DCT can be re-
garded as DFT of the even extension of the original
signal in 8 octants, we still entitle this section as "Ap-
ply DFT to DFT".

3. Workflow
3.1 Data preparation
We collected pre-computed valence electron den-

sities (chgcar) from Materials Project [4, 5] and split
them by space groups. As a pioneer attempt, we first
conducted experiments on cubic systems, namely,
space groups 221, 225 and 227, which have 3,325,
9,448, and 1,437 records respectively. After removing
some mistaken samples from the collected data, we
divided the data with training:test:validation as 8:1:1
for each space group.

3.2 Loss objective
Since the real-space electron density is a prob-

abilistic distribution in essence, the most natural
idea is to minimise the distance between the recon-
structed density distribution and the ground-truth
distribution, i.e., optimising the Kullback–Leibler
(KL) divergence. Simutaneously, we also minimise
the mean-square error (MSE) of the reciprocal elec-
tron density:

L = λ1KL(ρ(r), ρ∗(r)) + λ2 ∥ρ(G)− ρ∗(G)∥2

+ λ3KLVAE(z,N (0, 1))

where ρ∗(r), ρ∗(G) denote the ground-truth real and
reciprocal electron densities respectively, z is the la-
tent variable, λi (i = 1, 2, 3) are tunable weights to
average the contribution of each loss type.

3.3 Model
We adopt a variational autoencoder (VAE) [6] with

3D Swin Transformer modules [7] as its encoder and

Fig. 2: Pipeline of the Swin-Transformer-based VAE.

decoder, as shown in Fig. 2.
The model is trained on 8 NVIDIA A100 GPUs for

300 epochs with batch size 128, using an Adam opti-
miser with lr=0.001, β = [0.8, 0.999]. Once trained,
the model can be used to generate new chgcars that
may represent unseenmaterials. For generated chg-
cars that appear in the validation set, we evaluate the
average PSNR of the output chgcars in Table 1. In
digital image processing, PSNR>40 indicates that the
reconstructed image approximately shows no differ-
ence in terms of human vision. Although density
maps are different from natural images, this MSE-
based criterion can still be used as a quantitative in-
dicator. Fromour results, one can see that the gener-
ated electron density distribution shows a high level
of quality. Moreover, for generated chgcars that do
not appear in the validation set, we are currently ap-
plying an improved Bader analysis [8, 9] to deter-
mine whether they do represent unseen cubic struc-
tures that are convincingly stable.

Table 1: Average PSNR for cubic space groups.

Space Group Epochs PSNR

Pm3̄m (221) 300 44.3128
Fm3̄m (225) 300 45.0136
Fd3̄m (227) 300 41.8305

4. Conclusion
In this work, we applied Fourier analysis to cap-

ture the asymmetric unit of the electron density
distribution of crystal lattices. By fully preserving
space-group symmetry in theworkflow, we designed
an end-to-end generative variational autoencoder to
reconstruct and generate electron density maps for
the discovery of new solid state materials. Experi-
ments have shown that the reconstruction of crystal
electron densities is of high quality, which indicates
its potential to make unique discoveries in the unex-
plored area of targeted space groups. Currently, we
are also working on this pipeline to make it applica-
ble for reliable material property prediction.
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